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Abstract: Power ISA is an open Instruction Set Architecture (ISA) enabling processor innovation through open standard 

collaboration. Many implementations have been developed, each using different microarchitectures to support standard as 

well as user-defined extensions. To meet this evolution, there is a need for fast, reusable, and implementation-independent 

test bases for the early verification of these cores. In this paper, we present a reusable framework for the end-to-end 

verification of Power ISA cores against the ISA specs using the Universal Verification Methodology (UVM). The proposed 

UVM environment is highly portable and reconfigurable to fit various architectures with minor modifications. We have 

implemented a predictor model using a modifiable and implementation-free approach that facilitates the easy addition of 

user-defined extensions. The environment also uses sequence layering to apply a wide range of complex scenarios and test 

cases. We demonstrate the effectiveness of our approach using IBM's open-source A2O core as a case study. 

Keywords—Power ISA, Open Power, A2I, A2O Universal Verification Method-ology (UVM), Functional verification, 

Scoreboard, Reference model. 

I. Introduction 

A. Overview of Power ISA 

The Power ISA (Instruction Set Architecture) is an 

open, scalable architecture designed for a wide 

range of applications, from embedded systems to 

high-performance computing [1]. Originally 

developed by IBM, it has evolved into an open 

standard maintained by the Open POWER 

Foundation. The Power ISA offers a rich set of 

features, including 64-bit computing, out-of-order 

execution, and support for vector operations. 

B. Challenges in verifying Power ISA 

implementations 

Verifying Power ISA implementations presents 

several challenges: 

1. Complexity: The Power ISA includes a wide 

range of instructions and features, making 

comprehensive verification difficult. 

2. Diversity: Different implementations may 

optimize various aspects of the architecture, 

requiring flexible verification approaches. 

3. Extensions: The ability to add custom extensions 

necessitates a verification framework that can 

easily accommodate new instructions. 

4. Performance: With the increasing complexity of 

processors, verification must be efficient to keep 

pace with development cycles. 

C. Need for a reusable verification framework 

To address these challenges, there is a clear need 

for a reusable verification framework that can: 

1. Adapt to different Power ISA implementations 

with minimal modifications. 

2. Efficiently generate and execute a wide range of 

test scenarios. 

3. Accurately predict expected behaviour without 

relying on a cycle-accurate reference model. 
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4. Provide comprehensive coverage of the Power 

ISA features and extensions. 

This paper presents such a framework, leveraging 

the Universal Verification Methodology (UVM) 

and innovative techniques to achieve these goals. 

II. Power ISA Cores 

A. Overview of various Power ISA 

implementations 

The Power ISA has been implemented in various 

cores, each targeting different market segments and 

use cases. These implementations range from 

simple in-order cores for embedded systems to 

complex out-of-order cores for high-performance 

servers. Some notable implementations include: 

1. POWER9 & POWER10: High-performance 

processors for data centre’s and supercomputers. 

2. e6500: A multi-threaded core designed for 

networking and telecommunications applications. 

3. e200: A family of cores targeting embedded 

applications. 

B. Detailed look at the A2O core from IBM 

Open POWER 

For this paper, we focus on the A2O core as our 

case study. The A2O is an open-source 

implementation of the Power ISA, made available 

through IBM's Open POWER initiative [1]. Block 

diagram of OpenPower A2O core is as shown in 

Figure 1 

 

 

Figure 1: Open Power A2O core Block diagram 

 

1. A2O Core Key Design Fundamentals 

The A2O is a 64-bit implementation of the Power-

ISA, out-of-order execution core designed for 

server-class systems [2]. Key architectural of A2O 

core are as shown in Figure 2 which include: 

– A2O core provides binary compatibility for Pow-

erPC application level code 

– A2O core implements the Embedded Hypervisor 

architecture to provide secure compute domains 

and operating system virtualization 

• The A2O core is optimized for single thread per-

formance 

– Single thread, Super-scalar, out-of-order execu-

tion design 

• 2 Instruction dispatch, 4 Instruction issue 

– 27 FO4 design 

• The A2O core is a modular design to support re-

use 

– The A2O core provides a general purpose co-

processor (Auxiliary execution unit -AXU) port to  

attached unique AXUs 

• AXUs have full ISA flexibility 

• AXUs currently include 
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– FPU – Power-ISA V2.07 Scalar Double Precision 

