

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 912–917 | 912

Event-Driven Machine Learning Infrastructure: Performance

Benchmarking of AWS Lambda and Fargate Serverless Compute

Ishwar Bansal

Submitted: 02/01/2024 Revised: 15/02/2024 Accepted: 25/02/2024

Abstract: This paper assessed AWS Fargate and AWS Lambda as serverless compute platforms for running event-driven

machine learning inference tasks. To mimic real-time event processing scenarios, both platforms were benchmarked under the

same settings using a common ML model and a variety of input payload sizes. Measured and examined key performance

indicators—including cold start delay, execution time, throughput, and cost-efficiency. The findings showed that AWS

Lambda had quicker execution times for smaller payloads and better scalability under high concurrency, whereas AWS Fargate

had shorter cold start latency across all resource configurations. While AWS Fargate grew more affordable for bigger, long-

running jobs, cost study showed AWS Lambda was more affordable for lightweight, short-duration operations. The results

underlined the need of choosing compute platforms depending on particular workload needs since they showed important

trade-offs between performance and cost. This benchmarking study offers valuable insights for architects and developers

designing scalable, event-driven ML systems in cloud-native environments.

Keywords: AWS Lambda; AWS Fargate; Serverless Computing; Event-Driven Architecture; Machine Learning Inference;

Performance Benchmarking; Cold Start; Execution Latency; Throughput; Cost Analysis.

1. INTRODUCTION

The growing number of machine learning (ML)

applications in real-time settings like fraud

detection, predictive maintenance, content

moderation, and recommendation systems has

fueled the need for scalable, responsive, and

affordable computing backends. Where inference

queries are produced unpredictably and must be

completed with least latency, traditional

infrastructure approaches may fail to meet the

dynamic and event-driven character of modern ML

workloads. Serverless computing has developed as a

fascinating paradigm in reaction that fits the

changing needs of ML inference systems by

providing autonomous scalability, event-based

invocation, and pay-as-you-go pricing structures.

Among the most notable serverless choices in the

cloud environment, AWS Lambda and AWS

Fargate stand out for their event-driven, flexible

compute features. While AWS Fargate lets

container-based applications with fine-grained

control over resource allocation and runtime

environment, AWS Lambda offers function-based

execution with little configuration and near-instant

scaling. Though more people are using them, little

comparative research has been done on how these

systems operate under different load scenarios on

event-driven ML inference jobs.

Using a consistent machine learning inference

workload activated by simulated real-time events,

this study sought to benchmark the performance of

AWS Lambda and AWS Fargate. Across several

resource configurations and input payload sizes, key

performance indicators including cold start latency,

warm execution time, throughput under

concurrency, and cost per inference were assessed.

This study aimed to find performance trade-offs and

offer recommendations on choosing the most

suitable serverless compute platform for various ML

deployment situations by methodically examining

these aspects.

2. LITERATURE REVIEW

Sisák (2021) looked at cost-optimal deployment

setups for containerized event-driven systems on

AWS. The study underlined the financial

consequences of choosing between AWS Fargate

and Lambda, hence determining that the best option

was quite reliant on workload features as task

Full Stack Developer (Independent Researcher), AWS,

Herndon USA

Aggarwalse@gmail.com, ORCID ID: 0009-0006-5865-

536X

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 912–917 | 913

duration and invocation frequency. The results

underlined that whereas Lambda was beneficial for

short, occasional executions, Fargate offered higher

cost-efficiency for longer-running workloads

because of its fixed billing per second approach.

Eismann (2023) concentrated on performance

engineering of serverless applications and systems.

His thesis included a methodical analysis of resource

allocation tactics in serverless settings, concurrency

control, and cold starts. The study showed that cold

start behaviour was a significant bottleneck in

latency-sensitive applications and recommended

design approaches to address it. It also underlined

the need of benchmarking functions in realistic,

event-driven contexts to evaluate their fitness for

production-grade loads.

Lekkala (2023) examined containerized and

serverless systems especially with relation to data

pipelines. The research discovered that whereas

serverless alternatives such as AWS Lambda

provided simplicity and fine-grained scaling, they

created performance uncertainty under huge data

volumes. Conversely, containerized services like

AWS Fargate were more appropriate for workloads

needing permanent state, specialized dependencies,

or greater memory allocations since they enabled

better control over execution settings.

Arafath (2022) conducted a comparative study

between microservices and serverless architectures

in the cloud. The study showed that serverless

systems enabled agile deployment processes and

lowered infrastructure management burden.

