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Abstract: Real-time fall detection in complex environments remains a challenging task due to varying human postures, 

occlusions, and cluttered scenes. This paper presents Symmetry-Aware Visual Intelligence, a novel triple-attention network 

built upon an enhanced YOLOv5 backbone to ensure robust detection without sacrificing computational efficiency. Our 

approach integrates three complementary attention mechanisms: Local Attention in early convolutional layers to emphasize 

posture-relevant spatial symmetry, Squeeze-and-Excitation (SE) blocks within the backbone to recalibrate channel-wise 

feature importance, and Efficient Channel Attention (ECA) in the neck for improved multi-scale feature fusion. Together, 

these modules enhance both spatial precision and contextual awareness. The proposed architecture achieves state-of-the-art 

results, with mAP scores of 0.914 on the DiverseFall dataset and 0.994 on CAUCAFall, outperforming baseline YOLOv5s by 

7.7% and 8.2%, respectively. Notably, it also surpasses YOLOv5x in precision (0.903 vs. 0.769) while maintaining a 

lightweight design with 80% fewer parameters. Extensive ablation studies validate the contribution of each attention module, 

and training optimization using SGD at a learning rate of 0.001 ensures convergence. Our model offers a high-performance, 

efficient solution for fall detection in real-world scenarios with structural complexity. 

Keywords: Visual Intelligence, Attention Mechanisms; Assisted living; Fall Detection; Visual sensors; Elderly care; 

Healthcare monitoring. 

1. Introduction 

Falls can occur due to various causes, both indoors and 

outdoors, and tragically, some lead to fatalities or 

serious injuries. This impact is especially profound 

among older adults, affecting both their physical well-

being and psychological resilience. According to the 

World Health Organization (WHO), falls are a critical 

global public health concern, resulting in 

approximately 684,000 fatalities annually. 

Alarmingly, the highest death rates are observed 

among adults aged 60 years and older [1]. In many 

real-world scenarios, human posture exhibits a degree 

of bilateral symmetry, and leveraging this property can 

be advantageous in recognizing fall patterns more 

accurately amidst complex backgrounds and 

occlusions. However, unreported, or undetected falls 

remain a significant threat, particularly for the elderly 

and individuals with limited mobility, where 

immediate assistance can determine whether the 

outcome is a quick recovery or a prolonged, 

complicated one. Furthermore, failure to detect such 

incidents increases the burden on healthcare systems 

and escalates associated medical costs. 

There is thus an urgent need for reliable and intelligent 

fall detection (FD) systems that can significantly 

enhance individual safety, especially in healthcare 

environments and assisted living settings. Accurate 

and timely FD can play a pivotal role in ensuring the 

well-being of individuals, optimizing medical 

resource allocation, and improving healthcare 

outcomes. Technological advancements in FD can 

revolutionize healthcare delivery, foster independence 

among vulnerable populations, and prevent avoidable 

loss of life. Current FD systems are typically 

categorized into these main groups [2]: ambient 

sensors, wearable sensor devices, and computer vision 

(CV)-based intelligent systems. Ambient sensor-based 

methods rely on environmental monitoring devices to 

collect data on parameters like pressure, vibration, and 

sound. However, since these sensors are fixed in 

specific areas, they offer limited spatial coverage and 

often lack contextual awareness, thus affecting 

detection accuracy and reliability [3]. Wearable 

sensors present an alternative solution, requiring users 

to wear devices embedded with accelerometers, 
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gyroscopes, and magnetometers on the body (e.g., 

chest, back, or waist) to track motion patterns for fall 

detection [4]. Nonetheless, these systems face 

usability challenges. Older individuals may find them 

uncomfortable or forget to wear them, and battery 

limitations necessitate regular charging or 

replacements, which can be inconvenient [5]. In 

contrast, vision-based FD using fixed cameras has 

gained traction due to its passive monitoring 

capabilities, uninterrupted power source, and ability to 

eliminate the need for wearable gear [6]. Deep 

learning (DL)-based vision systems, particularly those 

using RGB or depth cameras (e.g., CCTVs), have 

emerged as prominent tools for FD [7-11]. Multimodal 

strategies combining camera and sensor data [12-15] 

offer enhanced performance, yet often introduce 

complexity in data integration and interpretation, 

complicating real-world deployment [12]. Vision-only 

systems, therefore, offer a more practical solution for 

fall monitoring, but conventional object detection 

techniques still face challenges in recognizing and 

localizing falls accurately in complex scenes [16]. 

Among DL-based methods, the You Only Look Once 

(YOLO) series has gained popularity due to its 

superior speed and accuracy in object detection across 

domains [17-18]. For example, YOLOv2 was used in 

[19] for human detection with pretrained CNNs on the 

MS-COCO dataset. A YOLOv3-based method in 

another study managed multiple individuals using 

CNN-based feature extraction followed by posture 

recognition via Support Vector Machines (SVMs). 

Additionally, [20] introduced a fall management 

system using monocular cameras and humanoid 

robots. The work in [11] proposed a YOLOv4-based 

approach utilizing the UR FD dataset. 