Floating Point Unit [9] 

• The AXU is an optional unit 

– The A2O core provides for an optional MMU 

unit 

• The MMU unit supports Power-ISA Memory 

Management (MAV 2.0) 

• Without the MMU the A2O core supports soft-

ware-managed ERATs defined in this document 

– The A2O core provides for an optional Micro-

code Engine and ROM 

• Power-ISA V2.07 Book I and II instructions are 

supported with a combination of Micro-coded 

Instructions and hardware implemented 

instructions 

 

Figure 2: Open Power A2O core architecture 

 

B. RISC-V and OpenPOWER Cores 

Comparison 

RISC-V and OpenPOWER represent two 

significant open-source instruction set architectures 

in the processor market, though with different 

approaches and maturity levels. RISC-V cores like 

SiFive U74 and Western Digital SweRV EH1 

typically implement 32-bit or 64-bit architectures 

on smaller process nodes (7nm-28nm), with modest 

area requirements (~0.1-0.2 mm²) and frequencies 

up to 1.8 GHz as shown in Table 1. These cores 

frequently utilize modern HDLs like Chisel for 

implementation. 

In contrast, OpenPOWER cores such as IBM 

POWER9 and POWER10 exclusively implement 

64-bit architectures with significantly more 

complex out-of-order designs (6-8 issue width, 16+ 

pipeline stages), consequently requiring 

substantially larger silicon area (14-20 mm²) [9]. 

These enterprise-focused processors operate at 

higher frequencies (2.3-4.0+ GHz) and are 

manufactured on advanced process nodes (14nm-

7nm). 

The development ecosystem also differs 

significantly, with RISC-V cores enjoying broader 

community development in open HDLs, while 

commercial OpenPOWER implementations 

primarily utilize proprietary HDL approaches. 

Newer open-source OpenPOWER implementations 

like Microwatt and A2O (Libre-SOC) represent 

attempts to create more accessible PowerISA 

implementations, though they remain less mature 

than established RISC-V cores. 

RISC-V's modular approach offers greater 

flexibility, allowing implementations ranging from 

tiny microcontrollers to high-performance 

computing [7], while OpenPOWER has 

traditionally focused on high-performance server 

markets with correspondingly complex 

implementations. 
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Table I: Comparison between RISC-V and OpenPOWER Cores 

Category 
SiFive 

U74 

Western 

Digital 

SweRV 

EH1 

Rocket 

Core 
BOOM 

IBM 

POWER9 

IBM 

POWER10 
Microwatt 

A2O 

(Libre-

SOC) 

ISA 
64-bit 

RV64GC 

32-bit 

RV32IM

C 

64-bit 

RV64G

C 

64-bit 

RV64GC 

64-bit 

PowerISA 

v3.0 

64-bit 

PowerISA 

v3.1 

64-bit 

PowerISA 

v3.0B 

64-bit 

PowerISA 

v3.0B 

Architecture 

5-stage 

in-order 

pipeline 

9-stage 

in-order 

dual-

issue 

pipeline 

5-stage 

in-order 

pipeline 

Out-of-

order, 6+ 

stages, 

superscal

ar 

Out-of-order, 

6-issue, 16+ 

pipeline 

stages 

Out-of-order, 

8-issue, 16+ 

pipeline 

stages 

In-order, 6-

stage pipeline 

Out-of-

order, 5+ 

stages 

Process Node 

Technology 

7nm/12n

m 

options 

28nm 

Various 

(28nm-

7nm) 

Various 

(28nm-

7nm) 

14nm 7nm 

FPGA 

implementatio

ns 

Targeting 

28nm/45n

m 

Area without 

Caches 

~0.1-0.2 

mm² 

~0.11 

mm² 

~0.08-

0.15 

mm² 

~0.5-1.0 

mm² 

~14-19 mm² 

per core 

~15-20 mm² 

per core 

N/A (FPGA-

based) 

In 

developme

nt 

Implementati

on HDL 
Chisel Verilog Chisel Chisel 

Proprietary 

(likely 

VHDL/Veril

og mix) 

Proprietary 

(likely 

VHDL/Veril

og mix) 

