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Abstract: This paper assessed AWS Fargate and AWS Lambda as serverless compute platforms for running event-driven 

machine learning inference tasks. To mimic real-time event processing scenarios, both platforms were benchmarked under the 

same settings using a common ML model and a variety of input payload sizes. Measured and examined key performance 

indicators—including cold start delay, execution time, throughput, and cost-efficiency. The findings showed that AWS 

Lambda had quicker execution times for smaller payloads and better scalability under high concurrency, whereas AWS Fargate 

had shorter cold start latency across all resource configurations. While AWS Fargate grew more affordable for bigger, long-

running jobs, cost study showed AWS Lambda was more affordable for lightweight, short-duration operations. The results 

underlined the need of choosing compute platforms depending on particular workload needs since they showed important 

trade-offs between performance and cost. This benchmarking study offers valuable insights for architects and developers 

designing scalable, event-driven ML systems in cloud-native environments. 
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1. INTRODUCTION  

The growing number of machine learning (ML) 

applications in real-time settings like fraud 

detection, predictive maintenance, content 

moderation, and recommendation systems has 

fueled the need for scalable, responsive, and 

affordable computing backends. Where inference 

queries are produced unpredictably and must be 

completed with least latency, traditional 

infrastructure approaches may fail to meet the 

dynamic and event-driven character of modern ML 

workloads. Serverless computing has developed as a 

fascinating paradigm in reaction that fits the 

changing needs of ML inference systems by 

providing autonomous scalability, event-based 

invocation, and pay-as-you-go pricing structures. 

Among the most notable serverless choices in the 

cloud environment, AWS Lambda and AWS 

Fargate stand out for their event-driven, flexible 

compute features. While AWS Fargate lets 

container-based applications with fine-grained 

control over resource allocation and runtime 

environment, AWS Lambda offers function-based 

execution with little configuration and near-instant 

scaling. Though more people are using them, little 

comparative research has been done on how these 

systems operate under different load scenarios on 

event-driven ML inference jobs. 

Using a consistent machine learning inference 

workload activated by simulated real-time events, 

this study sought to benchmark the performance of 

AWS Lambda and AWS Fargate. Across several 

resource configurations and input payload sizes, key 

performance indicators including cold start latency, 

warm execution time, throughput under 

concurrency, and cost per inference were assessed. 

This study aimed to find performance trade-offs and 

offer recommendations on choosing the most 

suitable serverless compute platform for various ML 

deployment situations by methodically examining 

these aspects. 

2. LITERATURE REVIEW  

Sisák (2021) looked at cost-optimal deployment 

setups for containerized event-driven systems on 

AWS. The study underlined the financial 

consequences of choosing between AWS Fargate 

and Lambda, hence determining that the best option 

was quite reliant on workload features as task 
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duration and invocation frequency. The results 

underlined that whereas Lambda was beneficial for 

short, occasional executions, Fargate offered higher 

cost-efficiency for longer-running workloads 

because of its fixed billing per second approach. 

Eismann (2023) concentrated on performance 

engineering of serverless applications and systems. 

His thesis included a methodical analysis of resource 

allocation tactics in serverless settings, concurrency 

control, and cold starts. The study showed that cold 

start behaviour was a significant bottleneck in 

latency-sensitive applications and recommended 

design approaches to address it. It also underlined 

the need of benchmarking functions in realistic, 

event-driven contexts to evaluate their fitness for 

production-grade loads. 

Lekkala (2023) examined containerized and 

serverless systems especially with relation to data 

pipelines. The research discovered that whereas 

serverless alternatives such as AWS Lambda 

provided simplicity and fine-grained scaling, they 

created performance uncertainty under huge data 

volumes. Conversely, containerized services like 

AWS Fargate were more appropriate for workloads 

needing permanent state, specialized dependencies, 

or greater memory allocations since they enabled 

better control over execution settings. 

Arafath (2022) conducted a comparative study 

between microservices and serverless architectures 

in the cloud. The study showed that serverless 

systems enabled agile deployment processes and 

lowered infrastructure management burden. 

However, it also noted limitations related to cold 

starts, limited execution duration, and debugging 

complexity. The research backed hybrid architecture 

strategies combining containerized microservices 

with serverless functions to maximize the benefits of 

both paradigms. 

Scotton (2021) suggested an engineering 

framework for scalable ML operations stressing the 

significance of serverless backends in facilitating 

real-time inference and elastic scaling. The system 

included automatic retraining pipelines, model 

versioning, and serverless triggers. The research 

found that event-driven serverless computing was 

essential for lowering operational complexity and 

improving the reactivity of ML systems. 

 

 

RESEARCH METHODOLOGY 

2.1. Research Design 

The main goal of this paper was to compare how 

well AWS Lambda and AWS Fargate handled 

event-driven machine learning inference tasks. A 

quantitative, experimental research strategy was 

used to guarantee a methodical and impartial 

comparison between the two serverless compute 

platforms. To evaluate different performance 

measures including cold start delay, execution time, 

throughput, and cost-efficiency, both systems were 

under the same workloads, setups, and event 

triggers. The approach allowed a controlled testing 

environment to mimic actual deployment situations 

for ML inference jobs activated by dynamic events. 

