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Abstract- For environmental decision-making and public health protection, particularly in rapidly developing regions, reliable 

estimates of air pollution levels are crucial. With a focus on PM2.5 concentrations in North Central India, this study presents 

a deep learning-based system that effectively predicts air pollutant levels. The CPCB, or Central Pollution Control Board, 

provided the data, which includes 18,776 entries covering nine main pollutants. Much preparation, including filling in those 

that were missing, normalising the data and constructing time-series features, went into splitting the data into training (80%) 

and testing (20%) groups. We employed a ConvLSTM and a Hybrid LSTM-GRU, two state-of-the-art deep learning models, 

to grasp the intricate temporal relationships in the data. The results of the evaluation reveal that compared to the ConvLSTM 

model, the Dual LSTM-GRU model performs better when it comes to prediction. The ConvLSTM model's MSEs were 0.254 

and 0.276, respectively, while this one had training and validation MSEs of 0.187 and 0.203. R², RMSE and MAE are only a 

few of the metrics that demonstrate the hybrid model's superior performance. Based on these findings, hybrid deep learning 

architectures may be useful in developing accurate, real-time air quality forecasting systems, which in turn can aid in pollution 

management via the facilitation of prompt responses and well-informed decisions. 
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I. INTRODUCTION 

Air pollution is becoming an increasingly pressing 

issue for ecosystems and people all around the 

globe. Extremely high levels of pollution are 

threatening the health of people in North Central 

India and other densely populated, rapidly 

industrialising regions. The idea of "air impact 

forecasting" has so gained traction. Factors such as 

rising emissions from cars, industries, deforestation 

and seasonal occurrences like crop burning have 

contributed to a precipitous drop in air quality, 

posing a threat to human health, ecology and the 

ecosystem. In addition to acid rain, mist formation 

and climate change, air pollutants such as particulate 

matter 2.5, particulate matter 10, nitric oxide, carbon 

monoxide, ozone, sulphur dioxide and NH₃ have 

been associated with respiratory illnesses, 

cardiovascular diseases and premature death. 

Predicting air pollution levels by a high degree of 

precision is now critical for providing immediate 

health alerts, regulatory action, for long-term city 

planning. Due to the non-linear nature, temporal 

complexity and spatial complexity of air pollution 

data, conventional machine learning and statistical 

models such as ARIMA, SVMs and Random Forests 

struggle to produce valuable outcomes. [1]–[4]. 

These models often encounter issues with 

environmental factors that fluctuate over time and 

space, multivariate data sets and missing values. 

Pattern recognition, prediction accuracy, etc the 

modelling of non-linear interactions are just a few 

domains where new architectures made possible by 

modern deep learning surpass those of more 

traditional models. We may thank the memory 

components of Recurrent Neural Networks (RNNs), 

especially Long Short-Term Memory (LSTM) 

networks and gates of recurrent units (GRUs), for 

the promising results they have produced in time-

series prediction tasks. Even with these models, 

there are limitations such as training times that are 

too long, missing gradients and an inability to fully 

utilise spatial correlations in sequential data. In light 

of these challenges, researchers have begun to 

explore hybrid models that combine different deep 

learning architectures in order to leverage spatial 

and temporal characteristics more effectively. This 
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research aims to improve air pollution forecasting 

