

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 785

Architectural Patterns for Migrating WCF-Based Systems to

RESTful Microservices on .NET

Venkatesh Muniyandi

Submitted: 01/07/2023 Revised: 07/08/2023 Accepted: 15/08/2023

Abstract: Migrating legacy Windows Communication Foundation (WCF) systems to RESTful microservices on the .NET

platform presents significant architectural and technical challenges. The paper compares the issues faced by WCF with those

addressed by design principles of microservices. Our approach recommends specific architectural designs suitable for

incremental migration, with new approaches for turning service contracts and simulating session states from old systems.

Such patterns are fully available in .NET through the .NET implementation framework that leverages ASP.NET Core and

gRPC. Many industry case studies support the conclusion that scaling, maintaining and deploying systems are now less

challenging and more agile. Our conclusions give useful directions to teams striving to update traditional software whilst

avoiding risks and major disruptions.

Keywords: WCF migration, RESTful micro services, .NET, architectural patterns, legacy modernization

1. Introduction

Over the last few years, more enterprises have

made cloud computing a central part of their IT

systems, allowing them to move old applications to

cloud infrastructure. In a number of industries,

WCF-based applications are still important because

they are strong and fit nicely into old enterprise

systems (Kratzke & Quint, 2017). But since cloud-

native and microservices are becoming more

popular, lots of organizations are required to move

their WCF-based applications to solutions that

scale and work better. Organizations need to make

this move to take advantage of modern cloud

services from Microsoft Azure, AWS and Google

Cloud, all of which work well with microservices

architecture (Silva et al., 2023). That is why there is

now a strong effort to bring legacy systems up to

date and match them with cloud-native design, as

these approaches provide flexibility, reliability and

simple scalability.

Moving WCF-based systems to RESTful

microservices on the .NET platform introduces

many different challenges for both architecture and

technical aspects. Mainly developed for SOAs,

WCF relies on a close relationship between

services, SOAP protocol, session information

management and messages sent at the same time

(Balalaie et al., 2015). By comparison, RESTful

microservices are stateless, lightweight and prefer

asynchronous interactions, so their use requires

major rethinking of system design and

communication methods. In migrating,

infrastructure can suffer from performance delays,

the inability to support future growth and

challenges blending with other systems which all

should be resolved during the architectural

transition.

Some strategies exist for moving traditional

applications to microservices (Pahl & Jamshidi,

2016), but only a small number handle the unique

problems related to migrating applications

developed using WCF to RESTful services. It is

challenging to integrate service contracts used by

WCF with the main ideas of RESTful principles,

especially because WCF offers custom state and

security features. Current methods for migrating

systems commonly ignore the requirements of

WCF applications for service size, converting

messages and migration done in steps (Patel &

Sharma, 2023). This work offers new patterns that

address these challenges and introduces a method

for making choices on the most efficient way to

move certain parts of a WCF system. It both deals

with technical problems and offers a method for

picking the right design patterns based on a
Affiliation: Independent Researcher, Country: Houston,

USA, Role: Technical Architect

Email: venky.m@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 786

system’s needs, business sense and the risk

involved.

The purpose of this paper is to introduce and

analyze new patterns to guide the move from WCF

to RESTful microservices in .NET. It covers

locating main issues during migration, finding

useful ways to enhance service contracts, deal with

legacy session management and secure

microservices and checking the solutions by

running real-life case studies. Furthermore, the

paper hopes to give practitioners a tool to help

them find the optimal migration approach for their

particular legacy WCF applications. This paper

introduces: (1) special methods for migrating from

WCF to REST, (2) their assessment in actual WCF-

to-REST case studies and (3) a complete

framework for making migration choices.

In order to verify the proposed approach and

movements, this study uses a mix of interviewing

experts and analyzing the outcomes of case

examples. Yin (1994) shows that case study

research can help us examine how WCF legacy

systems are moved to microservices by observing

numerous real-life scenarios. By reviewing

responses from developers and architects and by

looking at data on how the systems perform, scale

and work, the study provides a strong assessment

of the suggested approaches.

2. Related Work

For years, WCF has been an important technology

for building large-scale applications because it

allows for building distributed systems easily.

WCF systems use SOA to allow components to talk

to one another by following the rules in service

contracts that outline actions and formats. WCF is

mainly known for allowing various communication

methods such as SOAP and REST and for handling

diverse service configurations (Chakravarthy,

2013). Still, WCF makes it challenging by creating

tight dependences, requiring session handling and

sticking to SOAP which slows the adoption of

these applications in modern cloud-native

structures. Because WCF is difficult to change and

can be complex, microservices setups are

challenging to implement. They should be handled

correctly during migration, as they shape the design

of the new system.

Microservices make it easier to build systems that

are spread out across different parts, unlike WCF.

Within .NET, RESTful microservices are a good

choice because they work without saving state and

use asynchronous communication helps manage

large loads of traffic (Newman, 2015). After the

introduction of .NET Core and ASP.NET Core,

microservices have gained wider adoption in the

.NET world. As a result of these technologies,

developers can take apart a single monolithic

application into independent services that can be

added or removed as needed. Switching to RESTful

microservices breaks away from WCF mainly in

the ways it manages data, handles security and

connects different services. As they move away

from WCF towards microservices, businesses must

make sure the new microservice structure works

with their previous systems. Because of new .NET

features, gRPC and better container support, it is

now simpler to replace old systems with modern

and flexible solutions (Johnson & Lee, 2023).

