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Abstract— Creating predictive maintenance models is crucial to enhancing efficiency, reducing risks and maximizing the 

output of engineering systems. Using integrated intelligent systems, machine learning, Internet of Things (IoT) sensors and 

big data analytics enables continuous monitoring and advanced prediction of equipment failures before they occur. The study 

investigates the latest advancements in predictive maintenance technology and introduces a novel methodology that exploits 

IoT sensor data and machine learning algorithms to enhance fault prediction accuracy in engineering systems. The research 

demonstrates that employing intelligent systems significantly enhances the accuracy of identifying faults and scheduling timely 

maintenance. 
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I. INTRODUCTION 

The infrastructures of today’s societies are built on 

a foundation of integrated systems comprised of 

bridges, pipelines, power plants and transportation 

systems. They form the foundation of society and 

maintain the well-being of its people. They weaken 

over time due to exposure to various external 

factors, corrosion and the repeated use from normal 

activities. Unexpected failures may lead to costly 

repairs, threaten people’s security, impact services 

and damage businesses [2-5].  

In the past, maintenance strategies were typically 

categorized as either reactive or preventive. 

Reactive maintenance only occurs once a problem 

arises, while preventive maintenance attempts to 

keep the infrastructure in good condition regardless 

of the actual condition. Both methods have 

limitations: Reactive maintenance can lead to 

unplanned disruptions and is typically more 

expensive than preventive methods. Additionally, 

preventive maintenance can involve servicing 

resources that don’t yet need repair. In response to 

this problem engineers and researchers are 

constantly seeking new and smarter ways to manage 

the situation. 

Predictive maintenance has proven to be a superior 

replacement to traditional methods. It monitors 

sensors’ values to recognize the earliest signs of 

deterioration and determines the most appropriate 

time for maintenance. Switching to predictive 

maintenance helps reduce downtime, improve 

maintenance productivity and lengthen the lifespan 

of machinery [6]. 

The IoT makes it possible to install sensors that 

constantly monitor indicators like vibration, 

temperature, stress and pressure on various parts of 

a system. The gathered information provides 

detailed insight into the current state of the 

equipment. Capable of filtering the critical data 

useful for analyzing the condition of the 

infrastructure. 
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Intelligent systems have proved invaluable for 

achieving these goals. Intelligent systems can use 

machine learning algorithms and data analysis 

methods to examine sensor data and deduce trends, 

identify abnormalities and forecast the remaining 

useful timeframe of components. Intelligent systems 

continuously learn how to respond more accurately 

to dynamic and varying signals from sensors. 

Bringing intelligent predictive maintenance to 

engineering infrastructures is both a technological 

hurdle and a major strategic decision. With distinct 

patterns of use, failure modes and data access, 

specific solutions are needed for every 

infrastructure. Furthermore, being able to explain 

the reasons behind AI predictions and incorporating 

them smoothly into maintenance processes are 

crucial for the successful uptake of such systems. 

We investigate in detail the latest developments in 

predictive maintenance systems suitable for various 

engineering infrastructures. Lates calcarifer is found 

in abundance along Bangladesh’s coastal and 

estuarine regions. A favored location for lates 

calcarifer due to its brackish water environment 

Testing on real-life infrastructure data reveals the 

effectiveness of our proposed system in helping to 

inform better maintenance decisions by alerting 

users well before failures and suggesting appropriate 

actions. Occuring in specific regions like Khulna, 

Satkhira, Bagerhat, Bhola, Patuakhali and Cox’s 

Bazar 

Novelty and Contribution  

The paper presents several innovations that improve 

the field of predictive maintenance applied to 

engineering infrastructures [7]. 

Multi-Modal Sensor Integration: The study 

considers several different types of sensor data, 

including vibration, temperature and strain, to gain 

in-depth insights into the current state of the 

infrastructure. Integrating data from multiple sensor 

modalities enhances the model’s overall stability 

and helps detect emerging faults more precisely. 