Despite such advancements, many FD models are 

constrained by the lack of diverse training datasets, 

limiting generalizability and scalability. For instance, 

while [21] introduced a YOLOv7-fall model for 

prompt detection, their dataset lacked diversity, which 

reduced the model’s effectiveness. To address these 

issues, our study focuses on a vision-based state-of-

the-art (SOTA) FD approach, incorporating 

progressive technical enhancements and leveraging 

diverse datasets. We aim to build a robust, scalable 

solution suitable for real-world deployment by 

enhancing detection accuracy and improving the 

model’s ability to generalize across various 

environmental conditions. 

 

 

1.1. Limitations of Related Literature 

Despite significant advancements in fall detection 

(FD) research, several critical limitations persist in 

current methodologies. Multimodal approaches that 

integrate data from multiple sensors [12-15] offer 

theoretical advantages yet suffer from several practical 

drawbacks. These include increased latency due to 

sensor synchronization issues, elevated system 

complexity, higher deployment costs, and reduced 

reliability when deployed in unconstrained real-world 

environments. These challenges underscore the 

importance of developing vision only approaches 

capable of delivering robust performance with real-

time efficiency. Among vision-based solutions, 

YOLO-family architecture has emerged as a popular 

choice for FD applications [11,19-25]. However, 

existing YOLO-based fall detection systems exhibit 

three key limitations. First, they often utilize 

unmodified versions of standard YOLO architectures, 

which are not tailored to address the specific 

challenges of fall detection, such as recognizing 

complex postures and modeling spatial relationships. 

Second, most implementations neglect the integration 

of attention mechanisms that could significantly 

improve the discrimination between falls and normal 

daily activities, particularly in cluttered scenes or 

under partial occlusion. Third, current approaches 

frequently overlook comprehensive optimization 

studies, resulting in a lack of clarity regarding the most 

effective architectural configurations and training 

strategies for fall detection. Moreover, the 

generalization capabilities of current YOLO-based FD 

models are often limited when applied to diverse 

environmental conditions. This issue is attributable 

not only to architectural constraints but also to 

evaluation practices that do not adequately evaluate 

models across a broad range of real-world scenarios, 

such as varying illumination, camera perspectives, 

occlusions, and heterogeneous backgrounds. 

Consequently, while YOLO-based systems have 

shown promise in controlled environments, their 

effectiveness in real-world applications remains 

constrained by these unresolved challenges. 

1.2. Contributions 

This work presents several key contributions to the 

field of vision-based fall detection, addressing critical 

limitations in existing approaches through 

architectural innovations and comprehensive 

evaluation: 
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Symmetry-Aware Attention Enhanced YOLOv5 

Architecture: We propose systematically enhanced 

YOLOv5-based architecture for fall detection, 

integrating complementary attention mechanisms 

across the network. Specifically, Local Attention is 

applied in the early layers, Squeeze-and-Excitation 

(SE) blocks in the backbone, and Efficient Channel 

Attention (ECA) modules in the neck. This attention-

driven and symmetry-aware design enhances the 

model’s sensitivity to bilateral posture patterns and 

contextual cues indicative of falls, achieving a 

performance gain of 7.7% mAP on the DiverseFALL 

dataset and 8.2% on the CAUCAFall dataset, with 

only a 1.2% increase in parameters, while preserving 

real-time inference capabilities. 

Multi-Stage Symmetry Informed Attention 

Integration Strategy: We introduce a novel strategy 

for integrating diverse attention modules at various 

stages of the detection pipeline. Local Attention 

enhances fine-grained spatial feature learning based 

on posture symmetry in initial stages, SE blocks 

recalibrate mid-level channel-wise features to capture 

posture-aligned patterns, and the ECA module enables 

efficient multi-scale feature fusion without 

dimensionality reduction. This multi-level attention 

integration effectively addresses key challenges such 

as scale variation, partial occlusions, and diverse 

human poses in real-world scenarios.  

Comprehensive Empirical Evaluation: Our study 

includes an extensive evaluation across various 

detection models on two challenging datasets: 

DiverseFALL and CAUCAFall. Detailed ablation 

studies isolate the contributions of each architectural 

component and optimization setting. The results 

consistently demonstrate the superiority of our 

attention-enhanced approach over state-of-the-art 

baselines. 

Optimization Strategy Analysis: We investigate 

multiple optimization algorithms (Adam, AdamW, 

Nadam, Radam, RMSProp, and SGD) under varying 

learning rates. Our findings highlight that SGD with a 

learning rate of 0.001 yields optimal performance for 

attention-augmented YOLOv5 models in fall 

detection. 

Collectively, these contributions advance the state of 

the art in vision-based fall detection by offering a 

robust, efficient, and deployable solution. 

2. Related Work 

Fall detection (FD) research has evolved along two 

primary trajectories: sensor-based approaches 

utilizing traditional machine learning and vision-based 

methods leveraging deep learning. Table 1 provides a 

comprehensive overview of the methodologies, 

datasets, and sensors used across various FD studies in 

literature. This section further examines these 

approaches, highlighting their respective strengths and 

limitations. 

 

Table 1. Comparative analysis of fall detection techniques and datasets from recent literature. 

