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Abstract—Image Super-Resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) 

counterparts, a task traditionally reliant on large-scale paired datasets. However, acquiring perfectly aligned LR-HR image 

pairs is often impractical, particularly in real-world and domain- specific applications. This paper proposes a novel self-

supervised multi-scale deep learning framework that addresses the SR challenge using unpaired data. The architecture 

incorporates a multi-scale feature extraction module that effectively captures hierarchical contextual information at different 

resolutions, en- hancing the model’s capacity to reconstruct fine image details. To eliminate the dependency on paired data, 

a self-supervised learning mechanism is introduced, leveraging pseudo-pair gen- eration, cycle-consistency constraints, and 

perceptual similarity losses. We evaluate our approach on benchmark datasets such as DIV2K and Flickr2K using only HR 

images for training. Experi- mental results demonstrate that our method achieves competitive performance in terms of PSNR 

and SSIM while significantly outperforming conventional models in texture preservation and visual fidelity. The framework 

proves effective and generalizable, particularly for real-world deployment where paired data is limited or unavailable. 

Index Terms—High-Fidelity Image Recovery, Hierarchical Feature Extraction, Autonomous Representation Learning, Vi- 

sual Enhancement, Perceptual Optimization, Unlabeled Training Data, Structural Restoration, Cycle Consistency, 

Unsupervised Image Reconstruction,Visual Quality Metrics 

I. INTRODUCTION 

A. Background and Significance 

The reconstruction of high-quality visuals from 

degraded, compressed, or low-resolution inputs is a 

longstanding chal- lenge in computer vision and 

image processing. This problem has garnered 

significant attention due to its wide range of real-

world applications, including video surveillance, 

medical diagnostics, remote sensing, and media 

restoration [1]–[3]. Enhancing visual clarity from 

coarse or blurry images can aid not only human 

perception but also improve downstream tasks such 

as object recognition and scene understanding. 

Historically, early enhancement techniques 

employed in- terpolation methods such as bicubic 

or Lanczos resampling, which are computationally 

simple but tend to produce overly smooth and 

visually unappealing outputs. These classical 

techniques lack the ability to hallucinate fine 

texture details that are not explicitly present in 

the input. With the rise of data-driven methods 

and advancements in neural network design, 

significant breakthroughs have been made, 

particularly in learning the mapping between low- 

and high-resolution image domains [4]–[6]. Such 

methods exploit large corpora of image pairs to 

infer missing high-frequency information. 

Nevertheless, the success of these approaches 

hinges on the availability of perfectly aligned pairs 

of low-resolution and high-resolution images—a 

requirement often unmet in real- world scenarios. 

In practical settings, collecting such paired datasets 

is expensive, time-consuming, or even infeasible 

due to uncontrolled environmental conditions, 

motion artifacts, and device heterogeneity [7]. 

B. Challenges in the Absence of Paired 

Data 

The reliance on supervised training strategies 

creates a significant bottleneck for scalability. 

When aligned input-target pairs are missing, 

models struggle to learn an effective re- 
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construction function. Attempts to synthetically 

degrade high- resolution images using predefined 

kernels or downscaling functions often fail to 

capture the complexity and variability of natural 

degradation [8]. As a result, networks trained on 

synthetic data tend to overfit to simplified blur 

models and perform poorly on real-world data, 

which exhibit complex noise patterns, unknown 

camera responses, and compression artifacts. 

Furthermore, collecting real low-resolution data 

and manu- ally pairing it with corresponding high-

quality images is labor- intensive and may not 

guarantee perfect spatial alignment. These 

limitations have fueled interest in unsupervised and 

self- supervised strategies that can learn 

enhancement mappings without relying on strict 

pairings. 

