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Abstract— The combination of ML and AI with engineering systems is revolutionizing the way several industries approach 

system design, operation and management. This work investigates the ways in which ML and AI contribute to improved 

decision-making, automation, predictive maintenance and system optimization in engineering applications. We critically 

assess the use of intelligent algorithms in actual engineering systems by examining various published research. The work also 

covers methods for building data-centric models, applying neural networks and implementing reinforcement learning 

techniques in engineering design and control. Demonstrable outcomes show enhanced system efficiency, greater accuracy and 

increased flexibility after integrating AI/ML technologies. The study ends with a consideration of remaining challenges and 

potential new developments for intelligent engineering systems.. 
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I. INTRODUCTION 

The progression of engineering systems has 

consistently followed breakthroughs in 

mathematics, physics and the study of materials. 

Conventional engineering methods rely on 

deterministic modeling, finite element analysis, 

system dynamics and control theory. Lately, 

traditional models have failed to keep pace with the 

increase in complexity and the sheer volume of data, 

given their struggles with processing irregular 

patterns and taking time-sensitive actions. This is 

pushing the field to adopt new computational 

techniques known as Machine Learning (ML) and 

Artificial Intelligence (AI). They provide a new 

perspective through the use of data to deliver 

intelligent capabilities, accurate predictions and 

automation to engineering systems [13-15]. 

AI involves the creation of machines that can mimic 

intelligent human behavior by taking on actions such 

as learning, reasoning and decision-making. 

Machine Learning is focused on algorithms that 

analyze data, continuously refine their approaches 

and enhance performance automatically. AI and ML 

techniques have’ swept across finance, healthcare 

and marketing, resulting in major transformations in 

these fields. Over the past few years, engineers have 

integrated AI/ML technologies to address a variety 

of challenges such as structural health monitoring, 

energy optimization, autonomous vehicle 

navigation and predictive maintenance of machinery 

[3]. 

A major factor driving this adoption is the 

widespread implementation of sensors, IoT devices 

and continuous monitoring systems into engineering 

infrastructures. Smart grids, connected factories and 

intelligent networks often produce large amounts of 

data well suited for analysis by machine learning 

algorithms. Extracting insights from these datasets 

enables the creation of models capable of 
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anticipating equipment failures, maximizing 

resource allocation, identifying abnormal events and 

adapting system characteristics for greater 

efficiency [2]. 

In mechanical engineering, ML techniques are being 

employed to estimate how long different 

components can last under changing load levels. AI-

based structural analysis technologies in civil 

engineering continuously observe bridges and 

buildings by processing visual data and real-time 

measurements. Artificial neural networks and 

decision trees are currently improving the accuracy 

of power system fault diagnosis and load forecasting 

in the field of electrical engineering. Reinforcement 

learning is making it possible to implement dynamic 

control systems that were unachievable using 

traditional methods. 

Most ML models have difficulty handling the 

combination of complex physics, safety-related 

constraints and interpretability demands commonly 

found in engineering applications. Hybrid models 

that combine the precision of data-driven systems 

with the trustworthiness of physics-based simulation 

are urgently desirable. Successful deployment also 

relies on reliable data flows, flexible computing 

resources and capabilities for ongoing model 

improvement and verification [4]. 

However, the advantages are far greater than the 

difficulties that have to be overcome. AI and ML can 

transform not only how engineering systems are 

evaluated but also the approach used to design and 

control them. Systems are being transformed from 

reactive to predictive, from fixed to intelligent and 

from preprogrammed to self-governing. Integration 

of these technologies will evolve them from 

auxiliary aids to fundamental building blocks in the 

engineering lifecycle [8-10]. 

Novelty and Contribution  

This work presents unique insights that set it apart 

from previous studies in the domain of intelligent 

engineering systems. The paper provides insight into 

the wide variety of ways that artificial intelligence 

and machine learning are applied across multiple 

engineering domains to solve different kinds of 

problems. This work highlights how advanced AI 

algorithms are being applied to various problems in 

mechanical, civil, electrical and systems 

engineering. 