Many methods for updating legacy WCF

applications to new architectures have been

presented. Jamshidi et al. (2016) recommend using

several architectural patterns which help with the

transition while highlighting how working in

different phases helps to protect the service and

lower risks. Most often, teams practice Strangler

Fig Pattern in which older code is gradually

replaced by new microservices. Using this

approach, the possibility of disruption is less likely

since key old operations are maintained as the

system progresses. In a similar way, Menychtas et

al. (2014) present a detailed way to modernize

software that includes strategies for codification

such as upgrading old applications into cloud-

native services. Such migration concepts rarely

focus on dealing with the particular challenges in

WCF to microservices around changing service

contracts, managing client state and communication

between services.

Although many studies exist on migration patterns,

these have not been widely used in WCF-based

systems. Pahl and Jamshidi (2016) develop a set of

migration patterns that fit with legacy systems.

However, these patterns do not concentrate on the

architecture of WCF. Because there are special

technical challenges with WCF to REST

conversion, this gap is very important during WCF

to microservices migration. Tran and Nguyen go on

to describe how well-known patterns, like API

Gateway and Anti-Corruption Layer, can be

adjusted for using WCF-to-REST migration. They

point out that these practices are useful in most

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 787

cases, but may not work well with WCF’s many

complex features which need to be translated

specifically to follow REST.

More tools and frameworks in .NET now support

the use of microservices. The current versions of

.NET 5+ and .NET 7 have significantly improved

matters of speed, handling of lots of users and

cross-platform access (Microsoft Research, 2023).

Such progress greatly helps organizations

transferring WCF systems to the cloud, as it

supports mixing new cloud-based architectures

with their existing .NET programmes. The authors

state that the improved ASP.NET Core and the

introduction of gRPC in .NET enable developers to

construct microservices that are both fast and can

grow as needed. Implementing Docker and

Kubernetes containerization technologies within

the .NET world has made it simpler to deploy and

run microservices, helping deal with many of the

challenges that come up during migration. Because

of these trends, it is now possible to move

migration projects forward and lower the workload

required to modernize obsolete systems.

While there is a lot of research about cloud

migration and using microservices, few studies

look at migrating WCF systems. Programmes and

patterns followed for migration usually ignore the

special requirements presented by WCF such as

challenging service designs, managing service

sessions and communication using SOAP. In

addition, even though microservices architectures

are popular to research, not many works have dealt

with turning WCF systems into RESTful

microservices in the .NET environment. The

purpose of this paper is to solve a major issue in

software architecture by introducing new

architectural patterns and a decision framework

targeted at moving WCF systems to RESTful

microservices using .NET.

Table 1: Taxonomy of Migration Patterns and Their Applicability to WCF Migration

Migration Pattern Description Applicability to WCF Migration

Strangler Fig Pattern

Gradual replacement of legacy

functionality with new

microservices.

Allows WCF services to coexist with microservices

during migration, reducing risk and ensuring

business continuity. Suitable for large-scale WCF

systems with minimal disruption.

Service Contract

Transformation Pattern

Mapping SOAP-based service

contracts to RESTful API

specifications (e.g., OpenAPI).

Essential for transforming WCF’s tightly coupled

service contracts into flexible RESTful APIs,

ensuring smooth transition from SOAP to OpenAPI

formats.

Incremental Migration

Incrementally refactor and

replace legacy components

with microservices over time.

WCF services can be incrementally replaced with

microservices, allowing gradual adaptation of

legacy systems without a complete system

overhaul.

API Gateway Pattern

Centralized entry point for

managing all client requests to

microservices.

Facilitates integration between legacy WCF

services and newly developed microservices,

ensuring controlled access to both types of

services.

Anti-Corruption Layer

(ACL)

Isolates the legacy system

from the new system,

preventing direct integration.

Protects the new microservices architecture from

the complexities and limitations of legacy WCF

systems by acting as a buffer and ensuring clean

service boundaries.

Event-Driven

Architecture

Uses asynchronous messaging

and events for communication

between services.

Enables asynchronous communication between

WCF services and microservices, facilitating

decoupling and improving system resilience.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 788

Migration Pattern Description Applicability to WCF Migration

Resilience Patterns

(Circuit Breaker, Retry,

Timeout)

Patterns that ensure system

reliability by handling service

failures, retries, and timeouts.

Ensures that the new microservices architecture is

resilient to potential failures during the migration

from WCF, maintaining service availability and

reducing downtime.

Anti-Pattern: Big Bang

Migration

Replacing the entire system at

once without incremental

transition.

Typically discouraged for WCF migration due to

high risk and potential for significant service

disruption.

Domain-Driven Design

(DDD)

Design microservices around

business domains to ensure

service autonomy.

Helps in defining clear service boundaries and

aligning microservices with business capabilities,

addressing the challenge of service granularity

during migration.

This table provides a structured overview of key

migration patterns, outlining their descriptions and

specific relevance to the migration process from

WCF to RESTful microservices. It ensures that the

transition is managed incrementally, while

addressing technical and operational challenges

unique to legacy WCF systems.

3. Research Methodology

A mix of a literature review, interviews and case

studies are used in this study to examine the

migration of WCF-based systems to RESTful

microservices written on .NET. The main purpose

of the literature review is to highlight major

obstacles, existing designs and regular industry

actions (Henderson-Sellers et al., 2014). By

combining past studies, this approach provides a

broad insight into the area and points out things not

studied yet which this work focuses on.

Experienced professionals are interviewed to get

observations on the challenges and successful

approaches of moving to microservices using

Windows Communication Foundation. Moreover,

real-world case studies from different organizations

are examined to determine if the suggested

migration processes work, helping to make the

theoretical framework from the literature review

more useful [Yin, 1994].

Architecture patterns chosen during the migration

of WCF systems to microservices are assessed for

effectiveness, scalability and how easy they are to

maintain. With these factors in mind, suitable

migration approaches can be picked and it is easier

to see if the chosen models suit both the present

system and the new architecture (Balalaie et al.,

2016).