models by developing and evaluating models that 

combine LSTM and GRU units. Finding an effective 

method to process sequential, multiple air quality 

data while simultaneously extracting deeper 

temporal characteristics was the driving force 

behind the development of this hybrid model. The 

proposed approach gathers real-world data from the 

Central Pollution Control Board (CPCB) and uses a 

number of preprocessing techniques to get it ready 

for model training. Among these methods are time-

based feature extraction, MinMax normalisation and 

K-Nearest Neighbours (KNN) for missing value 

imputation. There are a total of 18,776 data points in 

the set, covering nine different important 

contaminants.  [5]. After that, we will see how well 

the hybrid LSTM-GRU model does compared to a 

ConvLSTM model. Although neural long temporary 

memory (ConvLSTM) models perform 

exceptionally well when dealing with spatio-

temporal data, they are infamously computationally 

demanding and prone to overfitting when used with 

datasets devoid of images. Conversely, the hybrid 

LSTM-GRU model used in this research is 

optimised for sequential environmental data, 

outperforming other models on both the validation 

and training sets according to MSE, RMSE, MAE 

and R³ metrics. With a training MSE of 0.187 and 

the validation MSE of 0.203, the hybrid model 

outperforms ConvLSTM with respect to 

generalisation and offers a scalable option for real-

time air quality prediction systems. This work has 

implications for policy-making, public health, 

governance of the environment, smart city facilities 

and other fields since it enhances community 

resilience and enables rapid mitigation measures by 

accurately predicting pollution levels.[6], [7]. 

 

 

Fig. 1 Air pollution forecasting 

 

Hybrid models are useful in a wide variety of 

environmental scenarios because of their modular 

design, which allows them to adapt to varied 

locations, contaminants and forecasting horizons. 

Intelligent forecasting techniques driven by data are 

becoming an absolute necessity for sustainable 

development as the globe struggles to cope with the 

effects of climate change and urban pollution. 

Hybrid deep learning models have the ability to 

revolutionise environmental monitoring and this 

research lays the groundwork for incorporating AI 

into worldwide initiatives for pollution control, 

public safety and ecological preservation [8], [9]. 

There is tremendous potential for AI models to be 

integrated with IoT sensors, edge devices and cloud-

based platforms as the technology develops further. 

This would enable scalable, low-latency air quality 

monitoring in both urban and rural locations. In 

addition, models can improve their contextual 

understanding of pollutant behaviour by include 

external meteorological variables like temperature, 

wind speed, humidity and rainfall patterns. This 

helps them to provide more personalised 

predictions. To improve the hybrid model's feature 

weighting and prediction error reduction 

capabilities, attention mechanisms and ensemble 

learning approaches can be useful. The Paris 

Agreement and the Sustainable Development Goals 

(SDGs) highlight the critical need to address air 

pollution on a global scale. One effective strategy to 



International Journal of Intelligent Systems and Applications in Engineering                         IJISAE, 2024, 12(4), 5761–5770  |  5763 

 

do this is through the use of intelligent forecasting 

algorithms that combine elements of deep learning 

and machine learning. These models can help direct 

mitigation efforts and bring about revolutionary 

changes in public policy and environmental 

protection[10]. 

II. LITERATURE REVIEW 

Xu 2023 et al. To appropriately reflect the 

geographical and temporal dependency prevalent in 

complex systems, air quality forecasting techniques 

require different components suitable to spatial and 

temporal aspects, as is the case with many other 

transdisciplinary modelling issues. Until recently, 

RNN and TSA, two popular time series methods, 

exclusively dealt with temporal data and ignored 

geographical information. Prior work used graph 

convective neural networks (GCNs) to model 

geographical correlations between monitoring sites, 

with correlation strengths derived from historical 

data. Little prior understanding does not sufficiently 

represent the underlying linkages between stations 

or improve the dependability of predictions, which 

is due in part to cognitive limits. A novel message-

passing system, DGN-AEA, addresses this issue by 

learning the model parameters and edge properties; 

it then constructs an adaptive bidirectional dynamic 

graph. Independent of previous knowledge, this end-

to-end method simplifies problems and finds latent 

structural linkages between stations that could help 

with decision-making. [11]. 

Cities 2023 et al. To enhance long-term economic 

growth, environmental sustainability and quality of 

life, a certain kind of city is known as a "smart city" 

and it does this by utilising digital technology to 

enhance its infrastructure and services. With a 

growing urban population around the world, cities 

will need to change quickly to accommodate their 

citizens' diverse needs. The Internet of Things (IoT) 

is crucial for smart city objectives because it 

intelligently gathers and utilises huge statistics. The 

adaptability of machine learning techniques has 

piqued the interest of academics in many domains, 

including healthcare, economics, meteorology and 

deep neural network models for multivariate time-

series forecasting. In this article, we examine six key 

areas of smart cities and the most effective deep 

neural network time-series forecasting techniques 

for multivariate Internet of Things data. [12]. 