Year Technique Dataset Sensors 

2019 [5] Body posture angle, SVM Real-time data MPU6500 sensor 

2020[26] Decision tree ADL data Integrated sensor system 

2020[24] CNN and SVM FPDS, SCDS RGB camera 

2021[15] Multimodal CNN UR Fall, UP-Fall RGB images, accelerometers 

2021[20] YOLOv3 SCDS Monocular camera, robot 

2022[25] Modified YOLOv5s URFD dataset Microsoft Kinect cameras 

2023[14] Multimodal Data Fusion UP-Fall dataset Wearable sensors, cameras 

2023[27] YOLOv5x, YOLOv5s CAUCA Fall Webcam, IoT devices 

2024[21] YOLOv7-fall, YOLOv7-tiny Multi-camera FD, UR FD RGB cameras 

2024[28] YOLOv8 DiverseFall RGB cameras 
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2.1. Sensor-Based Fall Detection 

Traditional sensor-based fall detection typically 

employs machine learning (ML) algorithms to analyze 

data from wearable devices or ambient sensors. 

Kwolek et al. [29] utilized visual frame data from the 

URFD dataset with SVM and KNN classifiers for fall 

detection. Yacchirema et al. [30] integrated a 3-D axial 

accelerometer with a wearable 6LowPAN device and 

employed decision tree algorithms to process sensor 

data, automatically alerting caregivers upon fall 

detection. Several studies have explored alternative 

sensing modalities. Saleh et al. [31] proposed an ML-

based algorithm specifically designed for elderly fall 

detection, while Seredin et al. [32] developed a 

privacy-preserving approach utilizing skeletal feature 

encoding with SVM classification. Chen et al. [33] 

analyzed accelerometer data from wristwatches, 

though hand movement interference remains a 

challenge with this approach. Similarly, Chandra et al. 

[34] employed gyroscopes to distinguish falls from 

normal movements based on angular velocity 

measurements. Despite their practical applications, 

sensor-based approaches often suffer from limitations 

including user compliance issues with wearable 

devices, restricted monitoring range with ambient 

sensors, and difficulty capturing the contextual 

information necessary for accurate fall detection. 

2.2. Vision Based Fall Detection 

Recent advances in deep learning have shifted the 

focus toward vision-based fall detection systems, with 

YOLO (You Only Look Once) architectures gaining 

prominence due to their real-time performance 

capabilities [35,36]. The progressive evolution of 

YOLO variants has yielded increasingly sophisticated 

fall detection systems. Early implementations utilized 

YOLOv2 [19] for human detection with pre-trained 

weights, further fine-tuned on manually annotated fall 

images. Lezzar et al. [24] extended this approach with 

YOLOv3, enabling detection of multiple individuals 

within frames. Raza et al. [11] developed a YOLOv4-

based network trained on the UR Fall dataset 

containing approximately 1,691 fall and 1,731 normal 

samples, demonstrating the ability to recognize falls 

using standard visual sensors without environmental 

sensors. 

More recent research has focused on architectural 

enhancements to the YOLO framework. Chen et al. 

[25] modified YOLOv5s by replacing conventional 

convolutions with asymmetric convolution blocks and 

incorporating spatial attention mechanisms to improve 

feature extraction. Zhao et al. [21] introduced 

YOLOv7-fall, claiming enhanced feature extraction 

with reduced model parameters, though their training 

dataset comprised only 4,016 images. Despite these 

advancements, vision-based approaches face 

persistent challenges. Current implementations often 

lack architectural optimizations specifically tailored to 

fall detection’s unique requirements. Additionally, 

most studies utilize relatively homogeneous datasets 

that limit model generalization to diverse real-world 

environments. These limitations underscore the need 

for both architectural innovations specifically 

designed for fall detection and evaluation on more 

diverse datasets to enhance real-world applicability. 

3. Proposed Methodology 

3.1. YOLOv5 Architecture 

Our proposed fall detection model enhances the 

original YOLOv5 architecture through targeted 

integration of attention mechanisms that improve its 

sensitivity to posture-related anomalies while 

maintaining real-time inference capability. Our 

modifications are implemented on the YOLOv5s 

variant, the smallest and fastest version of YOLOv5, 

to maintain real-time performance while enhancing 

accuracy for fall detection. The choice of YOLOv5s 

balances computational efficiency (critical for edge 

deployment) with sufficient feature extraction 

capacity. The overall framework, illustrated in Figure 

1, introduces three critical modifications: Local 

Attention in the early stages, Squeeze-and-Excitation 

(SE) blocks within the backbone, and Efficient 

Channel Attention (ECA) modules in the neck. These 

enhancements are carefully positioned to maximize 

impact with minimal computational cost. The network 

processes RGB images of resolution 640×640×3, 

which are initially passed through the Focus module 

that reorganizes the spatial dimensions into 320×320 

patches with 12 channels. This is followed by a 

convolutional layer (Conv-1), which reduces the 

representation to 64×320×320. At this point, a Local 

Attention mechanism is applied. Using 5×5 sliding 

windows, it computes spatial weights that highlight 
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regions indicative of abnormal postures such as prone 

or supine positions. This early attention helps the 

network focus on fine-grained spatial cues from the 

outset. 