Both qualitative and quantitative methods are used

for data collection. Insights about WCF migrations

were gathered through expert interviews with

individuals who have firsthand experience with the

work. These interviews are first transcribed and

then studied through qualitative content analysis

which helps notice critical themes and recurrent

patterns (Corbin & Strauss, 1990). The data is

collected by testing both the pre-and post-migration

performances of the case study systems,

specifically by measuring time and error levels

during operation. The effectiveness of switching to

the WCF model is assessed by analyzing the

performance of WCF systems against

microservices-based systems using statistics. The

chosen architectural patterns and decision

framework are examined using both quantity-based

and quality-based assessment methods. The method

measures system performance, how it scales and

how reliable it is, both before and after the

migration. Examples of these metrics are how

quickly responses occur, how much downtime the

system experiences, transaction processing speed

and availability. Comparing these metrics is used to

feel whether there are real improvements after

moving to microservices. Qualitatively, migration

effectiveness is determined by assessing the

feedback of the people working in the case studies

on development, architectural and operations

aspects.

This research places a lot of importance on ethics,

especially in making sure confidentiality and

transparency are maintained during expert

interviews and case studies. The study makes sure

to tell everyone in the research the purpose of the

study and get their agreement to participate before

any data is collected. Organizational data discussed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 789

in case studies is held in confidence and the people

taking part remain anonymous. We should also

recognize that the results here are limited. Not

every WCF system can use the case study

outcomes, since each migration case is different

and has special limitations. In addition, how well

the migration works is determined by the

organization’s context such as IT capabilities, the

level of resources available and how large the

migration is. Still, the study gives good ideas about

migrating from WCF to microservices which helps

build a stronger foundation for future research.

4. Legacy WCF System Architectural Analysis

WCF relies on a powerful service-oriented

architecture (SOA), where service contracts set out

what actions can be used by entities outside the

service. A WCF service’s work is defined by its

service contract, including the available methods

and their data exchange styles. Most of these

contracts are described in IDL and very closely tied

to the communication protocols they use, for

instance SOAP or HTTP (Chakravarthy, 2013).

When SOAP is used in WCF, messages transfer

reliably across platforms in a set up for complex

data and many types of communication. While

monolith architecture preserves strong reliability

and security, it becomes tricky to make the

architecture flexible and scalable ahead of moving

to microservices. It is hard for WCF systems to

shift to a simple and flexible RESTful service

model because service contracts are so tightly tied

to the older SOAP model.

Certain WCF service operations depend on using

stateful communication. With WCF, services are

able to keep session information for each client,

making it easier when operations need to be

connected together. The problem is, when moving

to RESTful microservices, where stateless

interactions are preferred, stateful behavior can

often get in the way (Chakravarthy, 2013;

Newman, 2015). RESTful designs rely on

statelessness to make services simpler to scale,

survive faults and remain resilient. The biggest

difficulty is moving from a WCF model where data

is held by the server for each user session, to a

RESTful model that has the client send the needed

data with each request. So, when making such a

shift, it’s important to add strategies that support

the user session carefully, ensuring the design

follows the principles of REST. The task of

technical migration is made tricky by the need to

deal with session management even if there is no

central state.

WCF has detailed security capabilities such as

handling message security, transport security and

authenticating users. WCF’s service-oriented

architecture gives good security because it allows

for safe message encryption and signing,

authentication via usernames and certificates and

other security features like WS-Secure. Because of

this, sensitive data applications in businesses

greatly value these features. As we move to

RESTful microservices, we need to change how we

handle security to support the lightweight and

stateless nature that REST offers. OAuth2 and JWT

are enough for authentication and authorization

with RESTful services, though replicating the level

of security found in WCF across various

microservices isn’t simple. Ensuring that

communication through microservices is safe and

still fits within the overall simplified security

architecture is not easy. We need to figure out how

security, encrypting data and authentication will

change in a distributed, stateless fashion and how

to build these features onto our .NET microservice

foundation.

A major issue in moving to microservices with

WCF is figuring out how to handle old conations to

data that influence the system’s structure. WCF

applications frequently depend on data models that

are very closely linked, so the service contracts

match the data layout. Since data and service logic

are so closely linked, making microservices based

on separation is quite complicated. In order to

move to microservices, a single database is

typically broken apart and each area gets its own

data store that matches the boundaries of the

microservices (Jamshidi, et al., 2013). As a result,

there may be problems such as establishing an

identical data set, maintaining uniform data

processes and figuring out how to control

information that is distributed. Often, traditional

data models are not in line with the standards of

domain-driven design which usually helps

determine how microservices are formed.

Therefore, it is important to devise strategies for

moving data carefully, so that neither the data nor

the whole system is affected during the switch to

microservices.

Since WCF is a strongly coupled and massive

architecture, it creates several issues when trying to

migrate to a new platform. Modern cloud-native

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 790

environments and the flexibility of microservices

were never part of what these systems were made

for. One of the main issues, as Silva et al. (2023)

stress, is that service logic is tied to communication

protocols, so it is difficult to change from SOAP to

a RESTful, lightweight model. Using a central

service infrastructure like WCF is at odds with

microservices, whose goal is to be organized into

independent groups. For this reason, the system’s

architecture must be reconsidered by separating key

services, fixing lines between services and

managing consistency and fault tolerance in a

connected environment. Dealing with these

constraints means companies need to go slowly and

pay careful attention, breaking apart the parts of the

legacy system to preserve their functions and keep

risks low.

5. Architectural Challenges in Migrating to

RESTful Microservices

When organizations move from monolithic or

service-oriented systems to RESTful microservices,

there are several challenges that should be dealt

with one at a time for the system to keep evolving.

The way systems exchange information must now

adapt from SOAP to the stateless and resource-

focused format of REST (Lewis & Fowler, 2014).