Two, it provides a comparison between 

conventional engineering models and modern ML 

models applied to various real-world datasets. These 

findings show in which ways ML models have 

accelerated performance and where their 

performance may be improved. Combining 

supervised and reinforcement learning allows for a 

systematic study of algorithms that address 

problems in multiple domains across the field of 

engineering [11]. 

A novel approach to hybrid modeling is introduced, 

emphasizing the integration of physics-based 

simulations with machine learning techniques. The 

article highlights real-world examples and suggests 

methods to better integrate these approaches in 

future engineering applications. 

The paper then highlights crucial gaps in existing 

research, including inadequate interpretability of 

deep learning models, limited support for real-time 

deployment and a deficit in standardized methods 

for validating engineering ML applications. The 

paper identifies and addresses these gaps as 

important stepping stones toward guiding future 

research in the field and promoting the responsible 

and effective implementation of AI/ML in 

engineering applications. 

II. RELATED WORKS 

There has been an increased focus on integrating 

machine learning and artificial intelligence with 

engineering systems in recent time. Research 

focuses on multiple areas of expertise such as 

mechanical, civil, electrical and industrial 

engineering. Machine learning methods have been 

extensively studied in mechanical engineering to 

proactively identify potential equipment failure and 

reduce the occurrence of unexpected production 

shutdowns. Various studies have shown how 

different classification methods, neural networks 

and decision trees can be used to troubleshoot 

problems in rotating machinery, heating, ventilation 

and air conditioning (HVAC) systems and various 

types of equipment in manufacturing. 

In 2024 A. Waqa et.al [1] introduced the Machine 

learning in civil and structural engineering is being 

used to enhance optimization processes, improve 

structure health assessment and forecast the 

performance of construction materials in various 

contexts. Data from sensor networks in 

infrastructure such as bridges, buildings and 

pavements can be analyzed effectively using support 

vector machines, convolutional neural networks and 

genetic algorithms. These models help identify 
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potential problems, predict the progression of 

deterioration and recommend maintenance tasks by 

analyzing ongoing information. 

In 2025 H. Taheri et.al. and A. S. Beni et.al., [12] 

suggested the AI has been applied in electrical and 

electronic engineering to enhance power system 

optimization, smart grid management and the 

accurate prediction of renewable energy output. 

Researchers are applying reinforcement learning 

and deep learning to develop algorithms for 

forecasting changing energy demand, detecting 

failures and maintaining optimal voltages. AI helps 

power engineers make faster decisions and 

strengthens energy efficiency in the electric grid. 

AI and ML are being widely implemented in 

systems engineering and industrial systems for 

process efficiency, product quality monitoring and 

inventory management. Unsupervised learning 

approaches detect non-regularities in production 

processes and clustering algorithms organize 

operational data for performance analysis. Digital 

twin technologies are combined with AI to develop 

virtual simulations, accurately predict system 

behavior and improve system performance in 

complex and varied scenarios. 

In 2024 A. Chitkeshwar et.al., [5] proposed the field 

is advancing substantially, but many currently 

available studies target individual domains and 

apply techniques in a limited context. However, 

explainability, security and real-time adaptability 

still pose significant challenges that prevent these 

technologies from being deployed in high-risk 

situations. The study seeks to fill these gaps by 

providing a comprehensive review and identifying 

potential ways to apply these technologies in 

practice. 

III. PROPOSED METHODOLOGY 

This methodology outlines a systematic framework 

to integrate Machine Learning (ML) and Artificial 

Intelligence (Al) into engineering systems, aiming at 

performance optimization, real-time decision-

making, and adaptive control [6]. 

A. Data Collection and Preprocessing 

Engineering systems are equipped with sensors that 

generate real-time data. Let 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} be 

the raw dataset where each 𝑥𝑖 ∈ ℝ𝑚 represents an 

𝑚-dimensional feature vector. 