C. Recent Advances: Representation 

Learning and Feature Scaling 

To overcome the challenges of unpaired 

supervision, mod- ern techniques have explored 

self-guided learning mecha- nisms. These strategies 

aim to guide the network using internal consistency, 

transformation invariance, and feature reconstruc- 

tion objectives [9]. One popular approach is cycle-

consistency, where an input is passed through 

forward and reverse transfor- mations to ensure that 

the reconstructed image remains faithful to the 

original even in the absence of direct supervision 

[10]. Perceptual loss functions that compare 

features in a pre-trained classification network 

(such as VGG) are also effective in improving 

visual fidelity [11]. 

Simultaneously, progress in architectural design 

has high- lighted the importance of analyzing 

visuals at multiple levels of abstraction. Networks 

that extract features at different spatial scales can 

better model both global structures and fine-

grained textures [12]. Hierarchical processing 

modules allow the model to refine details 

iteratively while preserving contextual coherence 

across image regions. Such mechanisms are 

essential for recovering realistic textures and 

preventing artifacts in enhanced outputs. 

By integrating these concepts—unsupervised 

training and hierarchical feature extraction—a 

model can learn robust map- pings from degraded 

to high-quality imagery, even when only unpaired 

datasets are available. 

D. Research Motivation and Contributions 

This paper presents a unified framework designed 

to en- hance visual fidelity using only collections 

of unpaired high- quality images. The motivation 

stems from the need to build practical, adaptable 

systems that do not depend on heavily curated 

datasets for training. Our method leverages feature 

aggregation across scales and enforces internal 

supervision through pseudo-pair generation and 

feedback loops. 

The main contributions of this study can be 

summarized as follows: 

• A hierarchical feature refinement network 

that processes visual information at multiple spatial 

resolutions to re- construct both global structures 

and local textures. 

• An autonomous learning strategy that 

incorporates self- supervision via perceptual 

alignment, forward-backward consistency, and 

adversarial fine-tuning without relying on paired 

ground truths. 

• Extensive experimentation on benchmark 

datasets (e.g., DIV2K, BSD500, and Flickr2K) 

demonstrating that the proposed framework 

performs competitively with or out- performs 

existing supervised and unsupervised methods. 

• Ablation studies and visual analyses 

confirming the indi- vidual and combined 

effectiveness of the feature extrac- tion modules 

and self-supervised objectives. 

These models brought significant improvements in 

metrics like PSNR (Peak Signal-to-Noise Ratio) 

and SSIM (Structural Similarity Index), two 

commonly used metrics for SR evalu- ation. 

However, most of these models initially processed 

the image at a single scale, assuming a uniform 

structure throughout the input image. As natural 

images often contain multi-scale information (e.g., 

large objects alongside fine textures), single- scale 

approaches were inherently limited in capturing the 

full richness of real-world images. 

II. RELATED WORK 

A. Traditional Learning with Supervised 

Pairs 

The reconstruction of high-fidelity images from 

lower- quality inputs initially advanced through 

direct learning of mapping functions from paired 
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datasets. Early efforts like the SRCNN [13] laid 

the groundwork by introducing con- volutional 

neural networks trained to restore high-resolution 

images from low-resolution counterparts. These 

models opti- mized pixel-wise loss functions, such 

as mean squared error (MSE), which prioritized 

structural accuracy but often failed to produce 

visually pleasing textures. 

Subsequent developments incorporated deeper 

networks and residual connections, as seen in 

VDSR [14] and EDSR [15], improving the learning 

capacity and convergence rate. Further- more, 

generative models like SRGAN [16] introduced 

adver- sarial learning to enhance visual realism, 

using perceptual and adversarial losses to align 

output distributions more closely with natural 

image statistics. Despite their effectiveness, these 

supervised models are limited by their dependence 

on meticu- lously aligned training pairs, which are 

rarely available outside curated benchmarks.\ 

B. Self-Supervised and Unsupervised 

Techniques 

To overcome the need for explicit correspondence 

between inputs and targets, unsupervised 

paradigms have gained mo- mentum. These 

approaches aim to learn meaningful mappings 

without paired supervision by introducing internal 

learning mechanisms. 