Gurumoorthy 2023 et al. Particulate matter and 

pollutants are notoriously difficult to forecast with 

any degree of accuracy due to their dynamic and 

unpredictable nature. The rise in PM2.5 emissions 

has considerably deteriorated the air quality in the 

metropolitan centres of numerous nations. This 

study develops an optimization-driven regression 

model to improve air pollution prediction. Prior to 

that, Min-Max scaling was used to standardise the 

data. Cochin, Hyderabad, Chennai and Bangalore 

real-time data from 2016–2022, as well as hourly 

observations from 2010–2014 in Beijing, were all 

part of the dataset. The results of the correlation 

study showed that there were important factors that 

were significantly associated. Considerations such 

as wind speed, direction, temperature, dew point and 

PM2.5 levels from the past are included of this data 

set. By feeding a Bi-directional GRU model with the 

most relevant features chosen using Reinforced 

Swarming Optimisation (RSO), we were able to 

increase the prediction accuracy.[13]. 

Abimannan 2023 et al. Air quality monitoring is 

crucial for improving pollution control strategies, 

but developing trustworthy and efficient systems is 

challenging. Air quality monitoring networks stand 

to benefit greatly from MEC and federated learning's 

newest developments. This paper provides a 

summary of studies that have employed federated 

learning and MEC to improve model training; the 

studies focused on improving reaction times, 

decreasing latency and protecting privacy. Issues 

with data quality, privacy, security and the 

development of AI models that can be understood 

pose significant challenges to real-time air 

monitoring systems. Incorporating these state-of-

the-art technology into existing air monitoring 

systems allows for more precise air quality 

assessments by doing away with these issues. [14]. 

Huang 2023 et al. Gaining a deeper comprehension 

of the spatial and temporal interactions among 

adjacent wind turbines can enhance the accuracy of 

short-term wind power forecasts. In order to forecast 

the short-term output of wind turbines, this research 

presents a 3D generalisation recurrent unit model. 

The model processes a 3D matrix that contains wind 

power or meteorological data from 24 neighbouring 

turbines using 3D convolutional neural network 

(CNN) and generalised repetitive unit (GRU) 

encoders. This allows it to extract spatiotemporal 

information. A GRU decoder or layers completely 

linked will thereafter generate predictions for 

several future times. Research on the SDWPT 

dataset shows that this approach is superior to more 

traditional models like BPNN, GRU, especially 1D 
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CNN-GRU. Remarkably, the 3D CNN-GRU 

architecture achieved top-tier overall performance, 

which encompasses a 1% enhancement of the 

validation set's correlation value and a 10-11% 

decrease in RMSE and MAE across a 10-minute 

predicted window. [15]. 

TABLE.1 LITERATURE SUMMARY 

Author / Year Algorithm Type Performance Metrics Reference 

Arsov (2021) Machine Learning Methods Accuracy: 91.16% [16] 

Kim (2021) Data-Driven Techniques Accuracy: 92%, Precision: 96.67% [17] 

Liu (2021) AQI Inference Algorithm Accuracy: 90.94%, Precision: 94.45% [18] 

Du (2021) Machine Learning Models Accuracy: 94.78%, Precision: 96.68% [19] 

Yang (2020) CS Algorithm Accuracy: 90.54% [20] 

 

III. RESEARCH METHODOLOGY 

The suggested approach to air pollution prediction 

begins with gathering data on air quality from the 

central air pollution control board (CPCB). The 

following phase involves preprocessing and 

exploratory data analysis (EDA) to clean and 

establish the dataset. Using 80% of the data for 

training and 20% for testing is the next stage. To 

back up our predictions, we have got two deep 

learning models: the ConvLSTM model, which uses 

LSTM units integrated with convolution to 

understand temporal and spatial reliance and the 

Hybrid LSTM-GRU model, which uses LSTM and 

GRU layers to improve learning of sequential 

patterns. We tested the algorithms to see how 

accurately they could predict the amount of air 

pollution in the future. 