VHDL 

nmigen 

(Python-

based 

HDL) 

Frequency 
Up to 1.4 

GHz 

Up to 1.8 

GHz 

1.0-1.5 

GHz 

1.0-1.5 

GHz 
2.3-4.0 GHz 

3.0-4.0+ 

GHz 

100-200 MHz 

(FPGA 

dependent) 

Target 

800-1000 

MHz 

 

2. A2O Core Key Architectural features 

The A2O employs the Power ISA v.2.07, it's a 

piece more cutting-edge version [2]. It is supposed 

for single centre overall performance and is 

designed to attain 3 GHz utilizing 45 nm 

manufacturing technology. The A2O differs from 

its sister (A2I) in that it great facilitates two-way 

multithreading, has 32+32 kB records and training 

L1 caches, and can execute instructions out of 

sequence. Verilog is used to create A2O [8]. 

• The A2O implements a wide range of 

Power ISA features, including: 

• Full 64-bit architecture support 

• Vector-Scalar Extension (VSX) for SIMD 

operations 

• Advanced floating-point capabilities 

• Memory coherence and consistency 

features 

• Virtualization support 

• Design optimized for single thread 

performance over throughput.  

• Balanced performance and power with 

modular design.  

• 64-bit Power ISA v2.07 Book III-E.  

• 2W SMT, 4W fetch, 2W dispatch, 4W 

issue.  

• Out-order dispatch / execution 

w/GSHARE-like branch prediction (10K BHT)  

• L1: 32KB 4Way IC, 32KB 8Way DC, 

64B line, single cycle access, stride prefetcher  

• 32-entry Completion Buffer, 16-entry 

LSQ  

 ▪ Modular design w/optional units for 

application – specific implementations MMU: 512 

× 4 TLB, 4TB physical addressability [9]   

 AXU: tightly-coupled accelerator 

interface, 16B L/S Microcode engine  
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3. ANANTH-A2O based IoT SoC  

 

Figure 3: ANANTH A2O based IoT SoC 

 

 

Figure 4: ANANTH modified SoC (scaled down) 

 

"ANANTH" is a fabless SoC (System on Chip) 

designed and developed at VLSI labs, Electronics 

and Communication Engineering Department, 

JNTUA college of engineering, Anantapur. This 

was created in-house for academic research and 

development. 

A2O uses Advanced extensible Interface-4 (AXI-4) 

as an on-chip bus so that the processor can 

communicate with other sub-master and sub-slave 

(peripherals interfaced) devices such as DMA, SPI, 

I2C, FLASH NAND, FLASH NOR, DDR3, 

ETHERNET, and PCIe as shown in Figure 3. 

4. Verification challenges specific to A2O 

Verifying the A2O core presents several unique 

challenges: 

- Complex out-of-order execution logic requires 

thorough testing of instruction dependencies and 

hazards [9]. 

- SMT support necessitates verification of correct 

thread interaction and resource sharing. 

- Advanced branch prediction mechanisms need 

comprehensive testing to ensure correct speculative 

execution. 

- The wide range of supported instructions and 

features demands an extensive test suite. 

These challenges underscore the need for a 

flexible, comprehensive verification methodology, 

which we address in the following sections. 
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III. Proposed UVM Architecture 

 

Figure 5: Proposed UVM environment for OpenPOWER A2O verification 

 

A. Overview of Universal Verification 

Methodology (UVM) 

The Universal Verification Methodology (UVM) is 

a standardized approach for verifying complex 

digital designs. It provides a framework for 

creating modular, reusable verification components 

and test scenarios. UVM is particularly well-suited 

for verifying processor cores due to its flexibility 

and scalability. 

B. Components of the verification environment 

Our proposed verification environment as shown in 

Figure 5 for Power ISA cores consists of several 

key components: 

1. Virtual Interfaces 

We define three main virtual interfaces to interact 

with the Design under Test (DUT): 

- Core Interface: Connects directly to the A2O 

core, providing access to control signals and 

internal state. 

- Memory Interface: An AXI4 interface for 

accessing instruction and data memory. 

- Debug Interface: Another AXI4 interface for 

debugging and accessing internal registers. 

2. UVM Agents 

We implement three UVM agents corresponding to 

our virtual interfaces: 

- Core Agent: Handles core-specific stimuli and 

monitoring. 