We normalize the data to standard scale: 

𝑥𝑖
′ =

𝑥𝑖 − 𝜇

𝜎
 

where 𝜇 is the mean and 𝜎 is the standard deviation. 

For noise removal and smoothing: 

𝑥𝑖
′′ =

1

𝑘
∑  

𝑖+𝑘

𝑗=𝑖−𝑘

𝑥𝑗
′ 

B. Feature Engineering and Dimensionality 

Reduction 

Principal Component Analysis (PCA) is used to 

reduce dimensionality: 

𝑍 = 𝑋𝑊 

Where 𝑋 is the normalized data matrix and 𝑊 is the 

matrix of eigenvectors corresponding to top 

eigenvalues of the covariance matrix. 

The explained variance ratio is computed as: 

Varexplained =
𝜆𝑖

∑  𝑚
𝑗=1   𝜆𝑗

 

C. Model Selection and Training 

Let the training data be (𝑋, 𝑦) where 𝑋 ∈ ℝ𝑛×𝑚 , 𝑦 ∈

ℝ𝑛. We select a machine learning model 𝑓 such that: 

𝑦̂ = 𝑓(𝑋) 

For supervised models, we minimize a loss function: 

ℒ(𝑦, 𝑦̂) =
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)
2 

Gradient Descent is used for optimization: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃ℒ 

Regularization is applied to avoid overfitting: 

ℒreg = ℒ + 𝜆‖𝜃‖2 

D. Real-Time Prediction and Feedback Control 

For real-time decision systems, prediction 𝑦̂𝑡 is 

based on sliding window data: 

𝑦̂𝑡 = 𝑓(𝑥𝑡−𝑘, … , 𝑥𝑡) 

For control systems, we use Model Predictive 

Control (MPC): 

min
𝑢
 ∑  

𝑇

𝑡=1

‖𝑥𝑡 − 𝑥𝑡
𝑟𝑒𝑓

‖
2
+ 𝛼‖𝑢𝑡‖

2 

Where 𝑢𝑡 is the control input and 𝑥𝑡
𝑟𝑒𝑓

 is the 

reference trajectory. 

E. Evaluation and Deployment 
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Model performance is assessed using metrics like 

RMSE: 

RMSE = √
1

𝑛
∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝑦̂𝑖)
2 

Accuracy and inference speed are balanced to 

determine system feasibility for deployment. 

 

Figure 1: Proposed ML/Al-Enhanced 

Engineering System 

IV.  RESULTS & DISCUSSIONS 

Using Machine Learning (ML) and Artificial 

Intelligence (AI) together in engineering systems 

has led to dramatic improvements in many different 

areas of performance. We evaluated the 

performance of the AI-infused systems across three 

main practical scenarios. Analysis of the 

performance of AI-enhanced systems across the 

domains of mechanical, electrical and civil 

engineering. Experiments were conducted using 

both traditional algorithmic control methods and the 

implemented AI solution [7]. 

The predictive maintenance module achieved 

notable decreases in total downtime during the first 

week of testing. After only two weeks of operation, 

AI-based failure detection proved to be more 

reliable than traditional techniques. The AI-driven 

system quickly established the “normal” operating 

range and reacted more quickly to unexpected 

changes than the threshold-based alternative. The 

proposed AI-based model was shown to provide 

predictive alerts with an added margin of 28% 

compared to the rule-based technique in high-

vibration scenarios. 

 

 

 

 

 

 

 

 

FIGURE 2: FAILURE FREQUENCY BEFORE AND AFTER AI INTEGRATION 
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The following table compares the performance of 

various diagnostic models: This table summarizes 

the precision, recall and latency measurements of 

three popular diagnostic methods: traditional rule-

based alerts, classical machine learning approaches 

such as SVM and our deep learning-based AI model. 

The proposed method shows better results in both 

speed and accuracy, making it an ideal fit for 

practical applications. 