The change applies not only to syntax but also to

how services handle and communicate

functionality between different parts. Along with

this is the concern of how different services are

divided. In order to follow bounded contexts using

domain-driven design, service boundaries need to

match and this can demand breaking apart tightly

coupled business logic in older systems (Evans,

2004; Newman, 2015). RESTful microservices are

designed to run without persistent session state

which means special effort is needed to handle user

sessions and do transactions consistently (Newman,

2015; Kumar & Singh, 2024). Since the

environment of IT is changing, security solutions

must also adapt. Because central security controls

cannot work well in API-driven microservices,

there is now a switch to using token-based and

service security for authenticating (Kumar &

Singh, 2024). Additionally, new problems come

up: managing performance and the ability to grow;

microservices have to account for the extra costs of

communication between modules, as poor design in

this area can make modularization useless (Balalaie

et al., 2015). Additionally, putting old data into a

microservices setup brings issues of ownership

being broken up and difficulty in keeping

information in sync. It is hard to keep systems

stable and fast while separating any shared data

sources without careful preparation (Jamshidi et al.,

2013). As a result of these problems, we should

consider implementing microservices as a major

architectural change, not just a basic technical

upgrade.

6. Proposed Architectural Patterns for

Migration

Any migration from legacy WCF to RESTful

microservices must involve rethinking well-

established architectural designs. Jamshidi et al.

(2016) describe the Strangler Fig Pattern which

helps organisations remove and replace old

software section by section to preserve the main

features. With this approach, a company’s legacy

platform can peacefully mix with microservices

during its gradual switchover. In much the same

way, Balalaie et al. (2016) underscore that API

Gateways and Anti-Corruption Layers play

important roles in connecting older systems and

current microservices over challenges associated

with communicating and integrating them. Such

patterns let new services connect with old parts of

the system without changing the core functionality,

so the system always has a stable connation

between its new and old structures.

Fowler’s (2004) proposed Strangler Fig Pattern is a

great strategy for converting systems built on WCF

to RESTful microservices. The strategy supports

adding new microservices to the system little by

little, with ministeps, so both the legacy and new

systems work together during the migration.

Following this strategy means that the

organization’s workflows are minimally affected

and the risk involved is lower because the transition

happens one small step at a time. According to

Patel and Sharma (2023), using the Strangler Fig

Pattern during cloud migration makes it easy to

update the system architecture by building on

existing infrastructure one step at a time.

Organizations can use this approach to move their

WCF-based services step by step, verifying each bit

as it changes to microservices, so the migration is

well-controlled and smooth.

Because of WCF, integration is essential and

during migration, the use of API Gateway and ACL

ensures that the WCF parts and new microservices

can be linked easily. Both client interaction with

the system and scalability are improved because the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 791

API Gateway lets the system receive requests from

all clients and organizes them, distributing to the

exact microservice required (Balalaie et al., 2016).

The Anti-Corruption Layer serves to block legacy

systems from influencing the way microservices

are organized. Since the new system has an ACL, it

can function on its own and minimize problems

caused by the complexities in the WCF-based

legacy system. Both methods make sure the

migration does not disrupt the system and that old

and new services interact as little as possible.

System reliability and fault tolerance should be

prioritized in microservices, as they are needed

during the change from old WCF systems. We

believe that applying the Circuit Breaker, Retry and

Timeout patterns can help handle failures and

preserve service availability. By using the Circuit

Breaker design, we can delay further problems in a

cascade if a service fails, giving it time to recover

without affecting the rest of the system (as

described by Nygard, 2007). Since there may be

network or service disruptions during the transition,

the retry pattern automatically recovers from

service failures.

This paper proposes the Pattern Selection

Framework which outlines how practitioners can

choose the appropriate patterns using details about

a legacy system’s size, the complexity of its

services and the organization’s business goals.

With this framework, you look at tech boundaries,

the resources you can use and how risky different

approaches are and then use it to guide your

organization toward its aims. With this framework,

anyone working with WCF systems can make sure

their migration strategy fits the organization’s

unique needs, making it more likely for the change

to microservices to succeed.

Figure 1: UML Diagram Illustrating Proposed Architectural Patterns

Table 2: Architectural Patterns Catalog with Use Cases and Benefits

Pattern Use Case Benefits

Strangler Fig Pattern
Gradual replacement of legacy system by

incrementally migrating functionalities.

- Allows safe and incremental

migration.

- Reduces risk by isolating parts of

legacy system.

- Gradual system modernization.

Service Contract Transitioning from old protocols (e.g., SOAP) to - Enables seamless protocol

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 792

Pattern Use Case Benefits

Transformation modern standards (e.g., OpenAPI, REST). migration.

- Ensures compatibility with new

systems.

- Minimizes service disruptions.

API Gateway
Managing and routing API calls to multiple

backend services, particularly for microservices.

- Centralizes API management.

- Improves scalability and security.

- Simplifies routing and load

balancing.

Session Emulation
Maintaining state in stateless environments (e.g.,

for services transitioning to microservices).

- Supports migration to stateless

architectures.

- Enhances system scalability.

- Reduces dependency on legacy

session management.

Anti-Corruption

Layer (ACL)

Protecting new services from legacy system

complexities and inconsistencies.

- Isolates legacy systems.

- Prevents new system from being

negatively impacted by legacy

design.

- Ensures cleaner integration

between new and old systems.

Resilience Patterns

Designing systems to handle failures and recover

gracefully, often through retries, circuit breakers,

and fallbacks.

- Enhances system reliability.

- Provides fault tolerance.

- Improves user experience even

during system failures.

This table provides an overview of the key

architectural patterns used for migration and

modernization, their specific use cases, and the

benefits they bring to the system.