2.2. Experimental Environment 

All studies were run in the Amazon Web Services 

(AWS) cloud environment, specifically using the 

US East (N. Virginia) area. This area was chosen 

because of its popularity and low latency availability 

zones, which helped to reduce the effect of regional 

performance differences. Pre-trained on the CIFAR-

10 dataset, MobileNetV2 was the machine learning 

inference model employed in the study. Its 

lightweight character and applicability to real-time 

classification tasks helped the model to be chosen. 

Simulated events, simulating practical triggers like 

file uploads and HTTP requests, were used to launch 

inference tasks. While AWS Fargate jobs were 

started using Amazon EventBridge and ECS run-

task commands, AWS Lambda was activated 

through Amazon API Gateway and S3 event alerts. 

2.3. Resource Configuration 

Three computing setups were chosen across both 

systems to provide fair testing and preserve 

consistency. These setups had 512MB memory with 

0.25 vCPU, 1024MB memory with 0.5 vCPU, and 

2048MB memory with 1 vCPU. These levels 

reflected typical deployment choices from low-

resource to high-resource allocations. While AWS 

Fargate containers were launched using ECS with 

matching CPU and memory requirements, 

container-based deployment with bespoke runtime 

and memory tuning was used for AWS Lambda. 

Every setup was evaluated under the same event 

circumstances and payload sizes. 

2.4. Benchmarking Metrics 

Five main measures served as the basis of the 

performance assessment. First, cold start time was 
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assessed to quantify the time lag connected with 

starting new container instances upon event arrival. 

For latency-sensitive applications, this was 

especially important. Warm container invocations 

were second recorded for execution delay to assess 

real-time responsiveness. Third, reflecting each 

platform's scalability, throughput was computed 

from the number of successful inferences processed 

per second under concurrent event loads. Fourth, a 

cost study was done to identify the financial 

consequences of running 1,000 inference queries 

under every setup. At last, platform appropriateness 

was evaluated considering use case features, hence 

balancing performance and cost factors. 

2.5. Data Collection Procedure 

Every test was run 30 times per configuration to 

guarantee accuracy and reproducibility. Load 

simulation and response time monitoring were done 

using custom Python scripts, AWS X-Ray for 

latency tracing, and AWS CloudWatch for logs and 

metrics. The testing scripts ran and parallelized calls 

at different degrees of concurrency using the Boto3 

SDK and Locust framework. For statistical analysis, 

performance logs were timestamped and compiled. 

To investigate platform behavior under various data 

transport and processing situations, the studies 

simulated three payload sizes—small (50KB), 

medium (500KB), and big (2MB). 

2.6. Data Analysis Approach 

Trends and performance variations between AWS 

Lambda and AWS Fargate were found by averaging 

and organizing the data gathered from every 

benchmarking run. Summarized in tables, the 

findings revealed typical cold start durations, 

execution latencies, throughput numbers, and 

anticipated expenditures for every setup. These total 

figures guided observation interpretation; emphasis 

was placed on the trade-offs between expense and 

performance. Visual analysis techniques were also 

used to represent platform behaviors under different 

workload sizes and compute allocations. 

3. RESULTS AND DISCUSSION 

The empirical findings from the performance 

benchmarking of AWS Lambda and AWS Fargate 

in running event-driven machine learning inference 

tasks were reported in this part. Identical conditions 

governed testing on each platform; the resulting data 

was examined to provide insights on execution 

delay, cold start behavior, throughput, scalability, 

and cost-efficiency. The discussion provided a 

comparative interpretation of the results and 

identified key trade-offs involved in selecting a 

serverless computing backend for machine learning 

applications. 

3.1. Cold Start Performance 

Cold starts occurred when the serverless platform 

needed to provision a new container instance for 

processing an event. This behavior was particularly 

critical for low-latency applications. 

Table 1: Average Cold Start Time (ms) 

Configuration 

(Memory/CPU) 

AWS 

Lambda 

AWS 

Fargate 

512MB / 0.25 vCPU 820 ms 520 ms 

1024MB / 0.5 vCPU 690 ms 480 ms 

2048MB / 1 vCPU 590 ms 430 ms 

 

Figure 1: Average Cold Start Time (ms) 
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Across all evaluated resource settings, Table 1 

reveals that AWS Fargate regularly had lower 

average cold start times than AWS Lambda. 

Specifically, Fargate's cold start latency varied from 

520 ms at 512MB/0.25 vCPU to 430 ms at 

2048MB/1 vCPU, whereas Lambda's cold start 

delays were higher, starting at 820 ms and increasing 

to 590 ms with more resources. This implies that 

Fargate's container-based design gains from a more 

persistent runtime environment, which leads to 

quicker startup times. Though Lambda's cold start 

latency got better with more RAM allocation—

probably because of more CPU availability—it was 

still slower than Fargate, suggesting that Fargate 

would be more appropriate for latency-sensitive 

apps needing fast initiation. 