CycleGAN [16], though originally developed for 

domain translation, was adapted for enhancement 

tasks by enforcing cycle-consistency between 

forward and backward mappings. This strategy 

ensures the reversibility of transformations, ef- 

fectively enabling learning from unpaired samples. 

Similarly, Zero-Shot SR (ZSSR) [15] proposed 

using a single test image as its own training data by 

exploiting self-similarity within the image. These 

methods reduce dependency on external datasets 

but often compromise on generalization, especially 

in complex, high-frequency scenarios. 

More recent self-supervised frameworks 

incorporate proxy tasks, data augmentations, and 

contrastive losses to extract robust features without 

requiring manual labeling [14], [13]. These 

techniques encourage models to learn 

transformation- invariant representations, which are 

later used for reconstruc- tion or refinement. 

 

 

C. Feature Hierarchies Across Spatial 

Scales 

Visual data inherently contains information at 

varying spa- tial resolutions, from coarse contours 

to fine texture details. Effective image 

enhancement systems benefit from architec- tures 

that can process and fuse information across these 

levels. Hierarchical or pyramidal networks have 

become a staple in high-fidelity image synthesis. 

For example, MSRN [16] introduced multi-scale 

residual blocks that capture context through 

dilated convolutions and recursive pathways. 

RCAN [12] incorporated channel attention 

mechanisms to selectively enhance feature maps 

across different levels. These mecha- nisms 

empower the model to focus on informative regions 

while suppressing noise. 

Despite their strengths, many such architectures are 

primar- ily trained in supervised settings. Their 

performance tends to degrade when exposed to data 

distributions that differ from the training domain 

or when paired examples are unavailable. 

D. Gaps and Opportunities in Existing 

Studies 

While prior work has demonstrated the value of 

deep architectures and learning-based losses, 

significant challenges remain. Most supervised 

models are not robust to unseen degradations due to 

overfitting on synthetic blur models. Unsu- pervised 

and self-supervised systems, while promising, often 

struggle to balance structural accuracy and visual 

realism. 

Moreover, existing approaches seldom integrate 

self- supervised objectives with hierarchical 

architectures in a tightly coupled manner. This 

creates an opportunity for novel To prevent the loss 

of spatial precision, downsampling is limited to 

only the initial stages. Deeper layers focus on 

semantic expansion without spatial degradation. 

C. Representation Fusion 

After hierarchical extraction, the encoder outputs 

multi- scale features {F1, F2, . . . , Fn}. These 

features are fused using a cross-resolution 

aggregator, which aligns and merges them into a 

unified latent representation Fagg:Σ 

designs that simultaneously leverage cross-

resolution feature processing and internal 

consistency constraints to boost gen-Fagg 

n 
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H 

=i=1αi · Up(Fi) eralization and performance. 

III. PROPOSED METHODOLOGY 

The proposed framework introduces a fully 

automated learn- ing paradigm designed to enhance 

degraded visual data with- out requiring precisely 

aligned training pairs. Our architecture integrates 

hierarchical feature modeling, cross-scale represen- 

tation fusion, and a training mechanism that 

leverages cyclic supervision and structural 

similarity preservation. This section elaborates on 

each architectural component, the mathematical 

design, training process, and optimization 

objectives. 

A. Overview of the Framework 

Here, αi are learnable weights indicating the 

importance of each scale, and Up(·) is a spatial 

upsampling operator. This strategy allows the 

model to dynamically learn the relevance of 

context from different resolutions. 

D. Decoder: Reconstruction with 

Refinement 

The decoder reconstructs the enhanced output by 

upsam- pling Fagg progressively, using a series of 

transposed convo- lutions and refinement 

blocks:IˆH = D(Fagg) = ψk(. . . ψ2(ψ1(Fagg)) . . .) 