However, it also noted limitations related to cold

starts, limited execution duration, and debugging

complexity. The research backed hybrid architecture

strategies combining containerized microservices

with serverless functions to maximize the benefits of

both paradigms.

Scotton (2021) suggested an engineering

framework for scalable ML operations stressing the

significance of serverless backends in facilitating

real-time inference and elastic scaling. The system

included automatic retraining pipelines, model

versioning, and serverless triggers. The research

found that event-driven serverless computing was

essential for lowering operational complexity and

improving the reactivity of ML systems.

RESEARCH METHODOLOGY

2.1. Research Design

The main goal of this paper was to compare how

well AWS Lambda and AWS Fargate handled

event-driven machine learning inference tasks. A

quantitative, experimental research strategy was

used to guarantee a methodical and impartial

comparison between the two serverless compute

platforms. To evaluate different performance

measures including cold start delay, execution time,

throughput, and cost-efficiency, both systems were

under the same workloads, setups, and event

triggers. The approach allowed a controlled testing

environment to mimic actual deployment situations

for ML inference jobs activated by dynamic events.

2.2. Experimental Environment

All studies were run in the Amazon Web Services

(AWS) cloud environment, specifically using the

US East (N. Virginia) area. This area was chosen

because of its popularity and low latency availability

zones, which helped to reduce the effect of regional

performance differences. Pre-trained on the CIFAR-

10 dataset, MobileNetV2 was the machine learning

inference model employed in the study. Its

lightweight character and applicability to real-time

classification tasks helped the model to be chosen.

Simulated events, simulating practical triggers like

file uploads and HTTP requests, were used to launch

inference tasks. While AWS Fargate jobs were

started using Amazon EventBridge and ECS run-

task commands, AWS Lambda was activated

through Amazon API Gateway and S3 event alerts.

2.3. Resource Configuration

Three computing setups were chosen across both

systems to provide fair testing and preserve

consistency. These setups had 512MB memory with

0.25 vCPU, 1024MB memory with 0.5 vCPU, and

2048MB memory with 1 vCPU. These levels

reflected typical deployment choices from low-

resource to high-resource allocations. While AWS

Fargate containers were launched using ECS with

matching CPU and memory requirements,

container-based deployment with bespoke runtime

and memory tuning was used for AWS Lambda.

Every setup was evaluated under the same event

circumstances and payload sizes.

2.4. Benchmarking Metrics

Five main measures served as the basis of the

performance assessment. First, cold start time was

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 912–917 | 914

assessed to quantify the time lag connected with

starting new container instances upon event arrival.

For latency-sensitive applications, this was

especially important. Warm container invocations

were second recorded for execution delay to assess

real-time responsiveness. Third, reflecting each

platform's scalability, throughput was computed

from the number of successful inferences processed

per second under concurrent event loads. Fourth, a

cost study was done to identify the financial

consequences of running 1,000 inference queries

under every setup. At last, platform appropriateness

was evaluated considering use case features, hence

balancing performance and cost factors.

2.5. Data Collection Procedure

Every test was run 30 times per configuration to

guarantee accuracy and reproducibility. Load

simulation and response time monitoring were done

using custom Python scripts, AWS X-Ray for

latency tracing, and AWS CloudWatch for logs and

metrics. The testing scripts ran and parallelized calls

at different degrees of concurrency using the Boto3

SDK and Locust framework. For statistical analysis,

performance logs were timestamped and compiled.

To investigate platform behavior under various data

transport and processing situations, the studies

simulated three payload sizes—small (50KB),

medium (500KB), and big (2MB).

2.6. Data Analysis Approach

Trends and performance variations between AWS

Lambda and AWS Fargate were found by averaging

and organizing the data gathered from every

benchmarking run. Summarized in tables, the

findings revealed typical cold start durations,

execution latencies, throughput numbers, and

anticipated expenditures for every setup. These total

figures guided observation interpretation; emphasis

was placed on the trade-offs between expense and

performance. Visual analysis techniques were also

used to represent platform behaviors under different

workload sizes and compute allocations.

3. RESULTS AND DISCUSSION

The empirical findings from the performance

benchmarking of AWS Lambda and AWS Fargate

in running event-driven machine learning inference

tasks were reported in this part. Identical conditions

governed testing on each platform; the resulting data

was examined to provide insights on execution

delay, cold start behavior, throughput, scalability,

and cost-efficiency. The discussion provided a

comparative interpretation of the results and

identified key trade-offs involved in selecting a

serverless computing backend for machine learning

applications.