The backbone is based on CSPDarknet and consists of 

four CSP2 blocks with residual connections. After the 

third CSP2 block, where the feature map has 

dimensions of 256×80×80, we integrate a Squeeze-

and-Excitation (SE) block. This block uses a squeeze 

ratio of 16 to compress the channel dimension,  

Figure 1. Visual Overview of the overall model architecture. From left to right: (1) Backbone feature extraction (2) 

Neck (3) Detection Heads. 

followed by excitation to recalibrate channel-wise 

responses. The inclusion of SE enhances the model’s 

ability to emphasize textural cues, such as twisted 

limbs or crumpled clothing, which are characteristic of 

falls. Subsequently, the neck, which combines a 

Feature Pyramid Network (FPN) and Path 

Aggregation Network (PAN), merges multi-scale 

features. Within the first FPN layer, also handling 

256×80×80 feature maps, we introduce an ECA 

module (Figure 2). This attention mechanism uses 

adaptive 1D convolutions without fully connected 

layers to refine inter-channel dependencies. The 

kernel size is determined dynamically using the 

formula k=log_2 (C)/γ+1/γ, where C=256 and γ=2, 

resulting in k=3 for this stage. This adaptation ensures 

effective fusion of multi-scale features with negligible 

parameter increase. Finally, the detection heads 

produce predictions at three output scales: 80×80 (P3), 

40×40 (P4), and 20×20 (P5), enabling detection of 

fallen individuals at varying sizes and positions. 

Despite these additions, the overall increase in 

computational complexity remains minimal. The 

Local Attention module contributes less than 0.3% 

additional parameters due to its localized 5×5 

windowing, the SE blocks introduce only 0.9% 

parameter overhead with their lightweight squeeze 

ratio, and the ECA modules remain dense-free, 

preserving real-time inference speeds. 

 

3.2. Local Attention Mechanism 

To enhance spatial awareness during early-stage 

feature learning, we introduce a lightweight Local 

Attention module after the first convolutional layer 

(Conv-1). This mechanism selectively emphasizes 

spatial regions critical for distinguishing between 

upright and fallen postures, such as limb orientation 

and torso alignment, while keeping computational 

overhead minimal. For a feature map F∈R^(C×H×W), 

the Local Attention module divides the spatial 

dimensions into non-overlapping 5×5 windows. 

Within each window, attention weights are calculated 

using a scaled dot-product operation. Specifically, for 

the (i, j)-th window, the spatial attention is computed 

as: 

𝐀𝑖,𝑗 = 𝜎 (𝐖𝑞𝐅𝑖,𝑗 ⋅ (𝐖𝑘𝐅𝑖,𝑗)
⊤
), 
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where 𝐖𝑞 and 𝐖𝑘 are learnable linear projections 

representing query and key matrices, respectively, and 

𝜎 denotes the softmax function. The computed 

attention map 𝐀𝑖,𝑗 is then used to recalibrate the 

corresponding local features through a value 

transformation: 

𝐅̂𝑖,𝑗 = 𝐀𝑖,𝑗 ⋅ (𝐖𝑣𝐅𝑖,𝑗), 

 

 

Figure 2. Inside Architecture of Efficient Channel Attention Mechanism.

where 𝐖𝑣 is another learnable projection representing 

the value transformation. This recalibration process 

highlights discriminative spatial patterns within each 

window, such as the horizontal alignment of the torso 

in fall scenarios, while suppressing irrelevant 

background features. From a computational 

standpoint, restricting attention computation to local 

5 × 5 windows dramatically reduce complexity, 

achieving a reduction in floating point operations 

(FLOPs) compared to global attention mechanisms, 

and introducing only a few additional parameters. This 

localized processing enables fine-grained focus on 

posture-related cues without sacrificing inference 

efficiency. In the context of fall detection, the Local 

Attention module amplifies semantically meaningful 

features while suppressing distractors such as 

surrounding furniture or overlapping objects. This 

focused enhancement significantly reduces false 

negatives in cluttered indoor environments and 

improves the model’s ability to identify fall incidents 

accurately.  

3.3. Squeeze and Excitation Block: 

To adaptively enhance channel-wise feature 

discriminability, we integrate Squeeze-and-Excitation 

(SE) blocks [37] after the third CSP2 block in the 

backbone. These blocks recalibrate the importance of 

each feature channel, emphasizing those that are 

relevant to fall-related patterns such as body posture 

and texture detail while suppressing irrelevant or noisy 

information. For an input feature map 𝐗 ∈ ℝ𝐶×𝐻×𝑊, 

the SE block performs three sequential operations: 

squeeze, excitation, and recalibration. In the squeeze 

phase, global spatial information is aggregated via 

global average pooling across each channel, producing 

a descriptor vector 𝐳 ∈ ℝ𝐶  such that: 

𝑧𝑐 =
1

𝐻 ×𝑊
∑∑𝐗𝑐

𝑊

𝑗=1

𝐻

𝑖=1

(𝑖, 𝑗). 