Hybrid Machine Learning Approach: The authors 

introduce a hybrid architecture that integrates 

ensemble methods (Random Forest) with deep 

learning models (LSTM networks) in order to 

benefit from both static feature relevance and 

temporal dynamics. This method is more effective at 

analyzing diverse patterns of asset deterioration and 

predicting when critical performance thresholds will 

be reached. 

Real-World Infrastructure Dataset Validation: Its 

performance is tested on a six-month dataset sourced 

from a real-world bridge infrastructure outfitted 

with IoT sensors. Much of the existing research uses 

artificial or restricted data sets. Results obtained 

from actual industrial data demonstrate how the 

proposed model performs reliably in real-world 

scenarios. 

Comprehensive Maintenance Decision Support: A 

key feature of the proposed system is the integration 

of its predictive capabilities into an easy-to-use 

dashboard that helps maintenance planners make 

informed decisions. 

Cost-Benefit Analysis: The study shows how much 

money can be saved by implementing the predictive 

maintenance system instead of relying solely on 

predetermined maintenance routines. It shows how 

the system can reduce costs and minimize unneeded 

maintenance tasks. 

Scalability and Adaptability: The approach has been 

developed to be flexible and easily implemented in 

various engineering environments and real-world 

scenarios [9]. 

They promote the creation of sophisticated 

predictive maintenance systems that are practical, 

trustworthy and capable of ensuring the efficient 

management of engineering infrastructure. 

II. RELATED WORKS 

In 2022 B. Du et.al., J. Ye et.al., H. Zhu et.al., L. Sun 

et.al., and Y. Du et.al., [15] proposed the predictive 

maintenance has gained significant attention 

because it can contribute to maintaining the 

reliability and efficiency of engineered systems and 

structures. Initially, researchers relied on basic 

thresholds to flag issues whenever specific 

parameters went beyond predefined values. 

However, these methods were prone to false positive 

or negative alerts and sometimes failed to detect 

early warning signs of approaching failures. 

Improvements in sensor technology and the 

proliferation of IoT devices have led to a massive 

increase in the amount of data that can be 

continuously gathered in real time for assessing the 

status of engineering infrastructures. Various 

machine learning algorithms have been employed to 

identify the current state of equipment and estimate 

the time remaining before failure using previous 
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sensor data. They have outperformed conventional 

techniques in dealing with diverse operational states 

and capturing intricate deterioration patterns. 

In 2025 L. Rojas et.al., Á. Peña et.al., and J. Garcia 

et.al., [8] introduced the developed models are used 

to analyze prior sensor data to anticipate impending 

failures and ensure that appropriate maintenance 

actions are taken well before they occur. 

Additionally, ensemble techniques are used to 

combine different machine learning models and 

enhance accuracy, reduce the risk of overfitting and 

increase the overall model reliability. 

Dealing with vast arrays of heterogeneous data 

collected from different sources presents one of the 

biggest challenges in predictive maintenance. 

Integrating data from sensors including vibration, 

temperature and strain has been made possible 

through the use of data fusion methods. Merging 

disparate sensor data allows prediction models to 

better capture changing conditions and types of 

failures. 

They are further exploring methods to develop 

systems capable of handling and processing massive 

datasets coming from distributed sensors. Both 

cloud and edge computing solutions are blended to 

facilitate immediate processing of data and 

informing quick decision-making. Using these 

frameworks, crucial data is provided to technical 

teams, facilitating both fault detection and arranging 

appropriate maintenance schedules. 

Challenges arise in properly understanding the 

actions and output of machine learning models, 

maintaining the accuracy of sensors and tailoring 

solutions for the distinct needs of different 

infrastructure types. Explainable AI is crucial as it 

encourages people to trust the predictions made by 

the system and helps them understand how those 

decisions are reached. However, the different 

physical settings and conditions within the 

infrastructure require models to adapt adequately 

and be modified with ease. 

In 2021 M. Pech et.al., J. Vrchota et.al., and J. 