 

Fig. 2 Proposed Flow Chart 

A. Data Collection 

This study's dataset includes 18,776 records and 9 

important features; following data collecting, each 

parameter was calculated. The information was 

derived from openly accessible CPCB databases that 

encompass cities in the North Central Region of 

India, particularly the Delhi NCR area. Sonipat, 

Panipat, Rohtak, Gurgaon, Ghaziabad and New 

Delhi are all part of this area. The gathered data 

showcases a range of air quality indices that reflect 

the overall composition of air pollution in these 

areas. These indicators include PM2.5, PM10, NO, 

NO2, ozone, SO2, CO and NH3. 

 

Fig. 3 Initial Data Preview 

Figure 3 provides an initial preview of the data, 

offering a glimpse into its structure and content.  

B. Data Preprocessing: 

To ensure data integrity, missing values were 

addressed using imputation techniques such as mean 

or median substitution. The 'date' column was 

converted to a proper datetime format to better 

capture temporal patterns. Feature engineering was 

then applied, incorporating domain knowledge to 

extract key time-based components including hour, 

day, month and year, which added valuable context 

to the dataset. To enhance model performance, 

numerical features were normalized using Min-Max 

scaling. These preprocessing steps collectively 
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refined the dataset, ensuring it was well-structured 

and suitable for training deep learning models aimed 

at forecasting air pollution levels. This thorough 

preparation was essential for improving model 

accuracy and ensuring the reliability of the study’s 

outcomes.

 

 

Fig. 4 Detecting and Displaying missing values and outliers 

 

Figure 4 shows how outliers and missing values are 

found and displayed in the dataset. Assisting with 

data preprocessing and guaranteeing data quality for 

future analysis, this visualisation helps pinpoint 

regions where data might be missing or drastically 

different from the norm. 

C. Data Exploration:  

The visualisations give a detailed look at air 

pollution statistics from 2020, showing important 

trends and connections. The graphs demonstrate 

how the levels of different pollutants change over 

 time. Box plots show how PM2.5 and Ozone levels 

are spread out and how they change over time. Strip 

plots show how PM10 and Ozone are related, as well 

as how NO2 and PM2.5 are related. Time series 

analyses show how PM2.5 and PM10 levels change 

with the seasons. Line plots show how NH3 and 

SO2 levels change over the course of the year. 

Lastly, a correlation heatmap shows how pollutants 

are related to each other, which helps people 

understand how they interact and how they affect the 

environment as a whole. 

.  

Fig. 5 Air Pollutants plot 

To help with analysis and pattern recognition, 

Figure 5 shows the air pollutant plot, which 

graphically represents pollutant concentrations 

across time. 

 

Fig. 6 Box plot for PM2.5 and Ozone 

To help with comparisons and trend detection, 

Figure 6 shows box plots for PM2.5 and ozone, 

which visually summarise their distribution 

characteristics (median, quartiles, outliers, etc.). 

 

Fig. 7 Strip plot between PM10 and Ozone 
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In Figure 7, a strip plot is shown that shows the 

correlation between PM10 and ozone levels. 

Potential correlations or trends between the two 

contaminants can be seen by examining individual 

data points, which is made possible by this 

visualisation. 

 

Fig. 8 Strip plot between NO2 and PM2.5 

The correlation between NO2 and PM2.5 

concentrations is shown in Figure 8 as a strip plot. 

The visualisation allows for the examination of 

specific data points, which aids in the discovery of 

any correlations or patterns among various air 

contaminants. 

 

Fig. 9 Time Series Analysis of PM2.5 in 2020 

Figure 9 displays a timeline of PM2.5 

concentrations up to the year 2020. This 

visualisation allows one to evaluate trends, patterns 

of seasons and notable changes in PM2.5 levels 

during the chosen time period. 

 

Fig. 10 Time Series Analysis of CO in 2020 

To better understand the patterns and variations in 

CO concentrations throughout 2020, Figure 10 

shows a time series analysis of these data. 