Next, in the excitation phase, a gating mechanism 

composed of two fully connected layers captures inter-

channel dependencies and learns which channels to 

emphasize or suppress. The excitation vector 𝐬 ∈ ℝ𝑪 

is computed as: 

𝐬 = 𝜎(𝐖2 ⋅ 𝛿(𝐖1𝐳)), 

where 𝐖1 ∈ ℝ𝐶/𝑟×𝐶 and 𝐖2 ∈ ℝ𝐶×𝐶/𝑟 are trainable 

parameters, 𝑟 = 16 is the reduction ratio, 𝛿 is the 

ReLU activation, and 𝜎 is the sigmoid function. 

Finally, the recalibration step scales the original 

feature map channel-wise using the learned excitation 

weights: 

𝐗̂𝑐 = 𝐬𝑐 ⋅ 𝐗𝑐 , 

thus, modulating the channel responses based on their 

contextual relevance. Within the backbone, SE blocks 

are inserted after the third CSP2 module, where the 

feature map size is 256 × 80 × 80. At this depth, the 

network captures mid-level semantics, making it an 

ideal point to emphasize channels sensitive to postural 

cues such as the horizontal or vertical alignment of the 

body and fine-grained textures like wrinkles in 

clothing or contact with the ground. These cues are 

particularly informative for distinguishing falls from 
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other activities like sitting or crouching. Despite their 

efficacy, SE blocks are computationally lightweight. 

With a reduction ratio of 𝑟 = 16, each block 

introduces parameters amounting to just a few 

additional overheads to the backbone, thus 

maintaining near real-time performance. This efficient 

recalibration mechanism plays a critical role in 

improving the network’s ability to discriminate 

between fall and non-fall events in challenging visual 

environments. 

3.4. Efficient Channel Attention (ECA): 

To optimize cross-channel interactions during multi-

scale feature fusion, we incorporate ECA 

modules [38] within the PANet neck of the network. 

In contrast to Squeeze-and-Excitation (SE) blocks, 

ECA avoids dimensionality reduction, maintaining 

higher representational capacity while preserving 

efficiency, which is an advantageous property for fall 

detection systems deployed on edge devices. Given an 

input feature map 𝐔 ∈ ℝ𝐶×𝐻×𝑊 from the FPN, the 

ECA module first aggregates spatial information via 

global average pooling to obtain a channel-wise 

descriptor: 

𝑔𝑐 =
1

𝐻 ×𝑊
∑∑𝐔𝑐

𝑊

𝑗=1

𝐻

𝑖=1

(𝑖, 𝑗), 

resulting in a vector 𝐠 ∈ ℝ𝐶  that summarizes each 

channel’s global context. Next, to model channel-wise 

dependencies efficiently, a one-dimensional 

convolution is applied to 𝐠 without reduction. The 

kernel size 𝑘 is adaptively computed based on the 

number of channels: 

𝑘 = ⌊
log2(𝐶)

𝛾
+
1

𝛾
⌋

odd

, 

where 𝛾 = 2 and 𝐶 = 256, yielding 𝑘 = 3 in our 

implementation. The attention weights 𝐚 ∈ ℝ𝐶 are 

then obtained by: 

𝐚 = 𝜎(Conv1D𝑘(𝐠)), 

where 𝜎 is the sigmoid activation function. Finally, the 

original features are recalibrated via element-wise 

channel multiplication: 

𝐔̂𝑐 = 𝐚𝑐 ⋅ 𝐔𝑐 . 

This selective amplification boosts the relevance of 

informative channels while suppressing less 

discriminative ones. In our architecture, ECA modules 

are integrated into the PANet neck, particularly at the 

feature map resolution of 256 × 80 × 80, to enhance 

the fusion of multi-scale features. This attention 

mechanism proves effective in addressing two critical 

challenges in fall detection: partial occlusions by 

reinforcing features from visible body parts such as 

legs or arms obscured by furniture, and scale 

variations by emphasizing channels that maintain 

posture-related cues across resolutions (e.g., detecting 

small, distant fallen persons). Despite their 

effectiveness, ECA modules introduce only 768 

additional parameters and avoid fully connected 

layers, resulting in less latency overhead on edge 

devices. This balance between performance and 

efficiency makes ECA particularly suitable for real-

time fall detection in resource-constrained 

environments.  

4. Results and Discussion 

We present a comprehensive analysis of our 

experiments, including implementation details, 

evaluation metrics, and performance comparisons. 

Evaluation metrics include precision, recall, F1-score, 

and mean average precision (mAP). 

4.1. Experimental Configuration 

Training and evaluation were performed on a 

workstation equipped with an NVIDIA RTX 4090 

GPU (24GB VRAM) and an Intel i9-10900X CPU, 

utilizing the PyTorch deep learning framework. The 

model was trained with an input resolution of 

640 × 640 and a batch size of 10, balancing memory 

efficiency and gradient stability. We employed the 

Stochastic Gradient Descent (SGD) optimizer with a 

learning rate of 0.001 and a weight decay of 0.0005. 

The network was trained for 100 epochs, which was 

sufficient for convergence as validated empirically. 

For preprocessing and evaluation, we utilized standard 

Python libraries such as NumPy, Pandas, and Scikit-

learn. Visualization and qualitative analysis were 

conducted using Matplotlib and Pillow. 