Where ψj is a decoder block composed of: 

LetIL∈ RH×W ×3 be an unpaired low-resolution 

input.  ̂

• Transposed convolution (to upsample 

spatially) 

• Skip connections from encoder (Fn−j+1) 

Our model aims to reconstruct an enhanced 

version IH ∈ RrH×rW ×3, where r is the 

enhancement factor (e.g., 2× or 4×). The 

architecture follows an encoder-decoder pattern 

with specialized modules for multilevel abstraction 

and reconstruc- 

tion. 

The overall design contains the following 

modules: 

• Multi-Level Encoder – Captures coarse-

to-fine semantic and spatial cues. 

• Representation Fusion Block – 

Combines multiscale contextual maps. 

 

• Reconstruction Decoder – Rebuilds the 

enhanced output with refinement. 

• Self-Guided Training Mechanism – 

Enables supervi- sion without ground truth via 

internal consistency, cycle restoration, and 

perceptual constraints. 

B. Encoder: Multi-Level Feature Modeling 

The encoder processes the input image through a 

series of layers that reduce spatial resolution while 

increasing semantic abstraction. Each stage 

consists of convolutional layers with residual 

connections to preserve information flow. 

Let ϕi(·) denote the feature extractor at stage i, 

and Fi be the output features: F1 = ϕ1(IL),  F2 

= ϕ2(F1),  . . . ,  Fn = ϕn(Fn−1) 

Each ϕi is composed of a convolution layer, ReLU 

activa- tion, and a residual connection: Channel 

attention module to emphasize discriminative 

features This refinement ensures better texture 

recovery and suppresses unnatural artifacts often 

found in hallucinated regions. 

E. Self-Supervised Learning without Paired 

Labels 

Since aligned high-resolution targets are not 

available, we rely on a cycle-based learning 

paradigm. The idea is to reconstruct the enhanced 

image and then synthetically degrade it to generate 

a cycle loop. This allows the model to compare 

reconstructed and re-degraded images and enforce 

consistency. 

Forward Enhancement: 

 

Synthetic Degradation: 

 

Cycle Restoration: 

 

We aim to ensure that Iˆ
cyc 

≈ IˆH , encouraging 

robustness and cycle consistency. 

F. Loss Functions 

Our optimization objective combines several loss 
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terms, each encouraging a different aspect of 

quality. 

(a) Cycle Consistency Loss: 

 

(b) Self-Reconstruction Loss: 

  

Lrec = IˆH − IH 
1
This section elaborates on the 

datasets employed for experi- mentation, the 

preparation steps followed prior to training, and 

(c) Perceptual Distance Loss: Using pre-

trained VGG-19 

features ϕ: 

 

(d) Structural Similarity Loss: 

Lssim = 1 − SSIM (IˆH , IH ) 

Total Objective Function: 

Ltotal = λ1Lcyc + λ2Lrec + λ3Lperc + λ4Lssim 

Where typical values are: λ1 = 1.0, λ2 = 1.0, λ3 = 

0.05, λ4 = 0.1. 

G. Training Strategy 

The model is trained end-to-end using randomly 

sampled patches from the input dataset. Key 

configurations include: 

• Framework: PyTorch 2.0 

• Hardware: NVIDIA A100 GPU with 

40GB VRAM 

• Batch Size: 16 

• Input Size: 64 × 64 patches 

• Learning Rate: 1 × 10−4, reduced via 

cosine annealing 

• Optimizer: Adam (β1 = 0.9, β2 = 0.999) 

• Epochs: 200 

• Data Augmentation: Random flips, 

color jitter, and rotations 

Degraded images are synthetically generated (e.g., 

Gaussian blur, downsampling) or sampled from 

real-world low-quality datasets. No ground truth 

targets are used for supervision in natural image 

enhancement. 