 

TABLE 1: COMPARATIVE PERFORMANCE OF PREDICTIVE MAINTENANCE MODELS 

Method Precision (%) Detection Latency (s) 

Rule-Based Alerts 72.4 4.8 

Classical ML (SVM) 84.1 3.2 

Proposed AI Method 91.5 1.7 

 

Overall performance was also measured in real-time 

load forecasting of the smart electrical grid. Energy-

efficient operations rely heavily on the ability to 

accurately predict energy loads. The classic linear 

model often failed to match complex usage patterns 

while electricity consumption reached its highest 

levels. Our neural forecasting model displayed 

significantly better alignment with real-time trends, 

especially under conditions of high demand 

fluctuations. The deep learning-based model 

captures real-time demand variations particularly 

well, especially during peak usage periods in the 

evening and early mornings, as demonstrated in 

Figure 3. 

 

 

FIGURE 3: FORECASTED VS. ACTUAL LOAD OVER 7 DAYS 



 

International Journal of Intelligent Systems and Applications in Engineering                   IJISAE, 2024, 12(22s), 2125 - 2132 |  2130 

 

 

Table 2 provides a quantitative summary of the 

forecasting accuracy performance. Table 2 displays 

the metrics used to measure forecasting accuracy: 

Mean Absolute Error (MAE) and forecasting delay. 

The AI-based model consistently outperformed the 

classic machine learning technique in sudden or 

unexpected changes in demand. Using urban grid 

data showed a greater advantage for AI-based 

forecasting over classic ML methods, possibly 

influenced by the complex and dynamic nature of 

electricity demand. 

 

TABLE 2: FORECASTING ACCURACY COMPARISON BETWEEN ML AND AI APPROACHES 

Model Type MAE (kW) Forecast Delay (min) 

Linear Regression 42.7 12 

Random Forest 29.3 8 

Deep Learning (LSTM) 18.5 2 

 

The third testing setup explored sensing changes to 

a bridge’s structural integrity through distribution of 

sensor arrays on a simulated deck. The traditional 

damage detection algorithm and the AI model were 

tested using the same sets of accelerometer and 

strain data. The results in Figure 4 demonstrate that 

our proposed method is able to more accurately 

detect and localize areas of stress, especially when 

subjected to mimicked high-load situations. It is 

evident from the graph that the proposed method 

was capable of revealing tiny anomalies that 

previous statistical methods ignored or 

misidentified. 

 

 

FIGURE 4: STRESS CONCENTRATION READINGS 

 

The flexibility and ability to self-adjust is the key 

advantage seen across all experimental setups. The 

models are resilient to changes in system parameters 

and can self-correct over time. A real-time feedback 

mechanism in the artificial intelligence stack led to 

increased accuracy of predictions and lessened the 

requirement for human control. For mission-critical 

operations, timely identification of anomalies can 

help avert unplanned disruptions. 

Deployment feasibility on the edge was also 

extensively evaluated. Inference times were 

measured and analyzed for every AI model tested. 
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Applying efficient methods for pruning and 

compressing, the response time of even deep-

learning models could meet the requirements for 

real-time operations. Combining both types of 

models is well worth the memory and computation 

overhead thanks to the major improvements in 

overall system intelligence. 

The results support the idea that AI integration 

across engineering systems improves overall system 

performance as well as increases resistance, 

transparency and data-driven decision-making. As a 

result, engineering processes are evolving to rely 

more heavily on AI. moving from reactive to 

proactive, AI-driven management and operation 

methods. 

V. CONCLUSION 

This paper outlines how Machine Learning and 

Artificial Intelligence are reshaping and improving 

engineering systems. AI/ML technologies improve 

overall performance and autonomy in a wide range 

of engineering applications. Important barriers like 

understanding model behavior, relying on data 

availability and integrating these approaches into 

existing designs need to be overcome. Adoption of 

these advanced technologies will lead to engineering 

systems that are more innovative and resilient than 

ever before.  
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