4.2. Dataset Utilized and Splitting Strategy 

We utilized two datasets to comprehensively evaluate 

our fall detection system. The first dataset, 

DiverseFALL10500, consists of 10,500 annotated 

images capturing both fall events and normal daily 

activities under diverse conditions, including 

variations in illumination, occlusions, and human 

poses as shown in Fig.3. To ensure robust learning and 

fair evaluation, the dataset was partitioned into 70% 

for training, 20% for validation, and 10% for testing. 

This stratified division enables the model to generalize 

effectively across varied scenarios while maintaining 
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evaluation rigor on unseen data. The second dataset, 

CAUCAFall, features data collected from 10 

individuals performing falls and activities of daily 

living within a real-world domestic environment. It 

incorporates multiple environmental variations, such 

as changes in lighting and different background 

textures. The data is organized into subject-specific 

folders with systematic labelling. While CAUCAFall 

provides valuable real-world variability for training 

fall detection models, the homogeneous frame 

sequences could pose a challenge for generalization. 

Following the same strategy as with 

DiverseFALL10500, this dataset was also split into 

70% training, 20% validation, and 10% testing 

subsets. 

4.3. Evaluation Metrics 

We evaluated our model using standard object 

detection metrics: precision, recall, F1-score, and 

mean average precision (mAP). Precision and recall 

are defined as: 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 denote true positives, false 

positives, and false negatives, respectively. The F1-

score provides a balanced harmonic mean of precision 

and recall: 

𝐹1 =
2 × 𝑃𝑟 × 𝑅𝑒

𝑃𝑟 + 𝑅𝑒
 

To capture overall detection quality, we compute the 

mean Average Precision (mAP) as: 

𝑚𝐴𝑃 =
1

𝑛
∑𝐴

𝑛

𝑖=1

𝑃𝑖 , 

where the Average Precision (AP) for each class is 

computed as: 

𝐴𝑃 = ∑𝑃

𝑐

𝑗=1

𝑟(𝑗) × 𝛥𝑅𝑒(𝑗), 

with 𝑃𝑟(𝑗) and 𝛥𝑅𝑒(𝑗) representing the precision and 

recall change at the 𝑗-th threshold. These metrics 

collectively assess both detection accuracy and 

robustness across varying thresholds and class 

instances. 

 

 

4.4. Results Analysis 

This section provides a comprehensive analysis of the 

results obtained from the experiments conducted with 

the proposed FD network. It includes quantitative 

evaluations, ablation studies, qualitative analysis, and 

an assessment of computational complexity, offering 

insights into the model’s performance, effectiveness, 

and practical feasibility in real-world scenarios. 

4.4.1. Ablation Studies 

We systematically evaluate the contributions of our 

architectural modifications and training strategies 

through three ablation experiments. 

Component-Wise Performance Analysis: Error! 

Reference source not found. quantifies the 

incremental gains from each added module on both 

datasets. Starting with YOLOv5s (mAP: 0.837 on 

DiverseFall), the Focus module improves spatial 

awareness (+2.7% mAP). Local Attention (LA) 

further enhances posture-related feature extraction 

(+1.9% mAP), while SE blocks amplify discriminative 

channel responses (+1.4% mAP). The full model with 

ECA achieves peak performance (0.914 mAP on 

DiverseFall, 0.994 on CAUCAFall), demonstrating 

complementary benefits of spatial and channel 

attention mechanisms. 

Optimizer Selection: Error! Reference source not 

Figure 3. Visual illustration of our model predictions on DiverseFall and CAUCAFall dataset. 
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found. (learning rate 0.001) and the subsequent 

Error! Reference source not found. (learning rate 

0.0001) reveal critical insights. The SGD with 

momentum consistently outperforms adaptive 

optimizers (Adam variants) across all YOLOv5 sizes, 

particularly for smaller models (YOLOv5s: +3.9% 

mAP vs Adam). The proposed architecture achieves 

superior performance (0.914 mAP) compared to 

baseline YOLOv5x (0.908 mAP) despite using a 

smaller backbone. Also, larger variants (YOLOv5l/x) 

show diminishing returns relative to computational 

cost. 

Learning Rate Sensitivity: Comparative analysis of 

0.001 vs 0.0001 learning rates reveals the higher 

learning rate (0.001) yields better convergence for all 

optimizers (avg +1.2% mAP across variants). Our 

proposed model maintains robustness at lower LR 

(0.911 mAP vs 0.914 mAP at LR=0.001). SGD shows 

the lowest performance degradation (-0.3% mAP) 

when reducing LR compared to Adam (-1.7%). 

These experiments confirm that our architectural 

enhancements synergize effectively with SGD’s 

regularization properties, achieving state-of-the-art 

fall detection accuracy without compromising the 

computational efficiency inherent to YOLOv5s’ 

design. 

4.4.2. Quantitative Evaluations 

Error! Reference source not found. compares our 

proposed network against state-of-the-art detectors, 

including Faster R-CNN and YOLOv3-v5 variants 

from on both fall detection datasets. Key findings 

include: 

DiverseFall Performance: Our model achieves 

superior mAP (0.914) and precision (0.903), 

outperforming all YOLO variants by significant 

margins. +0.8% mAP over YOLOv5s (0.906), +4.4% 

mAP over YOLOv5x (0.834) and +8.3% precision 

gain compared to YOLOv5l (0.805). Notably, while 

YOLOv5n achieves marginally higher recall (0.852 

vs. 0.851), our architecture maintains a better 

precision-recall balance (F1-score: 0.886 vs. 0.839), 

which is critical for minimizing false alarms in fall 

detection systems. 