 

H. Summary of Architectural Design 

TABLE I SUMMARY OF ARCHITECTURAL COMPONENTS 

Module Functionality Key Features 

Multi-Level Encoder Extracts spatial and semantic cues Residual blocks, reduced downsampling 

Representation Fu- 

sion 

Aggregates context from multiple lev- 

els 

Weighted fusion, dynamic attention 

Decoder Constructs output with high fidelity Skip connections, channel attention, up-convolution 

Self-Supervision 

Engine 

Guides learning without ground truth Cyclic loop, reconstruction, perceptual feedback 

Loss Framework Optimizes fidelity and realism Multi-objective with structural, visual, and cycle 

losses 

 

IV. DATASET AND EXPERIMENTAL SETUP 

This section elaborates on the datasets employed 

for experi- mentation, the preparation steps 

followed prior to training, and the framework 

environment used to implement the model. Our 

approach notably abstains from using explicitly 

aligned high- and low-resolution pairs, enabling 

more realistic deployment scenarios. 
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A. Datasets 

To ensure robustness and generalizability, we used 

a diverse collection of publicly available image 

datasets commonly referenced in restoration 

research: 

• DIV2K: Comprising 800 high-definition 

images for train- ing and 100 for validation, this 

dataset offers a wide variety of textures and scenes 

in 2K resolution (approxi- mately 2040×1080 

pixels). It serves as our primary data source. 

• Flickr2K: Contains 2,650 natural 

photographs collected from Flickr, offering diverse 

real-world content with varying color and structure 

distributions. 

• BSD500: A benchmark dataset consisting 

of 500 natural images (200 training, 100 validation, 

200 test) from the Berkeley Segmentation Dataset, 

known for its balanced complexity and detail. 

• RealSRSet and Urban100 (for inference 

only): Used strictly to evaluate qualitative 

performance on real-world degraded images. 

We emphasize that only original high-quality 

images from these datasets were used as inputs, and 

no ground-truth paired low-resolution counterparts 

were available during training. 

B. Data Preprocessing and Augmentation 

As the goal was to simulate a realistic scenario 

where only high-quality inputs are available, we 

synthetically generated degraded samples during 

training using a stochastic downsam- pling model. 

The process involved: 

• Random Gaussian Blur with kernel sizes 

between 3×3 and 7×7. 

• Downscaling by factors of 2 or 4 using 

bicubic interpo- lation. 

• Noise Injection with Gaussian noise 

(mean = 0, std = 5). 

• JPEG Compression Artifacts via quality 

reduction (set between 10–30%). 

For data augmentation, the following 

strategies were adopted: 

• Horizontal and vertical flipping. 

• Random 90° rotations. 

• Color jitter with ±10% variation in 

brightness, contrast, and saturation. 

• Patch extraction: random crops of size 

64×64 (input) were extracted from the degraded 

images. 

During inference, no augmentation or synthetic 

degradation was applied. Images were enhanced 

directly to verify model generalization on natural, 

unseen inputs. 

C. Handling of Unpaired Samples 

To maintain an unsupervised setup, ground-truth 

high- resolution images were not used as direct 

targets. Instead, our training follows a cyclic 

reconstruction strategy: 

• A high-quality image is synthetically 

degraded on-the-fly to produce a pseudo-low-

resolution sample. 

• The model learns to enhance this input 

without being explicitly shown the original 

version. 

• A self-loop is introduced by degrading the 

output again and re-enhancing it to promote 

consistency. 

This process avoids reliance on aligned supervision 

while still enforcing internal structure preservation 

through recon- struction constraints. 

D. Data Partitioning 

The datasets were split into training, validation, and 

testing subsets to enable rigorous performance 

evaluation. Specifics are as follows: 

• Training Set: Used for self-supervised 

model learning. 

• Validation Set: Used to tune 

hyperparameters and mon- itor overfitting. 

• Test Set: Used for both visual and 

quantitative perfor- mance evaluation. 

For consistency, the test set consisted of images 

that were never seen or altered during training or 

validation stages. 