Bednář et.al, [1] suggested research has 

demonstrated that IoT and AI technological 

innovations have elevated predictive maintenance 

techniques from traditional threshold approaches to 

sophisticated Intelligent systems. There is a need to 

enhance the stability, speed and ease of use of 

deploying these systems. Hence, this research seeks 

to design a flexible and versatile Multi-Modal and 

Hybrid Machine Learning approach which has been 

tested using real infrastructure data. 

III. PROPOSED METHODOLOGY 

The proposed predictive maintenance methodology 

combines IoT-based sensor data acquisition with 

advanced machine learning algorithms to predict 

faults in engineering infrastructures. It consists of 

four main stages: Data Acquisition, Data 

Preprocessing, Model Training and Validation, and 

Maintenance Decision Support. Each stage involves 

specific mathematical models and data 

transformations, detailed below [10]. 

Data Acquisition 

The system collects real-time data from multiple 

sensors installed on infrastructure components. The 

sensors monitor parameters such as vibration 𝑣(𝑡), 

temperature 𝑇(𝑡), strain 𝜖(𝑡), and humidity 𝐻(𝑡), 

where 𝑡 is time. 

The raw sensor signals can be represented as a 

multivariate time series: 

𝐗(𝑡) = [𝑣(𝑡), 𝑇(𝑡), 𝜖(𝑡), 𝐻(𝑡)]𝑇  

Each sensor's output is sampled at discrete time 

intervals, producing a data sequence 𝐗𝒊 = 

{𝐗(𝑡1), 𝐗(𝑡2), … , 𝐗(𝑡𝑛)}, where 𝑛 is the number of 

time steps. 

Data Preprocessing 

Raw sensor data often contain noise and missing 

values. The first step is noise reduction using a low-

pass filter. The filtered signal 𝑋‾(𝑡) is obtained by: 

𝑋̃(𝑡) = ∑  

𝑀

𝑘=0

ℎ(𝑘)𝑋(𝑡 − 𝑘) 

where ℎ(𝑘) is the filter kernel, and 𝑀 is the filter 

length. 

Normalization is applied to scale sensor readings 

between 0 and 1 : 

𝑋norm (𝑡) =
𝑋(𝑡) − 𝑋min

𝑋max − 𝑋min

 

where 𝑋min and 𝑋max are the minimum and 

maximum observed values of the sensor data. 

Missing data imputation uses linear interpolation: 

𝑋𝑖𝑚𝑝(𝑡) = 𝑋(𝑡 − 1) +
𝑋(𝑡 + 1) − 𝑋(𝑡 − 1)

2
 

if 𝑋(𝑡) is missing. 
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Feature Extraction 

Time-domain features such as mean 𝜇, variance 𝜎2, 

skewness 𝛾, and kurtosis 𝜅 are calculated over 

sliding windows of length 𝑊 : 

𝜇 =
1

𝑊
∑  

𝑊

𝑖=1

 𝑋𝑖

𝜎2 =
1

𝑊
∑  

𝑊

𝑖=1

  (𝑋𝑖 − 𝜇)2

𝛾 =
1

𝑊
∑  

𝑊

𝑖=1

  (
𝑋𝑖 − 𝜇

𝜎
)
3

𝜅 =
1

𝑊
∑  

𝑊

𝑖=1

  (
𝑋𝑖 − 𝜇

𝜎
)
4

− 3

 

Frequency-domain features are obtained by 

applying the Discrete Fourier Transform (DFT): 

𝐹(𝑘) = ∑  

𝑊−1

𝑛=0

𝑋𝑛𝑒
−𝑗𝑊

2 𝑘𝑛, 𝑘 = 0,1, … ,𝑊 − 1 

where 𝐹(𝑘) represents the frequency components. 

Machine Learning Model Development 

The extracted features form the input to machine 

learning models aimed at fault detection and failure 

prediction. 