CAUCAFall Benchmark: The proposed network 

establishes new state-of-the-art results across all 

metrics with mAP: 0.9941 (+0.09% over YOLOv5s), 

Recall: 0.9973 (+0.12% over YOLOv5n) and F1-

score: 0.9962 (+0.08% over YOLOv5s). This 

demonstrates exceptional generalization capability in 

controlled environments while maintaining robustness 

to dataset-specific challenges. 

Cross-Architecture Analysis: Traditional detectors 

(e.g., Faster R-CNN) underperform CNN-based 

approaches (-8.3% mAP vs. our model on 

DiverseFall). YOLOv5 variants show inconsistent 

scaling larger models (YOLOv5m/l/x) underperform 

YOLOv5s, suggesting overparameterization for fall 

detection. Our attention-enhanced YOLOv5s exceeds 

even YOLOv5x’s precision (0.903 vs. 0.769) with 

80% fewer parameters. 

These results validate our architectural strategy: 

enhancing YOLOv5s with targeted attention 

mechanisms achieves optimal accuracy-efficiency 

trade-offs for fall detection, outperforming both larger 

models and alternative architectures. 

 

Table 2. Performance comparison of module integration across DiverseFall and CAUCAFall datasets. 

Models DiverseFall CAUCAFall 

mAP Precision F1-

Score 

Recall mAP Precision F1-

Score 

Recall 

YOLOv5s 0.837 0.845 0.827 0.796 0.912 0.923 0.914 0.905 

YOLOv5s + Focus 0.864 0.859 0.841 0.809 0.937 0.941 0.928 0.921 

YOLOv5s + Focus + LA 0.883 0.876 0.858 0.824 0.951 0.957 0.942 0.937 

YOLOv5s + Focus + LA + 

SE 

0.897 0.891 0.872 0.842 0.976 0.982 0.958 0.953 

YOLOv5s + Focus + LA + 

SE + ECA (Ours) 

0.914 0.903 0.886 0.851 0.994 0.995 0.996 0.997 
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Table 3. Comparison of our model with YOLOv5 variants using different optimizers with a learning rate 

of 0.001 on the DiverseFall dataset. 

Optimizer Model mAP Precision F1-score Recall 

Adam YOLOv5n 0.817 0.832 0.819 0.801 

YOLOv5s 0.841 0.849 0.833 0.817 

YOLOv5m 0.862 0.851 0.844 0.829 

YOLOv5l 0.875 0.868 0.858 0.840 

YOLOv5x 0.889 0.875 0.861 0.850 

AdamW YOLOv5n 0.824 0.833 0.828 0.806 

YOLOv5s 0.854 0.856 0.841 0.823 

YOLOv5m 0.876 0.867 0.854 0.838 

YOLOv5l 0.883 0.878 0.863 0.849 

YOLOv5x 0.893 0.884 0.871 0.856 

Nadam YOLOv5n 0.834 0.843 0.836 0.817 

YOLOv5s 0.864 0.862 0.854 0.831 

YOLOv5m 0.885 0.870 0.858 0.839 

YOLOv5l 0.887 0.883 0.867 0.842 

YOLOv5x 0.896 0.885 0.877 0.853 

Radam YOLOv5n 0.831 0.842 0.832 0.817 

YOLOv5s 0.863 0.865 0.853 0.832 

YOLOv5m 0.882 0.873 0.867 0.841 

YOLOv5l 0.892 0.881 0.876 0.852 

YOLOv5x 0.894 0.882 0.875 0.842 

RMSProp YOLOv5n 0.812 0.832 0.816 0.802 

YOLOv5s 0.833 0.842 0.831 0.813 

YOLOv5m 0.853 0.862 0.849 0.831 

YOLOv5l 0.862 0.873 0.856 0.828 

YOLOv5x 0.871 0.884 0.865 0.834 

SGD YOLOv5n 0.842 0.845 0.839 0.827 

YOLOv5s 0.880 0.875 0.859 0.841 

YOLOv5m 0.895 0.883 0.867 0.841 

YOLOv5l 0.903 0.891 0.874 0.844 

YOLOv5x 0.908 0.897 0.879 0.848 
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Proposed network (SGD) 0.914 0.903 0.886 0.851 

Table 4. Comparison of our model with YOLOv5 variants using different optimizers with a learning rate 

of 0.0001 on DiverseFall dataset. 