3.1. Cold Start Performance

Cold starts occurred when the serverless platform

needed to provision a new container instance for

processing an event. This behavior was particularly

critical for low-latency applications.

Table 1: Average Cold Start Time (ms)

Configuration

(Memory/CPU)

AWS

Lambda

AWS

Fargate

512MB / 0.25 vCPU 820 ms 520 ms

1024MB / 0.5 vCPU 690 ms 480 ms

2048MB / 1 vCPU 590 ms 430 ms

Figure 1: Average Cold Start Time (ms)

0

100

200

300

400

500

600

700

800

900

512MB / 0.25 vCPU 1024MB / 0.5 vCPU 2048MB / 1 vCPU

AWS Lambda AWS Fargate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 912–917 | 915

Across all evaluated resource settings, Table 1

reveals that AWS Fargate regularly had lower

average cold start times than AWS Lambda.

Specifically, Fargate's cold start latency varied from

520 ms at 512MB/0.25 vCPU to 430 ms at

2048MB/1 vCPU, whereas Lambda's cold start

delays were higher, starting at 820 ms and increasing

to 590 ms with more resources. This implies that

Fargate's container-based design gains from a more

persistent runtime environment, which leads to

quicker startup times. Though Lambda's cold start

latency got better with more RAM allocation—

probably because of more CPU availability—it was

still slower than Fargate, suggesting that Fargate

would be more appropriate for latency-sensitive

apps needing fast initiation.

3.2. Execution Latency (Warm Invocations)

This metric reflected the total time taken to execute

an event-driven ML inference request once the

container was already warm.

Table 2: Average Execution Latency (ms) -

Warm Starts

Payload Size AWS

Lambda

AWS

Fargate

Small (50KB) 150 ms 160 ms

Medium

(500KB)

310 ms 290 ms

Large (2MB) 720 ms 670 ms

Figure 2: Average Execution Latency (ms) - Warm Starts

With an average delay of 150 ms compared to

Fargate's 160 ms, the statistics on execution latency

for warm invocations indicated that AWS Lambda

performed somewhat better while managing tiny

payloads. Though, as the payload size rose to

medium (500KB) and large (2MB), AWS Fargate

started to beat Lambda, indicating reduced

execution latencies of 290 ms and 670 ms

correspondingly, whereas Lambda's delay rose to

310 ms and 720 ms. This trend implied that while

Fargate's containerized architecture provided more

consistent and efficient processing for bigger

payloads, probably because of superior I/O

management and resource allocation, Lambda's

lightweight function invocation paradigm delivered

quicker reaction times for smaller inputs.

3.3. Throughput and Scalability

The platforms were evaluated for their ability to

handle concurrent invocations and maintain

performance under load.

Table 3: Max Throughput (Requests/sec)

Concurrent

Users

AWS

Lambda

AWS

Fargate

50 48 req/s 45 req/s

100 92 req/s 87 req/s

200 178 req/s 165 req/s

0

100

200

300

400

500

600

700

800

Small (50KB) Medium (500KB) Large (2MB)

AWS Lambda AWS Fargate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 912–917 | 916

Figure 3: Max Throughput (Requests/sec)

The throughput findings under different concurrent

user loads showed that AWS Lambda regularly

processed more requests per second than AWS

Fargate. Lambda handled 48 requests per second at

50 concurrent users, just exceeding Fargate's 45

requests per second. With rising concurrency, this

performance difference grew; at 100 and 200 users,

respectively, Lambda reached 92 and 178 requests

per second, whereas Fargate managed 87 and 165

requests per second for the same loads. These results

suggested that while Fargate's task-based scaling

was more resource-intensive and somewhat slower,

Lambda's architecture let it scale more aggressively

and quickly by duplicating function instances to

satisfy demand. Therefore, Lambda seemed more

appropriate for tasks needing fast elasticity and great

concurrency.

3.4. Cost Analysis

Cost-effectiveness was evaluated based on 1,000

inference executions per configuration.