Random Forest Classifier 

The random forest classifier consists of 𝑇 decision 

trees. For input feature vector f , the classification 

output 𝐶(f) is the majority vote over all trees: 

𝐶(𝐟) = mode{ℎ𝑡(𝐟), 𝑡 = 1,… , 𝑇} 

where each ℎ𝑡 is a tree's prediction. 

The Gini impurity for a node 𝑚 during training is: 

𝑐𝑛 = 1 −∑  

𝑜

𝑛=1

𝑝𝑛 

where 𝑝𝑚,𝑐 is the proportion of class 𝑐 samples in 

node 𝑚. 

Long Short-Term Memory (LSTM) Network 

LSTM networks model sequential data by 

maintaining internal memory. At each time step 𝑡, 

the LSTM cell updates the hidden state ℎ𝑡 and cell 

state 𝑐𝑡 based on the input 𝑥𝑡 : 

Forget gate: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

Input gate: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

Candidate cell state: 

𝑐‾𝑡 = tanh⁡(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

Cell state update: 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 

Output gate: 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

Hidden state: 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh⁡(𝑐𝑡) 

Here, 𝜎 is the sigmoid function, ⊙ denotes element-

wise multiplication, and 𝑊,𝑈, 𝑏 are learnable 

parameters. 

Model Training and Evaluation 

The training dataset {(𝐟𝑖 , 𝒚𝑖)} consists of feature 

vectors 𝐟𝑖 and corresponding labels 𝒚𝑖(0 = normal, 

1 = fault). The loss function used to train the LSTM 

is the binary cross-entropy: 

ℒ = −
1

𝑁
∑  

𝑁

𝑖=1

[𝑦𝑖log⁡(𝑦̂𝑖) + (1 − 𝑦𝑖)log⁡(1 − 𝑦̂𝑖)] 

where 𝑦̂𝑖 is the predicted probability of failure. 

 

Remaining Useful Life (RUL) Prediction 

To estimate the time until failure, a regression model 

is applied to predict the Remaining Useful Life 

(RUL) from sensor features: 

𝑅𝑈̂𝐿 = 𝑔(𝐟; 𝜽) 

function parameterized by 𝜃. 

an Squared Error (MSE) loss is minimized during 

training: 

𝑀𝑆𝐸 =
1

𝑁
∑  

𝑁

𝑖=1

(𝑅𝑈𝐿𝑖 − 𝑅𝑈̂𝐿𝑖)
2
 

Maintenance Decision Support System 

The predicted failure probabilities and RUL 

estimates feed into a decision support system, which 

prioritizes maintenance actions based on risk scores 

calculated as: 

 Risk = 𝑃fail ×  Cost failure  
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where 𝑃fail  is the predicted failure probability and 

Cost ⁡failure  is the estimated cost of failure 

consequences. 

Maintenance scheduling optimization aims to 

minimize the total cost 𝐶 : 

𝐶 =∑  

𝑀

𝑗=1

(𝐶maint ,𝑗 + 𝑃fail ,𝑗 × 𝐶fail ,𝑗) 

where 𝑀 is the number of components, 𝐶maint ,𝑗 is 

maintenance cost for component 𝑗, and 𝐶fail ,𝑗 is the 

failure cost.  

 

Figure 1: Workflow of the proposed Intelligent 

Predictive Maintenance System 

IV.  RESULT & DISCUSSIONS 

The intelligent system for predictive maintenance 

significantly enhances reliability compared to 

traditional approaches through its superior ability to 

recognize faults and predict time before failure. The 

model’s performance improves steadily as it is 

trained on data from a variety of engineering 

systems. Eventually, the accuracy increases steadily 

until it attains a value of 94.5%. The progressively 

higher accuracy indicates that the model can 

accurately identify complex patterns of failure and 

efficiently handle previously encountered cases.  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: MODEL PREDICTION ACCURACY VS. TRAINING DATA SIZE 
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Both precision and recall serve as important measure 

of how well the model performs in actual 

application. Table 1 shows the performance 

difference between the proposed hybrid model that 

incorporates Random Forest and LSTM 

architectures and the conventional threshold-based 

method. The hybrid model performs significantly 

better than the conventional method, as it achieves a 

precision of 92% and a recall of 90%, compared to 

75% precision and 70% recall for the traditional 

approach. Lessening false positives and false 

negatives helps to cut down on unneeded 

maintenance and the risk of equipment failure. The 

improved set of precision and recall values assures a 

quick identification of faults while minimizing false 

alerts. 