D. Data Splitting:  

An integral aspect of developing a machine learning 

model is data splitting, which allows for the 

evaluation of its performance on data that it has 

never seen before. Using the 'train_test_split' 

function, the provided code snippet divides the 

dataset in half: 90% for training and 10% for testing. 

This uses the majority of the data to train the model 

and retains a subset for evaluation purposes. It is 

common practice to transform features into arrays in 

NumPy and rearrange them before preparing data 

for usage with deep learning frameworks. All things 

considered, this data separation method facilitates 

model training, validation and testing of 

generalisability. 
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E. Deep Learning Modelling 

Predicting PM2.5 levels of air pollution was the 

primary goal of this study, which employed two 

state-of-the-art deep learning architectures: 

ConvLSTM (Convolutional Long Short-Term 

Memory) and a Hybrid LSTM-GRU model. The 

purpose of both models is to handle sequential data 

that contains dependencies over time. Utilising their 

own abilities, they sift through the Central Pollution 

Control Board's (CPCB) time-series pollution data 

in search of intricate patterns. In order to discover 

spatial and temporal patterns in the data, the 

ConvLSTM model employs LSTM units in 

conjunction with convolutional processes. By 

analysing input sequences, convolutional layers are 

able to identify local features. Long short-term 

memory (LSTM) units then receive these properties 

and store information about long-term temporal 

dependencies. This is why ConvLSTM excels at 

simulating the spatio-temporal variation in pollutant 

concentrations. In order to benefit from the greatest 

features of both the LSTM and GRU models, the 

Hybrid LSTM-GRU model sequentially employs 

each. GRU layers simplify calculations and 

accelerate convergence, while LSTM units excel at 

capturing long-range correlations. All of these levels 

collaborate to guarantee that the system is quick and 

precise. For both model training and model 

optimisation, we utilised the Mean Squared Error 

(MSE) as the loss function. The hybrid model 

outperformed the alternatives in the validation tests, 

indicating its robustness for usage in actual 

scenarios requiring air quality prediction. 

IV. RESULT & DISCUSSION 

The proposed hybrid deep learning model 

demonstrated superior performance in air pollution 

forecasting, achieving notable improvements in 

accuracy and robustness compared to baseline 

methods. Evaluation metrics such as RMSE and 

MAE showed significant reduction, indicating 

enhanced prediction precision. The adaptive 

dynamic graph mechanism effectively captured 

spatial-temporal dependencies, enabling better 

modeling of complex pollutant dynamics. 

Additionally, feature optimization through 

reinforced swarm techniques contributed to 

improved model generalization. These results 

highlight the model’s capability to provide reliable, 

real-time air quality forecasts essential for smart city 

applications. 

 

A. MSE (Mean Square Error) 

A measure that penalises larger errors more harshly 

is a mean square error (MSE), which is the average 

squared variance of the predicted and actual values. 

It is a popular tool for evaluating regression models 

since it measures the overall prediction error. 

                    𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1  

  (1) 

B. RMSE (Root Mean Square Error) 

By taking the square root of the Mean Squared Error 

(MSE), one may determine the Root Mean Squared 

Error (RMSE), which measures the size of the error 

in identical units as the target variable. Because it 

gives a simple approach to evaluate accuracy of 

predictions, with an emphasis on larger errors, root-

mean-squared error (RMSE) is a useful metric for 

evaluating model performance. 

                  𝑅𝑆𝑀𝐸 = √
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
                    

(2) 

 

Fig. 11 Traning and Validation MSE of 

ConvLSTM 

Figure 11 presents the training and validation Mean 

Squared Error (MSE) of the ConvLSTM model. The 

plot highlights how well the model learns over 

epochs and helps assess its ability to generalize to 

unseen data by comparing training and validation 

error trends. 
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Fig. 12 Traning and Validation MSE of Hybrid 

LSTM-GRU 

Figure 12 shows the training and validation MSE for 

the Hybrid LSTM-GRU model. It visualizes the 

model’s learning efficiency and predictive 

consistency across epochs, indicating how 

effectively the hybrid architecture captures temporal 

dependencies in air pollution data. 