7. Implementation Framework on .NET

Successfully changing WCF systems to

microservices is made possible by using the

strongest features of the new .NET framework.

Specifically, Microservices on .NET can now be

built easily using ASP.NET Core and Minimal

APIs. The framework ASP.NET Core, designed to

be used on multiple platforms, supports making

scalable web applications and services and provides

the basics for developing microservices that are

efficient and easy to put into action (Johnson &

Lee, 2023). Thanks to Minimal APIs in .NET 6 and

7, you can write microservices more easily and

quickly, without having to add much boilerplate

code. One more key technology I want to mention

is gRPC, as it is now recognized as a high-speed

communication option for microservices, especially

for when speed and efficiency matter the most

within a company (Microsoft Research, 2023).

With these new .NET features, organizations can

make certain their migrated microservices are

running effectively and are still enhanced for

optimal performance and scaling, compared to the

same size WCF systems.

To successfully change over from WCF to

RESTful microservices, it is important to have

support from various tools. Scaffolding, code

analyzers and migration assistants are essential for

making the process of moving the code much

quicker. The scaffolding feature in .NET Core

allows developers to quickly make code templates

for controllers, APIs and services, avoiding errors

and ensuring all microservices stay consistent

(Johnson & Lee, 2023). Because legacy WCF

systems can have problems with code, security and

performance, code analyzers help find such issues

during migration. It is very helpful to use these

tools when you want to adapt a WCF service

contract to suit RESTful microservice standards.

They are also important because they show how to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 793

take existing WCF services and turn them into

microservices, automate the process of mapping

SOAP to OpenAPI and manage session state in a

new stateless programme. Thanks to these tools,

teams working on development can migrate old

software with much less risk of mistakes.

For microservices on .NET, it’s important to use

industry best practices to ensure that the structure

remains strong, grows when needed and is easy to

manage. Domain-Driven Design (DDD) is

considered a major best practice because it makes

sure services are clearly divided based on their role

in the business (Newman, 2015). Setting up

microservices in this way makes sure developers

can avoid problems caused by dependencies and

focus every microservice on its own work, helping

it be properly managed and scaled. Decentralized

data management stands out as a good technique,

since we do not have one central database that all

components share. Having its own database allows

each service to work faster and helps them change

independently (Pautasso et al., 2017, p. 14). To be

sure, if APIs are created at the beginning of

development, microservices are able to connect

easily and any deviation from specified APIs such

as OpenAPI can be prevented. Practicing these best

methods allows businesses to design a

microservices architecture suitable for their

business and technology which ensures their

architecture remains sustainable.

Quality and dependability of microservices depend

highly on thorough testing. To move WCF-based

systems to microservices, you must use contract

and integration testing. By means of contract

testing, you make sure that various services work

together according to the defined structure, actions

and error management approach. It becomes

essential when you switch from SOAP-based WCF

to RESTful APIs, because mismatches in how

messages are built can cause the service to fail.

Integration testing makes sure that microservices

can function and interact with each other properly

in practical use cases (e.g., sharing data, connecting

to a database and handling external conations)

(Humble & Farley, 2010). Thankfully, using these

testing strategies helps maintain system reliability

as the new architecture is updated. When adopting

these test methods at the start of the migration,

organizations lower the chance of compatibility

issues between services and can validate the

microservices.

Automating the way microservices are moved and

deployed depends on the use of both Continuous

Integration (CI) and Continuous Deployment (CD)

pipelines. When CI/CD pipelines are used during

migration, development teams avoid possible errors

and can work faster by having code changes tested

and deployed quickly. Applying DevOps practises

encourages developers and operators to cooperate,

guaranteeing that deploying microservices is easy

and effective (as explained by Bass et al., 2015).

Thanks to CI/CD pipelines, setting up code,

organizing systems, checking performance and

introducing microservices to production is

streamlined and constant. The authors point out that

using DevOps allows organizations to automate

tasks, maintain high quality and get real-time

updates on the progress of migration. Because of

these practices, deploying microservices becomes

smooth and easy and they can be upgraded at any

time, improving how the business operates.

8. Empirical Validation and Case Studies

To validate the proposed architectural patterns and

migration framework, this study draws on multiple

case studies across diverse industries, such as

finance, healthcare, and retail. They help explain

what actually happens in real life when businesses

migrate their WCF systems to microservices. Yin

(1994) points out those complex events are best

studied using case studies which are why this

approach is taken here too. The chosen cases had

importance for WCF migration issues and

represented a range of ecosystems in which the

systems are used. Using case studies gives us the

ability to assess the suggested patterns in a wide

range of organizations and programming types.

Likewise, Silva et al. (2023) point out that

conducting multi-case studies helps reveal

differences in practices and results in software

engineering. Because of this diversity, results can

be relied upon for industries outside the case study.

Most of these analyzed WCF systems were built

based on SOA and relied on SOAP for

communications, connecting the enterprise’s data

and application tiers. Because services in these

systems included both business and data

management, it was hard for them to expand and be

taken care of properly. In his chapter

(Chakravarthy, 2013), he observes that such high-

coupling architectures are especially hard to modify

when using microservices. The major goals for

these migrations were higher scalability, more

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 794

flexibility and stronger fault tolerance. Besides, by

using microservices, organizations were able to

deal more easily with technical debt and improve

their development speed, since monolithic WCF

systems did not support this efficiently. As

Menychtas et al. explain in 2014, most companies

seek to change their old systems without disrupting

the business’s core practices.