Table 4: Cost per 1,000 Requests (USD)

Configuration AWS

Lambda

AWS

Fargate

512MB / 0.25

vCPU

0.36 0.44

1024MB / 0.5

vCPU

0.49 0.48

2048MB / 1

vCPU

0.72 0.65

Table 4 shows the price per thousand requests for

AWS Fargate and AWS Lambda under various

resource settings. Charging $0.36 to Fargate's $0.44,

AWS Lambda was more cost-effective at the lowest

configuration (512MB / 0.25 vCPU). But, as the

resource allocation rose to 1024MB / 0.5 vCPU, the

prices for both systems became almost the same,

with Lambda costing $0.49 and Fargate marginally

lower at $0.48. Fargate, at $0.65 per 1,000 requests,

was more affordable at the top setup (2048MB / 1

vCPU) than Lambda's $0.72. These results indicated

that while Lambda’s pay-per-invocation pricing

model offered better cost-efficiency for smaller and

short-duration tasks, Fargate’s pricing structure

became more advantageous for workloads requiring

higher compute resources and longer execution

times. This underlined the need of matching

platform selection with certain workload traits to

maximize operational expenses.

CONCLUSION

For event-driven machine learning inference tasks,

this work offered a thorough performance

benchmarking of AWS Lambda and AWS Fargate.

The findings showed that depending on the

workload features and deployment goals, each

platform had unique benefits. For latency-sensitive

apps needing fast container startup, AWS Fargate

was a more appropriate option since it regularly beat

AWS Lambda in cold start times. Conversely, AWS

Lambda demonstrated better execution latency for

smaller payloads and provided greater dynamic

scalability under high concurrency, stressing its

effectiveness for lightweight, burst-driven ML jobs.

Throughput-wise, both systems scaled well, but

Lambda's stateless, function-based design caused it

to have a more aggressive auto-scaling reaction.

Cost studies showed that although AWS Lambda

was more affordable for low-resource, short-lived

workloads, AWS Fargate grew more cost-effective

for longer-running jobs at greater compute

0

20

40

60

80

100

120

140

160

180

200

50 100 200

AWS Lambda AWS Fargate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 912–917 | 917

allocations. The analysis found that individual

workload needs—especially with regard to payload

size, latency tolerance, concurrency levels, and cost

sensitivity—should drive choice between AWS

Lambda and Fargate. Using the best features of both

systems, a hybrid deployment approach might

potentially be considered to maximize performance

and cost in practical ML applications.

REFERENCES

[1] A. Rose, Performance Evaluation of Serverless

Object, Ph.D. dissertation, California State

University, Northridge, 2023.

[2] B. N. Y. Arafath, A comparative study

between microservices and serverless in the

cloud, Master's thesis, OsloMet-

storbyuniversitetet, 2022.

[3] C. Lekkala, "Containerization vs. Serverless

Architectures for Data Pipelines," Serverless

Architectures for Data Pipelines, Feb. 1, 2023.

[4] D. M. Naranjo, S. Risco, G. Moltó, and I.

Blanquer, "A serverless gateway for event‐

driven machine learning inference in multiple

clouds," Concurrency and Computation:

Practice and Experience, vol. 35, no. 18, p.

e6728, 2023.

[5] G. Kambala, "Cloud-Native Architectures: A

Comparative Analysis of Kubernetes and

Serverless Computing," 2023.

[6] I. Goswami, "Serverless Architecture for

Machine Learning," 2023.

[7] J. J. Paul, Distributed Serverless Architectures

on AWS, Berkeley, CA, 2023.

[8] L. Scotton, Engineering framework for

scalable machine learning operations, 2021.

[9] M. Rahman, "Serverless cloud computing: a

comparative analysis of performance, cost, and

developer experiences in container-level

services," 2023.

[10] M. Sisák, Cost-optimal AWS Deployment

Configuration for Containerized Event-driven

Systems, Ph.D. dissertation, 2021.

[11] N. Kodakandla, "Serverless Architectures: A

Comparative Study of Performance,

Scalability, and Cost in Cloud-native

Applications," Iconic Research and

Engineering Journals, vol. 5, no. 2, pp. 136-

150, 2021.

[12] P. Grzesik, D. R. Augustyn, Ł. Wyciślik, and

D. Mrozek, "Serverless computing in omics

data analysis and integration," Briefings in

Bioinformatics, vol. 23, no. 1, p. bbab349,

2022.

[13] S. Eismann, Performance Engineering of

Serverless Applications and Platforms, Ph.D.

dissertation, Universität Würzburg, 2023.

[14] S. R. Gallardo, Serverless strategies and tools

in the cloud computing continuum, Ph.D.

dissertation, Universitat Politècnica de

València, 2023.

[15] V. Naik, Machine Learning Using Serverless

Computing, 2021.