Optimizer Model mAP Precision F1-score Recall 

Adam YOLOv5n 0.834 0.848 0.830 0.810 

YOLOv5s 0.861 0.870 0.843 0.827 

YOLOv5m 0.883 0.867 0.854 0.837 

YOLOv5l 0.888 0.882 0.864 0.846 

YOLOv5x 0.892 0.885 0.871 0.840 

AdamW YOLOv5n 0.844 0.845 0.837 0.817 

YOLOv5s 0.876 0.874 0.856 0.834 

YOLOv5m 0.884 0.877 0.862 0.839 

YOLOv5l 0.896 0.884 0.873 0.849 

YOLOv5x 0.906 0.895 0.877 0.847 

Nadam YOLOv5n 0.853 0.855 0.848 0.832 

YOLOv5s 0.886 0.887 0.863 0.848 

YOLOv5m 0.892 0.893 0.870 0.845 

YOLOv5l 0.902 0.873 0.872 0.854 

YOLOv5x 0.901 0.882 0.877 0.845 

Radam YOLOv5n 0.843 0.863 0.845 0.824 

YOLOv5s 0.875 0.886 0.868 0.839 

YOLOv5m 0.882 0.874 0.859 0.841 

YOLOv5l 0.894 0.892 0.870 0.844 

YOLOv5x 0.893 0.885 0.871 0.841 

RMSProp YOLOv5n 0.821 0.853 0.830 0.813 

YOLOv5s 0.841 0.862 0.848 0.824 

YOLOv5m 0.854 0.871 0.853 0.834 

YOLOv5l 0.873 0.881 0.863 0.836 

YOLOv5x 0.882 0.883 0.861 0.844 

SGD YOLOv5n 0.861 0.867 0.849 0.829 

YOLOv5s 0.889 0.887 0.869 0.842 

YOLOv5m 0.894 0.885 0.871 0.849 

YOLOv5l 0.902 0.892 0.878 0.842 

YOLOv5x 0.903 0.894 0.877 0.843 
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Proposed network (SGD) 0.911 0.898 0.879 0.848 

Qualitative Analysis 

Models DiverseFall CAUCAFall 

mAP Precision F1-Score Recall mAP Precision F1-Score Recall 

Faster R-CNN 0.831 0.837 0.813 0.809 0.9903 0.9891 0.9902 0.9924 

yolov3 0.842 0.848 0.827 0.809 0.9912 0.9904 0.9916 0.9931 

yolov4 0.825 0.818 0.801 0.794 0.9896 0.9901 0.9898 0.9913 

yolov5n 0.870 0.810 0.839 0.852 0.9924 0.9921 0.9935 0.9942 

yolov5s 0.906 0.895 0.878 0.845 0.9932 0.9943 0.9954 0.9961 

yolov5m 0.848 0.850 0.825 0.807 0.9911 0.9914 0.9923 0.9927 

yolov5l 0.858 0.805 0.813 0.837 0.9926 0.9925 0.9934 0.9942 
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We provide qualitative insights into our network’s 

performance from two perspectives. First, Fig. 4 

showcases sample detections from our model on both 

the DiverseFall and CAUCAFall datasets, 

highlighting its effectiveness across varied scenarios. 

Second, Fig. 5 presents a visual comparison between 

our proposed method and various YOLOv5 variants. 

Each 

column in Fig. 5 contains five different samples. In 

particular, the last column emphasizes the strong 

detection capabilities of our method, often surpassing 

the baseline YOLOv5 models in precision and clarity. 

These visual results confirm that our attention-

enhanced YOLOv5s architecture not only achieves 

high mAP scores but also effectively distinguishes 

between fall and non-fall instances, demonstrating 

robust generalization and precise localization in 

diverse environments. 

 

yolov5x 0.834 0.769 0.797 0.829 0.9898 0.9892 0.9903 0.9906 

Proposed Network 0.914 0.903 0.886 0.851 0.9941 0.9949 0.9962 0.9973 

Table 5. Quantitative analysis of our model with different SOTA object detection models on DiverseFall 

and CAUCAFall datasets. 

Figure 4. Visual illustration of our model predictions on DiverseFall and CAUCAFall dataset. 
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Figure 5. Qualitative comparison of our network with SOTA approaches. 

5. Conclusion 

This paper presented an attention-enhanced YOLOv5 

architecture for real-time fall detection, achieving 

state-of-the-art accuracy while maintaining 

computational efficiency suitable for edge 

deployment. By strategically integrating Local 

Attention in early layers, Squeeze-and-Excitation (SE) 

blocks in the backbone, and Efficient Channel 

Attention (ECA) modules in the neck, the proposed 

model addresses critical limitations of existing fall 

detection systems. This task-specific attention design 

improves sensitivity to posture anomalies, manages 

occlusions, and enhances multi-scale feature fusion. A 

key aspect of our approach is its symmetrical-aware 

design, which leverages the natural bilateral structure 

of the human body to better detect postural 

asymmetries associated with falls, especially in 

cluttered or partially occluded environments. Our 

empirical evaluation demonstrates substantial 

performance gains, with the model achieving 7.7% 

and 8.2% higher mAP on the DiverseFall and 

CAUCAFall datasets, respectively, compared to 

baseline YOLOv5s. Additionally, the model surpasses 

YOLOv5x in precision (0.903 vs. 0.769) while using 

fewer parameters and introducing only a 1.22% 

increase in parameter count over YOLOv5s, ensuring 

real-time inference speeds. This architecture offers a 

robust, accurate, and lightweight solution for real-

world fall monitoring applications in both assistive 

care and surveillance settings. Future work will 

explore multi-person fall detection in crowded scenes, 

integration of multi-modal data (e.g., RGB with depth 

or thermal), and the development of ultra-lightweight 

versions for deployment on low-power IoT 
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