Each of the case studies used the architectural

patterns proposed in this paper to guide how the

migration was done. We applied the Service

Contract Transformation Pattern to convert WCF

SOAP migrations to OpenAPI formats and the

Legacy Session State Emulation Pattern to solve

the issue of WCF’s statefulness. This pattern was

also included to transition from WCF services to

microservices in a way that interrupted services as

little as possible (Jamshidi et al., 2016). The use of

these patterns was closely reviewed and the entire

migration was broken down into several distinct

phases. Because of the API Gateways and Anti-

Corruption Layers, the microservices could work

with the old system without introducing much

hassle. Using these frameworks, every organization

was able to make the move step by step, allowing

both recent and older systems to work together.

To assess the performances and scalability of the

migrated systems, we checked system response

time, throughput and fault tolerance using numbers.

All cases had comparison tests for performance

before and after migration which showed how

migration influenced essential operational

measures. Balalaie et al. (2015) point out that

checking how microservices perform and scale is

essential for deciding if a migration will be

successful. All of these metrics were examined by

testing each environment, considering things like

delays in the network, the number of processes on

the system and the amount of time taken for

requests to complete. The system’s ability to

recover from both service and network failures was

also considered as part of testing fault tolerance.

According to Patel and Sharma (2023), there exists

a helpful method for assessing how fault tolerant

microservices are, specifically in dialogue with

legacy migrations and we applied their method to

study the case studies.

Apart from the numerical results, data was gathered

from developers, architects and operations by

interviewing and asking for their input. The

insights allow us to see both the difficulties and the

advantages of using microservices instead of WCF.

The authors Corbin and Strauss (1990) express that

to understand the feelings and views of individuals

in technical projects, you need qualitative research.

Key problems that surfaced from the feedback

included changing old systems to work with

RESTful APIs, coordinating data across many

services and making sure knowledge is constantly

shared. Still, developers say they saw great changes

in how quickly they could deploy and maintain the

system once everything was migrated. When these

insights were applied, the migration and its

architectural models were aligned with how the

teams needed and hoped to use them.

The testing revealed that migrated microservices

were better able to scale up and handle failures than

legacy WCF systems. Responses were sped up by

nearly 40% and being able to grow services

independently helped organizations better deal with

increased workload. Because of microservices,

updates and patches could be done more quickly, as

only the affected service had to be changed. The

results also showed that people were more satisfied

with the performance because things responded

faster and more efficiently.

From the testing, several useful lessons were

learned and the project pointed out key

architectural implications for migrations to follow.

A main realization was that changing systems

gradually allowed for a more effective and safer

experience. In addition, the case studies showed

that setting clear boundaries and dividing data are

necessary to prevent problems with consistency and

services that depend on each other. In addition,

developers and architects recommended that both

contract testing and integration testing were

important in ensuring the movement of WCF

services to microservices was done right. The

insights gained here guide current migration

choices in WCF-based organizations and show

other organizations how they can adapt to cloud-

native solutions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 795

Figure 2: Performance Comparison Chart Pre- and Post-Migration

Table 3: Qualitative Feedback Summary from Stakeholders

Stakeholder Feedback Focus Key Insights Challenges Identified

Developers
Service Contract

Transformation

Positive response to Service Contract

Transformation Pattern. The transition

from SOAP to OpenAPI was mostly

smooth but required careful attention to

data types and method signatures.

Difficulty in adapting to the

stateless nature of REST.

Service contract transformation

was time-consuming for

complex WCF contracts.

System

Architects

Architectural

Patterns &

Incremental

Migration

The Strangler Fig Pattern was

appreciated for its ability to reduce risk

and allow for incremental migration. It

was noted that having WCF services and

microservices run simultaneously was

beneficial.

Concerns over the long

migration timeline. Balancing

legacy system integration with

new microservices presented

some complexities.

Operations

Teams

Deployment &

Monitoring

Adoption of API Gateway and Anti-

Corruption Layer greatly simplified

monitoring and managing traffic between

WCF and microservices. The migration

improved overall scalability.

Issues with initial service

discovery and traffic routing

between legacy and

microservices during the early

stages of migration.

Business

Analysts

Business

Continuity &

Process Alignment

The incremental approach ensured that

business operations remained

uninterrupted, allowing critical systems to

keep running.

Required ongoing coordination

to align new services with

existing business processes,

ensuring no disruption to

ongoing operations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 796

Stakeholder Feedback Focus Key Insights Challenges Identified

QA &

Testing

Teams

Testing &

Validation

Successful use of Contract Testing and

Integration Testing ensured that the

migrated services performed as expected,

with fewer integration issues post-

migration.

Testing RESTful services

required new tools and

methodologies. Simulating

legacy state behavior for testing

was challenging.

IT Managers

Skill Development

& Resource

Allocation

Training for developers and operations

teams was necessary, especially for new

technologies like gRPC, Kubernetes, and

gRPC.

Upskilling costs and resource

allocation for the migration

were significant. Training new

team members in microservices

was time-intensive.

This table summarizes the qualitative feedback

received from various stakeholders, such as

developers, system architects, operations teams,

and business analysts, who were directly involved

in the WCF-to-microservices migration process.

9. Discussion

Architectural patterns suggested for moving WCF-

based systems to RESTful microservices have both

benefits and disadvantages. Thanks to the Strangler

Fig Pattern, organizations move systems over

gradually, so that no sudden disruptions take place

and microservices are gradually added (Balalaie et

al., 2016). Approaching IT this way keeps

organizations working smoothly as they update

their systems, so major downtime is less likely. The

Service Contract Transformation pattern allows for

easy conversion of WCF’s SOAP-based service

contracts into OpenAPI, simplifying the use of

RESTful APIs and supporting microservices

architecture that matches modern industry rules

(Newman, 2015). Even so, these advantages have

some drawbacks. As an example, the Legacy

Session State Emulation Pattern handles the switch

from using WCF services that keep state to using

REST services that don’t keep state. This adds

complexity to handling session data when services

are separated across servers. While certain patterns

can provide effective answers to migration,

organizations need to consider their detailed needs

and use the strategies that fit best for their system.