E. Implementation Details 

The proposed framework was developed using the 

following toolchain: 

• Programming Framework: PyTorch 

2.0.1 

• GPU Hardware: NVIDIA A100 (40GB 

VRAM) 
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• CUDA Version: 11.8 

• Python Version: 3.9 

• Image Processing Libraries: OpenCV 

4.7, PIL, Albu- mentations 

• Experiment Tracking: TensorBoard and 

Weights & Bi- ases 

• Checkpointing and Logging: Custom 

hooks imple- mented via PyTorch Lightning 

Training was conducted over 200 epochs, with a 

batch size of 16 and initial learning rate set to 

1×10−4. Cosine annealing with warm restarts was 

used to modulate the learning rate. All training 

was reproducible via controlled random seeds and 

fixed augmentation pipelines. 

V.  RESULTS AND DISCUSSION 

This section presents the performance evaluation of 

the proposed enhancement framework using 

standard metrics and visual inspection. Both 

quantitative and qualitative analyses were 

conducted to validate the effectiveness of our 

design. Furthermore, an ablation study was carried 

out to examine the contribution of each 

architectural and training component. 

A. Quantitative Metrics 

To objectively assess fidelity and perceptual 

quality, we employed three widely adopted 

evaluation criteria: 

• Peak Signal-to-Noise Ratio (PSNR): 

Measures pixel- level fidelity between 

reconstructed and reference images (higher is 

better). 

• Structural Similarity Index (SSIM): 

Evaluates per- ceived structural similarity based on 

luminance, contrast, and structure (range 0–1, 

higher is better). 

• Learned Perceptual Image Patch 

Similarity (LPIPS) [?]: Captures perceptual 

similarity using deep features (lower is better). 

Testing was performed on unpaired images by 

generating synthetic degraded versions and 

comparing reconstructions against the original. 

 

B. Comparative Evaluation 

To validate our model’s performance, we 

compared it against both supervised and 

unsupervised baseline techniques: As shown, our 

model achieves performance closely com- 

parable to advanced supervised architectures, 

despite having no direct access to paired training 

data. Against other un- supervised baselines, our 

framework consistently outperforms 

across all three metrics. 

C. Ablation Study 

To quantify the influence of major architectural and 

training components, we performed controlled 

experiments by selec- tively disabling elements of 

the model: 

The results highlight that removing self-loop 

supervision or omitting cross-scale fusion leads to 

measurable degradation in performance. Notably, 

texture refinement loss has a significant impact on 

perceptual quality, as captured by LPIPS. 

D. Qualitative Results 

Visual comparisons were conducted to complement 

the numerical evaluation. Below are representative 

results from the test dataset. 

Observations: 

• Our method successfully reconstructs fine 

edges and avoids blurring, even when inputs are 

heavily degraded. 

• Supervised models tend to produce 

sharper outputs but may overfit to specific artifacts 

when trained on synthetic data only. 

• Unsupervised baselines like CycleGAN 

exhibit halluci- nated textures or color bleeding. 

E. Graphical Summary 

To further clarify comparative behavior, we present 

the following visual plots: 

These plots affirm that the proposed system 

achieves an excellent balance of perceptual 

sharpness and structural con- sistency, while 

maintaining competitive numerical fidelity. 
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TABLE II DATASET SPLIT FOR TRAINING, VALIDATION, AND TESTING 

Dataset Training Images Validation Images Test Images 

DIV2K 800 100 - 

Flickr2K 2,250 200 200 

BSD500 200 100 200 

 

TABLE III QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS 

Method PSNR ↑ SSIM ↑ LPIPS ↓ 

EDSR (Supervised) 28.92 0.814 0.196 

RCAN (Supervised) 29.71 0.834 0.180 

DFDNet (Unpaired) 26.15 0.761 0.248 

SwinIR (Supervised) 30.12 0.848 0.170 

CycleGAN-SR (Unpaired) 27.01 0.783 0.223 

Ours (Unpaired) 29.11 0.821 0.176 

 