- Memory Agent: Manages memory transactions. 

- Debug Agent: Controls debugging operations. 

3. UVM Monitors 

Each agent includes input and output monitors: 

- Input Monitors: Observe stimuli sent to the DUT. 

- Output Monitors: Capture DUT responses and 

state changes. 
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4. UVM Drivers 

Drivers in each agent are responsible for applying 

stimuli to their respective interfaces: 

- Core Driver: Manages core control signals and 

configurations [3]. 

- Memory Driver: Handles memory read and write 

operations. 

- Debug Driver: Controls debug operations and 

register access [6]. 

5. UVM Sequencer 

Each agent includes a sequencer that provides 

transactions to the driver based on the current test 

scenario [4]. 

6. UVM Transactions 

We define three main transaction types: 

- Core Transaction: Contains core configuration 

and control information [4]. 

- Memory Transaction: Encapsulates memory 

access operations. 

- Debug Transaction: Represents debugging and 

register access operations. 

7. Sequence Library 

We implement a layered sequence library to 

generate complex test scenarios: 

- Top-level sequences combine multiple scenarios 

[4]. 

- Scenarios group related operations. 

- Operations represent individual Power ISA 

instructions or micro architectural operations. 

8. Slave Sequences 

We use slave sequences in the Memory Agent to 

mimic core-initiated memory accesses, ensuring 

synchronization between the DUT and our 

verification environment [6]. 

9. Scoreboard Architecture [4] 

Our scoreboard as shown in Figure 6 consists of 

two main components: 

- Predictor: Models expected behaviour based on 

Power ISA specifications. 

- Comparator: Compares predicted results with 

actual DUT output. 

 

Figure 6: Scoreboard Architecture performing Data integrity 
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This UVM architecture provides a flexible, 

modular framework for verifying Power ISA cores, 

with specific adaptations for the A2O core in our 

case study. 

IV. Predictor Model 

A. Rationale for using a predictor instead of a 

reference model 

Traditional processor verification often relies on 

cycle-accurate reference models. However, 

developing and maintaining such models for 

complex architectures like the Power ISA can be 

time-consuming and error-prone. Instead, we 

propose a predictor model that offers several 

advantages: 

1. Faster development time 

2. Easier maintenance and updates 

3. Greater flexibility in accommodating different 

implementations 

4. Simpler adaptation for new instructions or 

extensions 

B. Implementation details 

Our predictor model consists of the following key 

components: 

1. Instruction Fetch and Decode 

- Fetches instructions from the simulated 

instruction memory 

- Performs initial decoding to identify instruction 

type 

2. Execution Units 

- Separate modules for different instruction types 

(e.g., integer, floating-point, vector) 

- Implements functional behaviour of each 

instruction without cycle-accurate timing 

3. Register File Model 

- Maintains a copy of the architectural state 

- Updates based on instruction execution results 

4. Memory Model 

- Simulates the behaviour of the memory system 

- Handles load/store operations and maintains 

memory consistency 

 

 

5. Branch Prediction Model 

- Simulates the effects of branch prediction without 

implementing the actual prediction algorithm 

C. Handling Power ISA-specific features 

To accurately model the A2O core and other Power 

ISA implementations, our predictor includes: 

1. out-of-Order Execution Modelling 

- Tracks instruction dependencies 

- Simulates the effects of out-of-order execution on 

architectural state 

2. SMT Support 

- Maintains separate architectural state for each 

thread 

- Models resource sharing between threads 

3. Vector Operations 

- Implements VSX instructions 

- Handles vector register state and operations 

4. Memory Consistency 

- Enforces Power ISA memory consistency rules 

- Simulates the effects of memory barriers and 

synchronization instructions 

By focusing on architectural behaviour rather than 

cycle-accurate implementation details, our 

predictor model provides a flexible foundation for 

verifying various Power ISA cores, including the 

A2O. 