Changing from WCF to microservices greatly

affects the skill set required of both development

and operation teams. It is common for WCF-based

systems to need a strong grasp of SOA and SOAP,

technologies not typically used for microservices.

Those adopting microservices must know how to

build RESTful APIs, run applications in containers

and use orchestration tools like Docker and

Kubernetes, along with new technologies gRPC

and minimal APIs (Bass et al., 2015). Because of

this change, development teams have to learn new

skills and gain more training. Furthermore, teams

handling operations should understand CI/CD

pipelines, automated testing and DevOps, so they

can manage the microservices after deploying them

well. Switching from WCF to a microservices

approach means teams must adapt their dynamics,

since microservices are managed by individual

groups instead of being controlled by one central

team. For this reason, businesses may have to

organize training for their staff and possibly add

new people with suitable knowledge which can be

time-consuming and costly.

Since most WCF systems use a single database,

each service is bound tightly to the data, limiting

their flexibility. Moving to microservices means

you must break up the central database into

smaller, category-based data stores and this

introduces issues with keeping data consistent,

duplicate data and eventual agreement among data

stores (Jamshidi et al., 2013). This and other

migration approaches solve these problems using

caching and synchronising data, but can also

increase the difficulty in managing data in a

distributed system. To move to a microservices

architecture, companies should take time to plan

how they will migrate data, break apart data

models, put events at the core and enable each

microservice to work independently. Along with

the technical work, there must be careful planning

for how data will be controlled, secured and

accessed, since this can become a time-consuming

task for major migrations.

Although the architectural patterns given are

helpful for migrating WCF to microservices, their

usefulness has its limits. The usage of the Legacy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 797

Session State Emulation Pattern is a major problem

because it is not always applicable to different

systems. Often, managing the data for

microservices is not as easy as converting legacy

WCF session management, causing both additional

problems and potential decreases in performance

(Silva et al., 2023). Because the Strangler Fig

Pattern mixes new and old systems, it is essential to

handle both types throughout the migration which

may lengthen how long the process takes and

increase the resources needed. If organisations use

highly integrated WCF systems, this new strategy

could lead to several operational difficulties.

Additionally, how well these patterns work relies

on the system the organisation has in place and the

requirements of the microservices being built.

Sometimes, following these patterns leads to extra

complications, especially if only a small number of

microservices are being migrated. For this reason,

the fit of patterns should be assessed by considering

the special needs and aspects of the migration.

In the future, there are opportunities to better both

the proposed architectural patterns and the

migration framework. A potential direction is to

create automatic tools that help change legacy

WCF services into RESTful microservices. With

these tools, some tasks in the migration could be

automated, including mapping WCF services to

OpenAPI and adjusting session state transitions.

Furthermore, having AI in the planning tools can

guide the best migrating patterns by examining

system issues which would aid the migration

without as much manual input by people (Patel &

Sharma, 2023). If microservices keep improving,

more research on how server less computing fits

into the picture could help decrease operational

costs and increase scalability. Future steps in WCF-

to-microservices migration might include better

tools for handling distributed data and stateful

services, as this is a main issue explored in this

report. The authors Chen and Garcia predict that by

2024, with advances in cloud systems and container

technology, there will be sharper integration of

microservices and edge computing with multi-

cloud setups, generating improved ways to plan

migrations.

10. Conclusion and Future Work

The paper looks at migrating WCF-based

applications to microservices in .NET,

recommending specific architectural patterns and a

framework that can solve the issues found in such

transitions. A major benefit of this research is

introducing the Service Contract Transformation

Pattern to help services transition from SOAP to

OpenAPI and remain compatible with RESTful

services. The Legacy Session State Emulation

Pattern was introduced to solve the problem of how

legacy WCF services with state can be moved to a

microservices model where all calls are stateless,

by handling the storage of state data used in

sessions. In addition, the paper emphasizes that

applying the Strangler Fig Pattern can help

incrementally change services in a way that causes

less trouble. Various real-life examples were

examined, revealing that the patterns suggested fit

the needs of scalability, flexibility and fault

tolerance in the new microservices approach. All of

these solutions give organizations a solid set of

tools to move their old systems to microservices

safely and with minimal service interruptions.

For industry professionals, this paper provides a set

of practices that support the migration of WCF

systems to microservices. It is better to use a

gradual, step-by-step approach, for instance the

Strangler Fig Pattern, so the business will keep

running smoothly. When switching to a RESTful

architecture, it is especially important to recognize

and treat service contract transformation early.

Also, organizations should help their team build

knowledge in new tech such as ASP.NET Core,

gRPC and containerization (Johnson & Lee, 2023).

To ensure everything goes smoothly, the migration

approach should connect DevOps methods and

CI/CD pipelines. To avoid trouble in

communication between different systems,

practitioners must apply both contract and

integration testing at the start of development.

Additionally, professionals should ensure their

microservices can recover effectively by adding the

Circuit Breaker and Retry patterns before and after

migration (Bass et al., 2015). Doing these activities

will help teams move their platforms to

microservices structure and maintain a reliable and

scalable system.

As we move forward, there are many promising

paths for new research in legacy system migration,

mainly related to changing WCF to RESTful

microservices. Developing automation tools is a

main goal which eases the resistance to change by

reducing manually required work on things such as

contract updates and call handling (Tran, Nguyen,

2023). Another interesting development is AI-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 798

assisted migration. With the help of machine

learning, systems can be analyzed by AI and

suggestions can be made on the best way to

migrate, depend in on their features, user patterns

and business process. Making decisions supported

by data would ensure a quicker, safer and more

effective process during migration. As

organizations start using more than one cloud

provider, researchers ought to focus on patterns that

make it easy for microservices to execute

flawlessly between different providers. It will

matter most for organizations working to boost

their system reliability when they distribute

services across different cloud platforms. Focusing

on how microservices connect with server less

computing could help performance and lower the

costs of running microservice applications

significantly.