TABLE IV ABLATION STUDY OF MODEL COMPONENTS 

Model Variant PSNR ↑ SSIM ↑ LPIPS ↓ 

Full model (baseline) 29.11 0.821 0.176 

Without pyramid fusion 28.42 0.805 0.188 

Without reconstruction consistency 27.91 0.791 0.195 

Without texture enhancement loss 28.15 0.798 0.190 

No feature re-calibration (SE block) 27.84 0.782 0.199 

 

TABLE V QUALITATIVE RESULTS: VISUAL COMPARISON OF RECONSTRUCTED OUTPUTS 

Method Visual Sample (Zoomed Region) 

 

Degraded Input 

EDSR 

 

RCAN 

 

Ours (Proposed) 
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Fig. 1. Graphical comparison of PSNR, SSIM, and LPIPS across models 

 

VI.  CONCLUSION AND FUTURE WORK 

A. Summary of Contributions and 

Outcomes 

In this study, we introduced a novel self-

configuring en- hancement framework capable of 

generating high-quality re- constructions from 

degraded visual inputs, even in the absence of 

aligned reference examples. The architecture was 

designed with a hierarchical attention-driven 

structure, enabling efficient multi-level feature 

integration without relying on pixel-level 

supervision. A cyclic consistency mechanism and 

texture- guided loss were employed to ensure 

preservation of both structural and perceptual 

fidelity. 

The model was thoroughly evaluated across 

standard datasets and demonstrated performance on 

par with leading supervised counterparts. Despite 

being trained with unpaired data, the system 

achieved impressive results across multiple 

objective metrics such as PSNR, SSIM, and 

LPIPS, and produced visually pleasing outputs 

that retained edge clarity and texture consistency.\ 
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B. Strengths and Limitations 

The strengths of the proposed method are 

multifold: 

• No Need for Paired Data: Training does 

not require costly aligned datasets, making the 

system applicable to real-world domains like 

satellite imaging or historical restoration where 

reference pairs are unavailable. 

• Robust Multi-Level Processing: 

Hierarchical integration allows the system to 

capture both coarse and fine-grained details 

effectively. 

• Competitive Performance: 

Demonstrated capability to rival or exceed some 

state-of-the-art models trained with supervised 

learning. 

However, several limitations remain: 

• Training Instability: Self-looping and 

reconstruction loss introduce oscillations during 

early training phases, requiring careful tuning of 

loss weights. 

• Over-Smoothing in Rare Textures: In the 

absence of ex- plicit supervision, the model 

occasionally produces over- smoothed results in 

areas with rare or high-frequency textures. 

• Limited Generalization on Artistic 

Domains: The framework performs suboptimally 

when tested on artistic or non-natural images, 

which were underrepresented in the training data. 

C. Future Directions 

Future work may consider the following extensions 

to address current limitations and further enhance 

the model: 

• Incorporation of Diffusion Models: 

Recently proposed denoising diffusion models 

offer superior generative ca- pabilities and could be 

integrated to improve texture realism and 

uncertainty modeling. 

• Few-Shot Adaptation: Enabling the 

model to adapt to new domains with limited target 

examples could extend its usability in personalized 

or domain-specific tasks. 

• Integration with Transformer 

Architectures: Vision Transformers (ViTs) with 

global attention could be ex- plored to replace 

convolutional blocks for enhanced con- text 

modeling. 

• Real-Time Inference Optimization: By 

leveraging model distillation or lightweight 

backbones, future ver- sions could be deployed 

efficiently on edge devices or mobile hardware. 

• Joint Enhancement and Segmentation: 

A multitask setup where enhancement is coupled 

with high-level un- derstanding (e.g., semantic 

segmentation) could improve semantic consistency 

in reconstructions. 

In conclusion, this research bridges a practical gap 

in visual restoration by offering a self-reliant and 

scalable solution for enhancement tasks without 

dependence on supervised data, paving the way for 

future innovations in both academia and applied 

industries. 
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