 

TABLE 1: COMPARISON OF FAULT DETECTION METRICS BETWEEN PROPOSED HYBRID 

MODEL AND THRESHOLD-BASED METHOD 

Model Type Precision (%) Recall (%) 

Hybrid Model 92 90 

Threshold Method 75 70 

Improvement (%) 22.7 28.6 

 

Figure 3 visually demonstrates how accurately the 

system predicts Remaining Useful Life (RUL) for a 

test set of data. The predicted values show a high 

degree of alignment with the actual RUL values, as 

evidenced by an R2 value of 0.87. Clustering around 

the diagonal line shows that the model often slightly 

underestimates the RUL which is acceptable since it 

ensures a conservative approach in scheduling 

maintenance.  

 

 

FIGURE 3: PREDICTED VS. ACTUAL REMAINING USEFUL LIFE (RUL) 

 

Besides accuracy, the speed at which the model can 

process data is also crucial for its practical 

implementation. Training and inference times are 

shown in Table 2 for both the hybrid model and the 

LSTM and the Random Forest models. Training the 

hybrid model takes around 35% more time than 

training the Random Forest, but it enjoys a 

significant advantage in inference speed thanks to 

1

120

115

2

95

90

3

60

58

0 20 40 60 80 100 120 140

Sample ID

Actual RUL (hours)

Predicted RUL (hours)

Predicted vs. Actual Remaining Useful Life (RUL)

Series3 Series2 Series1



International Journal of Intelligent Systems and Applications in Engineering                  IJISAE, 2024, 12(23s), 2996 - 3004  |  3002 

 

 

the optimization with parallel components. This 

trade-off makes the most sense when requiring 

higher model performance and prompt recognition 

of faults. The cost associated with additional 

training is paid only once, but rapid inference allows 

for real-time monitoring on an ongoing basis. 

 

TABLE 2: COMPARISON OF FAULT DETECTION METRICS BETWEEN PROPOSED HYBRID 

MODEL AND THRESHOLD-BASED METHOD 

Model Type Training Time (minutes) Inference Time (seconds) 

Hybrid Model 150 2.5 

LSTM Only 120 3.0 

Random Forest 90 4.0 

 

Figure 4 provides evidence for the resilience of the 

proposed approach by showing the accuracy of the 

system with increasing amounts of sensor noise. A 

fall from a 94.5% success rate to 91.2% reveals the 

system’s robustness to increasing noise levels. 

These steps ensure the proposed system can perform 

well, even under the influence of noisy or 

incomplete sensor data. The stability shown in noisy 

conditions shows the approach can handle the 

variable conditions often found in industry. 

 

 

FIGURE 4: MODEL ACCURACY UNDER INCREASING SENSOR NOISE LEVELS 

 

The system was found to be both practical and 

successfully implemented in various pieces of real-

world engineering equipment, helping to streamline 

preventive maintenance practices. More accurate 

detection of fluctuations and longer leading-time 

maintenance substantially reduces the operational 

risks and costs of engineering systems . 

V. CONCLUSION 

Smart predictive maintenance technologies can help 

increase safety, reliability and efficiency for wide-

ranging engineering infrastructure projects. An 

integrated IoT sensor and machine learning 

framework was created to precisely predict 

equipment failures and optimize maintenance 

scheduling. The results showed that the method was 

more effective than traditional methods, establishing 

its value in practical applications. 

Future efforts aim to increase model transparency, 

integrate various sensor data and extend the 

implementation to diverse infrastructure categories. 

Intelligent predictive maintenance is essential for 

ensuring the sustainable management of 

increasingly complex engineering assets.  
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