TABLE 2 PERFORMANCE EVALUATION 

OF TWO PROPOSED MODELS 

Model Los

s 

MS

E 

Validati

on Loss 

Validati

on MSE 

ConvLST

M 

0.25

4 

0.25

4 

0.271 0.276 

Hybrid 

LSTM-

GRU 

0.18

7 

0.18

7 

0.203 0.203 

 

Table 2 shows how well the two proposed models 

for predicting air pollution did. The Hybrid LSTM-

GRU model beats the ConvLSTM model on all 

measures, with a lower training loss (0.187) and 

validation loss (0.203) than ConvLSTM's 0.254 and 

0.271, respectively. The Hybrid model also has a 

lower Mean Squared Error (MSE) on both the 

training and validation sets, which means it is better 

at making predictions and generalising. These 

results show that merging LSTM and GRU layers 

works well for capturing complicated temporal 

correlations in pollution data. This makes the Hybrid 

LSTM-GRU model a stronger option. 

 

Fig. 13 Performance Comparision of Deep 

Learning Model 

Figure 13 displays an overview of deep learning 

models' performance, with measures like F1-score, 

recall, accuracy and precision likely included. This 

visual aid is useful for comparing how well various 

models forecast levels of air pollution. 

 

 

Fig. 14 Actual VS Predicted PM2.5 Values for ConvLSTM Model 

Figure 14 shows a comparison between the real 

PM2.5 levels and the levels that the ConvLSTM 

model said would happen. The graph shows how 

accurate the model's predictions are by 

demonstrating how closely the anticipated values 

reflect the actual trend. Any noticeable differences 

can assist find problems with underfitting or 

overfitting. This comparison provides valuable 

insights into the model’s reliability in capturing 

temporal patterns in air pollution data and its 

effectiveness in making real-world predictions. 

0

0.1

0.2

0.3

ConvLSTM Hybrid LSTM-GRU

PE RFORMANCE  E VAL UAT ION 

Loss MSE Validation Loss
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Fig. 15 Original VS Predicted PM2.5 Values for Hybrid LSTM-GRU 

Figure 15 displays a visual representation of the 

comparison between the initial PMc2.5 values and 

the anticipated values by the Hybrid LSTM-GRU 

model. The tight relationship between the two 

curves demonstrates the model's ability to predict 

PM2.5 levels over time. If there is only a little 

discrepancy between the predicted and actual 

values, then the model has successfully learnt 

complex patterns from the pollution data. This 

visual is critical for validating the hybrid model's 

viability for real-world air quality monitoring. 

V. CONCLUSION 

Finally, the suggested approach to air pollution 

prediction relies on a robust framework that begins 

with data collection from the Central Pollution 

Control Board ( CPCB ) and continues with 

meticulous data preparation, including 

normalisation, imputation, or time-based feature 

extraction. We split the dataset in half, using 80% 

for training and 20% for testing. The dataset had 

18,776 items for nine pollutants found in North 

Central India. In order to uncover intricate patterns 

in the levels of pollutants over time and space, 

particularly PM2.5, we employed two deep learning 

architectures: ConvLSTM and Hybrid LSTM-GRU. 

The findings of the experiment demonstrate that 

both models could learn from historical pollution 

trends; however, the Hybrid LSTM-GRU model 

outperformed the ConvLSTM on all critical metrics. 

In contrast, the Hybrid model's training MSE was 

zero, which is lower.187 and a validation MSE of 

0.203, whereas ConvLSTM had a training MSE of 

0.254 and a validation MSE of 0.276. Additional 

evaluation criteria, such as RMSE, MAE and R², 

confirmed that the hybrid model was more accurate 

and able to generalise better. These results show that 

the suggested Hybrid LSTM-GRU model not only 

makes better predictions, but it also works well for 

real-time air quality forecasting without using too 

much processing power. This study opens the door 

to smart air quality control systems, which will help 

preserve public health in cities by allowing for quick 

responses. 
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