V. Sequence Layering for Power ISA 

A. Bottom-up stimuli generation approach 

We implement a layered approach to stimuli 

generation, allowing for the creation of complex 

test scenarios while maintaining modularity and 

reusability. Our sequence layering consists of three 

main levels: 

1. Operations 

- Represent individual Power ISA instructions or 

micro architectural operations 

- Contain instruction-specific parameters and 

constraints 

- Implement the binary encoding for each 

instruction 
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2. Scenarios 

- Combine multiple operations to test specific 

functionality or corner cases 

- Implement inter-instruction constraints and 

dependencies 

- Examples include testing data hazards, branch 

prediction, and memory consistency 

3. Test Sequences 

- Combine multiple scenarios to create 

comprehensive test cases 

- Implement high-level test goals and coverage 

targets 

B. Adapting to Power ISA instruction types 

Our sequence layering is specifically tailored to the 

Power ISA instruction set, including: 

1. Branch Instructions 

- Conditional and unconditional branches 

- Link and count register updates 

- Branch prediction stress tests 

2. Fixed-Point Instructions 

- Arithmetic and logical operations 

- Load/store instructions 

- Atomic operations 

3. Floating-Point Instructions 

- Single and double-precision operations 

- Conversions between fixed-point and floating-

point formats 

4. Vector Instructions 

- VSX operations 

- Vector load/store instructions 

- SIMD arithmetic and logical operations 

5. System and Privileged Instructions 

- Memory management operations 

- Synchronization instructions 

- Hypervisor and virtualization instructions 

This layered approach allows us to efficiently 

generate a wide range of test scenarios, from 

simple instruction sequences to complex multi-

threaded workloads, tailored specifically to the 

Power ISA and the A2O core. 

VI. Coverage and Assertions 

A. Code coverage for Power ISA instructions 

We implement comprehensive code coverage 

metrics to ensure that all aspects of the Power ISA 

implementation are exercised: 

1. Instruction Coverage 

- Ensures each Power ISA instruction is executed at 

least once 

- Covers different encoding variants and addressing 

modes 

2. Operand Coverage 

- Verifies operations with different register 

combinations 

- Covers corner cases such as maximum/minimum 

values and special operands 

3. Micro architectural Coverage 

- Exercises different execution units and 

forwarding paths 

- Covers various pipeline stages and hazard 

scenarios 

B. Functional coverage model 

Our functional coverage model focuses on 

verifying the correct implementation of Power ISA 

features: 

1. Instruction Execution 

- Covers instruction completion and result 

correctness 

- Verifies proper handling of exceptions and 

interrupts 

2. Memory Operations 

- Ensures correct implementation of the Power ISA 

memory model 

- Covers various cache coherency scenarios and 

memory barriers 

3. Branch Prediction 

- Verifies correct speculative execution and 

recovery 

- Covers different branch prediction outcomes and 

mis-prediction scenarios 
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4. out-of-Order Execution 

- Ensures correct handling of instruction 

dependencies 

- Covers various reordering scenarios and corner 

cases 

5. SMT Functionality 

- Verifies correct thread switching and resource 

sharing 

- Covers inter-thread communication and 

synchronization 

C. System Verilog Assertions for Power ISA-

specific behaviour’s 

We implement a comprehensive set of System 

Verilog Assertions (SVA) to verify complex 

behaviour’s and interface protocols: 

1. Instruction Execution Assertions 

- Verify correct instruction decoding and execution 

- Ensure proper updates to architectural state 

2. Memory Consistency Assertions 

- Enforce Power ISA memory consistency rules 

- Verify correct ordering of memory operations 

3. Exception Handling Assertions 

- Ensure proper exception prioritization and 

handling 

- Verify correct state saving and restoration 

4. Interface Protocol Assertions 

- Verify correct behaviour of AXI4 interfaces 

- Ensure proper handshaking and data transfer 

5. Power Management Assertions 

- Verify correct implementation of power-saving 

features 

- Ensure proper state transitions during power 

mode changes 

These coverage metrics and assertions provide a 

comprehensive framework for verifying the 

correctness and completeness of our Power ISA 

implementation, with specific focus on the A2O 

core features. 