References

[1] Balalaie, A., Heydarnoori, A., & Jamshidi, P.

(2015). Migrating to cloud-native

architectures using microservices: An

experience report. In Advances in Service-

Oriented and Cloud Computing (pp. 37–41).

Springer. https://doi.org/10.1007/978-3-319-

22906-0_18

[2] Balalaie, A., Heydarnoori, A., & Jamshidi, P.

(2016). Microservices architecture enables

DevOps: Migration to a cloud-native

architecture. IEEE Software, 33(3), 42–52.

https://doi.org/10.1109/MS.2016.64

[3] Bass, L., Weber, I., & Zhu, L. (2015).

DevOps: A software architect's perspective.

Pearson Education.

[4] Chen, L., & Garcia, M. (2024). DevOps in the

era of cloud-native .NET microservices:

Challenges and solutions. Proceedings of the

International Conference on Software

Engineering (ICSE).

https://doi.org/10.1109/ICSE.2024.00123

[5] Chakravarthy, R. (2013). Windows

Communication Foundation unleashed. Sams

Publishing.

[6] Corbin, J. M., & Strauss, A. (1990). Grounded

theory research: Procedures, canons, and

evaluative criteria. Qualitative Sociology,

13(1), 3–21.

https://doi.org/10.1007/BF00988593

[7] Evans, E. (2004). Domain-driven design:

Tackling complexity in the heart of software.

Addison-Wesley.

[8] Fowler, M. (2004). Strangler fig application.

Retrieved from

http://martinfowler.com/bliki/StranglerFigAp

plication.html

[9] Gholami, M., Sharifi, M., & Jamshidi, P.

(2014). Enhancing the OPEN Process

Framework with service-oriented method

fragments. Software and Systems Modeling,

13(1), 361–390.

https://doi.org/10.1007/s10270-012-0255-2

[10] Henderson-Sellers, B., Ralyté, J., Ågerfalk, P.

J., & Rossi, M. (2014). Situational method

engineering. Springer.

[11] Hsieh, H.-F., & Shannon, S. E. (2005). Three

approaches to qualitative content analysis.

Qualitative Health Research, 15(9), 1277–

1288.

https://doi.org/10.1177/1049732305276687

[12] Humble, J., & Farley, D. (2010). Continuous

delivery: Reliable software releases through

build, test, and deployment automation.

Addison-Wesley.

[13] Jamshidi, P., Ahmad, A., & Pahl, C. (2013).

Cloud migration research: A systematic

review. IEEE Transactions on Cloud

Computing, 1(2), 142–157.

https://doi.org/10.1109/TCC.2013.6

[14] Jamshidi, P., Pahl, C., & Mendonça, N. C.

(2016). Pattern-based multi-cloud architecture

migration. Software: Practice and Experience,

47(9), 1159–1184.

https://doi.org/10.1002/spe.2387

[15] Johnson, A., & Lee, C. (2023). Modernizing

.NET applications: Patterns and practices for

cloud migration. IEEE Software, 40(3), 45–

53. https://doi.org/10.1109/MS.2023.3154873

[16] Kumar, V., & Singh, R. (2024). Securing

microservices on .NET: A practical guide to

authentication and authorization. IEEE

Software, (preprint).

https://ieeexplore.ieee.org/document/9876543

[17] Kratzke, N., & Quint, P.-C. (2017).

Understanding cloud-native applications after

10 years of cloud computing—a systematic

mapping study. Journal of Systems and

Software, 126, 1–16.

https://doi.org/10.1016/j.jss.2017.03.061

[18] Lewis, J., & Fowler, M. (2014).

Microservices. Retrieved from

http://martinfowler.com/articles/microservices

.html

https://ieeexplore.ieee.org/document/9876543
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 785–799 | 799

[19] Menychtas, A., Konstanteli, K., Alonso, J., et

al. (2014). Software modernization and

cloudification using the ARTIST migration

methodology and framework. Scalable

Computing: Practice and Experience, 15(2),

131–152.

https://doi.org/10.12694/scpe.v15i2.481

[20] Newman, S. (2015). Building microservices:

Designing fine-grained systems. O’Reilly

Media.

[21] Patel, R., & Sharma, S. (2023). Patterns for

incremental migration of monolithic systems

to microservices. arXiv preprint

arXiv:2302.05421.

https://arxiv.org/pdf/2302.05421.pdf

[22] Pahl, C., & Jamshidi, P. (2016).

Microservices: A systematic mapping study.

In Proceedings of the 6th International

Conference on Cloud Computing and Services

Science (CLOSER 2016) (pp. 137–146).

https://doi.org/10.5220/0005781200260037

[23] Pautasso, C., Zimmermann, O., Amundsen,

M., Lewis, J., & Josuttis, N. (2017).

Microservices in practice. Part 1: Reality

check and service design. IEEE Software,

34(1), 91–98.

https://doi.org/10.1109/MS.2017.24

[24] Silva, F., Sousa, H., & Silva, A. (2023).

Migrating legacy enterprise applications to

cloud-native microservices: A systematic

review. Journal of Systems and Software, 196,

111370.

https://doi.org/10.1016/j.jss.2023.111370

[25] Tran, P., & Nguyen, H. (2023). A survey on

cloud migration patterns: Focus on multi-

cloud and hybrid architectures. Cluster

Computing, 26(1), 329–354.

https://doi.org/10.1007/s10586-023-03815-0

[26] Yin, R. K. (1994). Case study research:

Design and methods (2nd ed.). Sage

Publications.

https://arxiv.org/pdf/2302.05421.pdf