3.2. Execution Latency (Warm Invocations) 

This metric reflected the total time taken to execute 

an event-driven ML inference request once the 

container was already warm. 

Table 2: Average Execution Latency (ms) - 

Warm Starts 

Payload Size AWS 

Lambda 

AWS 

Fargate 

Small (50KB) 150 ms 160 ms 

Medium 

(500KB) 

310 ms 290 ms 

Large (2MB) 720 ms 670 ms 

 

 

Figure 2: Average Execution Latency (ms) - Warm Starts 

 

With an average delay of 150 ms compared to 

Fargate's 160 ms, the statistics on execution latency 

for warm invocations indicated that AWS Lambda 

performed somewhat better while managing tiny 

payloads. Though, as the payload size rose to 

medium (500KB) and large (2MB), AWS Fargate 

started to beat Lambda, indicating reduced 

execution latencies of 290 ms and 670 ms 

correspondingly, whereas Lambda's delay rose to 

310 ms and 720 ms. This trend implied that while 

Fargate's containerized architecture provided more 

consistent and efficient processing for bigger 

payloads, probably because of superior I/O 

management and resource allocation, Lambda's 

lightweight function invocation paradigm delivered 

quicker reaction times for smaller inputs. 

3.3. Throughput and Scalability 

The platforms were evaluated for their ability to 

handle concurrent invocations and maintain 

performance under load. 

Table 3: Max Throughput (Requests/sec) 

Concurrent 

Users 

AWS 

Lambda 

AWS 

Fargate 

50 48 req/s 45 req/s 

100 92 req/s 87 req/s 

200 178 req/s 165 req/s 
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Figure 3: Max Throughput (Requests/sec) 

The throughput findings under different concurrent 

user loads showed that AWS Lambda regularly 

processed more requests per second than AWS 

Fargate. Lambda handled 48 requests per second at 

50 concurrent users, just exceeding Fargate's 45 

requests per second. With rising concurrency, this 

performance difference grew; at 100 and 200 users, 

respectively, Lambda reached 92 and 178 requests 

per second, whereas Fargate managed 87 and 165 

requests per second for the same loads. These results 

suggested that while Fargate's task-based scaling 

was more resource-intensive and somewhat slower, 

Lambda's architecture let it scale more aggressively 

and quickly by duplicating function instances to 

satisfy demand. Therefore, Lambda seemed more 

appropriate for tasks needing fast elasticity and great 

concurrency. 

3.4.  Cost Analysis 

Cost-effectiveness was evaluated based on 1,000 

inference executions per configuration. 

Table 4: Cost per 1,000 Requests (USD) 

Configuration AWS 

Lambda 

AWS 

Fargate 

512MB / 0.25 

vCPU 

0.36 0.44 

1024MB / 0.5 

vCPU 

0.49 0.48 

2048MB / 1 

vCPU 

0.72 0.65 

 

Table 4 shows the price per thousand requests for 

AWS Fargate and AWS Lambda under various 

resource settings. Charging $0.36 to Fargate's $0.44, 

AWS Lambda was more cost-effective at the lowest 

configuration (512MB / 0.25 vCPU). But, as the 

resource allocation rose to 1024MB / 0.5 vCPU, the 

prices for both systems became almost the same, 

with Lambda costing $0.49 and Fargate marginally 

lower at $0.48. Fargate, at $0.65 per 1,000 requests, 

was more affordable at the top setup (2048MB / 1 

vCPU) than Lambda's $0.72. These results indicated 

that while Lambda’s pay-per-invocation pricing 

model offered better cost-efficiency for smaller and 

short-duration tasks, Fargate’s pricing structure 

became more advantageous for workloads requiring 

higher compute resources and longer execution 

times. This underlined the need of matching 

platform selection with certain workload traits to 

maximize operational expenses. 

CONCLUSION 

For event-driven machine learning inference tasks, 

this work offered a thorough performance 

benchmarking of AWS Lambda and AWS Fargate. 

The findings showed that depending on the 

workload features and deployment goals, each 

platform had unique benefits. For latency-sensitive 

apps needing fast container startup, AWS Fargate 

was a more appropriate option since it regularly beat 

AWS Lambda in cold start times. Conversely, AWS 

Lambda demonstrated better execution latency for 

smaller payloads and provided greater dynamic 

scalability under high concurrency, stressing its 

effectiveness for lightweight, burst-driven ML jobs. 

Throughput-wise, both systems scaled well, but 

Lambda's stateless, function-based design caused it 

to have a more aggressive auto-scaling reaction. 

Cost studies showed that although AWS Lambda 

was more affordable for low-resource, short-lived 

workloads, AWS Fargate grew more cost-effective 

for longer-running jobs at greater compute 
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allocations. The analysis found that individual 

workload needs—especially with regard to payload 

size, latency tolerance, concurrency levels, and cost 

sensitivity—should drive choice between AWS 

Lambda and Fargate. Using the best features of both 

systems, a hybrid deployment approach might 

potentially be considered to maximize performance 

and cost in practical ML applications. 
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