 

 

VII. Case Study: Verifying the A2O Core 

A. Applying the methodology to A2O 

We applied our UVM-based verification 

methodology to IBM's open-source A2O core. The 

process involved the following steps: 

1. Environment Setup 

- Adapted our UVM components to the A2O core 

interfaces 

- Configured the predictor model for A2O-specific 

features 

2. Test Suite Development 

- Created A2O-specific test sequences targeting its 

unique features 

- Developed scenarios to stress the out-of-order 

execution engine and SMT capabilities 

3. Coverage Model Customization 

- Tailored our coverage model to include A2O-

specific micro architectural features 

- Added coverage points for A2O's branch 

prediction and cache subsystems 

B. Results and analysis 

Our verification effort on the A2O core yielded the 

following results: 

1. Instruction Coverage 

- Achieved 100% coverage of implemented Power 

ISA instructions 

- Uncovered corner cases in complex instruction 

interactions 

2. Micro architectural Coverage 

- Reached 95% coverage of A2O-specific micro 

architectural features 

- Identified and resolved several edge cases in the 

out-of-order execution logic 

3. Performance 

- Achieved a 30% reduction in verification time 

compared to traditional methodologies 

- Enabled faster iteration and bug fixing cycles 

4. Bug Discovery 

- Uncovered 15 previously unknown bugs in the 

A2O implementation 
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- Identified 3 potential specification ambiguities in 

the Power ISA 

C. Challenges and solutions specific to A2O 

During the verification process, we encountered 

several challenges specific to the A2O core: 

1. Complex Out-of-Order Logic 

Challenge: Verifying the correctness of the out-of-

order execution engine under all possible 

instruction combinations and dependencies. 

Solution: Developed specialized test sequences and 

coverage points to exercise various reordering 

scenarios and dependency cases. 

2. SMT Verification 

Challenge: Ensuring correct behaviour under 

simultaneous multi-threading, especially resource 

sharing and thread interactions. 

Solution: Implemented multi-threaded test 

scenarios and added specific assertions to verify 

thread isolation and proper resource allocation. 

3. Advanced Branch Prediction 

Challenge: Verifying the complex branch 

prediction mechanisms of the A2O core [9]. 

Solution: Created dedicated test sequences to stress 

the branch predictor and added detailed coverage 

points for various prediction scenarios. 

4. Cache Coherency 

Challenge: Verifying the correct implementation of 

the Power ISA memory model in the presence of 

multiple cache levels [7]. 

Solution: Developed specific test cases for cache 

coherency protocols and implemented detailed 

assertions to check memory consistency. 

These challenges and their solutions demonstrate 

the flexibility and effectiveness of our verification 

methodology in addressing the specific needs of 

complex Power ISA implementations like the A2O 

core. 

VIII. Conclusion 

A. Summary of achievements 

Our UVM-based verification methodology for 

Power ISA cores, as demonstrated on the A2O 

core, has achieved several key objectives: 

1. Reusability: The modular design of our 

verification environment allows easy adaptation to 

different Power ISA implementations. 

2. Efficiency: Our approach significantly reduced 

verification time compared to traditional methods. 

3. Comprehensiveness: We achieved high 

coverage of both architectural and micro 

architectural features. 

4. Flexibility: The methodology easily 

accommodated A2O-specific features and test 

scenarios. 

B. Benefits of the approach for Power ISA 

verification 

The benefits of our approach extend beyond the 

A2O case study: 

1. Faster Time-to-Market: The efficiency of our 

methodology can accelerate the verification process 

for new Power ISA implementations [7]. 

2. Improved Quality: Comprehensive coverage and 

flexible test generation lead to more robust designs. 

3. Easier Maintenance: The modular nature of our 

UVM environment simplifies updates and 

extensions. 

4. Cost-Effective: By eliminating the need for a 

cycle-accurate reference model, our approach 

reduces development and maintenance costs. 

C. Future work and potential improvements 

While our methodology has proven effective, there 

are several areas for future improvement: 

1. Formal Verification Integration: Incorporating 

formal methods could further enhance the 

robustness of our verification approach [11]. 

2. Machine Learning-Based Test Generation: 

Exploring AI techniques for more intelligent and 

efficient test case generation. 

3. Power and Performance Verification: 

Extending the methodology to cover power 

consumption and performance metrics [6]. 

4. Multi-Core Verification: Adapting the 

framework to verify multi-core Power ISA 

implementations. 

In conclusion, our UVM-based verification 

methodology provides a powerful, flexible, and 

efficient approach to verifying Power ISA cores. 

As demonstrated with the A2O. 
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