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Abstract. This study presents a novel framework for counterfactual user behavior forecasting that combines structural causal 

models with transformer-based generative artificial intelligence. To model fictitious situations, the method creates causal 

graphs that map the connections between user interactions, adoption metrics, and product features. The framework generates 

realistic behavioral trajectories under counterfactual conditions by using generative models that are conditioned on causal 

variables. Tested on datasets from web interactions, mobile applications, and e-commerce, the methodology outperforms 

conventional forecasting and uplift modeling techniques. Product teams can effectively simulate and assess possible 

interventions prior to deployment thanks to the framework’s improved interpretability through causal path visualization. With 

important ramifications f or developing product strategies and improving A/B testing, this study uses generative modeling 

techniques to bridge the gap between predictive analytics and causal inference. 
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1 Introduction 

Sophisticated techniques for forecasting user 

behavior in response to feature launches and UX 

changes are necessary for digital product 

development [1]. Be- cause traditional forecasting 

methods are correlative rather than causal, they 

frequently fall short in answering counterfactual 

questions regarding intervention outcomes. Product 

teams usually have to calculate the effects of 

suggested modifications without conducting a lot of 

A/B testing. Methodologies capable of reasoning 

about interventions and their causal effects are 

needed to answer questions such as "How would 

conversion rates change if we modify the onboarding 

flow?" [2]. When handling complex user behavior, 

current methods such as time-series forecasting, 

uplift modeling, and heuristic estimations all have 

serious drawbacks [3]. The theoretical basis for 

thinking about interventions in complex systems is 

provided by Pearl’s structural causal models and do- 

calculus [4]. In order to determine causal effects 

from observational data, these methods have been 

expanded to digital analytics. To separate 

recommendation effects from confounding factors in 
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user behavior modeling, causal inference was used; 

however, the main focus was on retrospective analysis 

rather than forecasting [5]. With applications in 

behavioral prediction tasks like next- 

action prediction and session-based 

recommendations, transformer-based architectures 

have proven their ability to capture intricate 

sequential patterns. It has been demonstrated that 

diffusion models can produce realistic user interaction 

sequences [6]. While [8] investigated counterfactual 

explanations for machine learning models, 

[7] developed techniques for estimating individual 

treatment effects without randomized experiments for 

decision support. [9] suggested counterfactual 

simulations in product analytics, but they used 

simplified behavioral models. Despite these 

advances, the integration of sophisticated generative 

models with explicit causal reasoning remains 

underexplored for counterfactual forecasting of user 

behavior. 

The paper contributes a framework for behavioral 

counterfactual analysis that combines structural 

causal models with transformer-based generative 

AI, a process for creating and confirming causal 

graphs of patterns in user interaction, a generative 

method for modeling the behavioral paths of 

counterfactual scenarios, and a cross-domain 

validation for web services, mobile apps, and e- 
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commerce. 

2 Methodology and Experimental Setup 

Algorithm 1 Hybrid Causal Graph Construction 

1: Input: Observational data D, domain knowledge K, causal assumptions A 

2: Output: Validated causal graph G 

3: procedure ConstRUctCaUSALGRAPH(D, K, A) 

4:  Gprior ← InitializeGraphFromKnowledge(K) 

5: Gdata ← LearnStructure(D, A) 

6: Gcombined ← IntegrateGraphs(Gprior, Gdata) 

7: Gvalidated ← ValidateWithInterventionalData(Gcombined) return Gvalidated 

8: end procedure 

The suggested framework allows for counterfactual 

user behavior forecasting by combining generative 

AI with structural causal models. There are four 

main parts to the framework: A structural causal 

model formalizes these relationships into a 

computational graph; a generative engine uses 

transformer architectures to model behavioral 

sequences conditioned on causal variables; a 

counterfactual simulator conducts intervention-based 

simulations to predict behavior under alternative 

scenarios; and a causal discovery module finds 

relation- ships between product features, user 

characteristics, and behavioral outcomes. The causal 

Listing 1.1. Generative Behavioral Model Implementation 

graph includes behavioral outcome variables 

(measurable actions and engagement metrics), user 

context variables (characteristics and historical 

patterns), and feature exposure variables (product 

features and user interface elements). The generative 

component employs a transformer-based architecture 

trained to model sequential user behaviors 

conditioned on causal variables: 

L = Lseq + λLcausal   (1) 

where Lseq represents the sequence modeling loss 

and Lcausal enforces consistency with the identified 

causal structure. 
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The counterfactual simulation follows the do-calculus 

formalism for estimating P (Y |do(X = x)) across 

intervention scenarios: 

The framework was evaluated using three distinct 

datasets representing different domains of user 

behavior: 

– E-commerce dataset: User browsing and 

purchasing behavior from the DIGINETICA dataset 

(https://competitions.codalab.org/competitions/1116 

1) with over 500,000 sessions and 20,000 users. 

– Mobile application dataset: Interaction 

logs from the Mobile App User Behavior dataset on 

Kaggle 

(https://www.kaggle.com/datasets/allunia/mobile- 

app-user-behavior) with 30,000 users over a three- 

month period. 

 
 

Algorithm 2 Counterfactual Behavioral Simulation 

1: Input: Validated causal graph G, trained model M , observed data Dobs, intervention I 

2: Output: Counterfactual trajectories Tcf 

3: procedure SIMULATECOUNTERFACTUAL(G, M, Dobs, I) 

4: Gmodified ← ApplyIntervention(G, I) 

5: Vaffected ← IdentifyAffectedVariables(G, Gmodified) 

6: Scausal ← ComputeCausalStates(Gmodified, Dobs) 

7: Tcf ← GenerateTrajectories(M, Scausal) return Tcf 

8: end procedure 

 

 

Table 1. Comparative Performance Across Methods and Datasets 
 

 

CF: Counterfactual Prediction Error, SL: 

Sequence  Likelihood, CC: Causal 

Consistency, ID: Intervention Divergence. 

Performance levels: H: High, M: Medium, L: 

Low, -: Not Applicable. 

– Web service dataset: User engagement data 

from the MSNBC.com Anonymous Web Data 

(https://archive.ics.uci.edu/ml/datasets/msnbc.com+a 

nonymous+web+data) with various UI changes, 

spanning 100,000 users. 

To create natural intervention points, the datasets 

were further partitioned into training (70%), 

validation (15%), and testing (15%) sets. The 

suggested framework was contrasted with baseline 

methods such as double machine learning for causal 

inference, LSTM-based behavioral sequence models, 

meta-learner uplift modeling with XGBoost, and 

Prophet for time-series forecasting. Metrics such as 

the counterfactual prediction error between 

predicted metrics and holdout intervention data, the 

behavioral sequence likelihood of observed post- 

intervention sequences, the causal consistency score 

between generated trajectories and causal constraints, 

and the intervention response divergence between 

predicted and actual behavioral distributions were 

used to evaluate performance. These metrics were 

intended to capture both predictive accuracy and 

causal validity. 

3 Results and Analysis 

A comparison of the suggested framework with 

baseline techniques for the three datasets is shown in 

http://www.kaggle.com/datasets/allunia/mobile-
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Table 1. The findings show that the suggested 

framework performs better than baseline approaches 

on all evaluation metrics and datasets. Pure sequence 

models capture behavioral patterns but are unable to 

model intervention effects; Uplift modeling performs 

moderately but struggles with complex behavioral 

sequences; and time-series forecasting approaches are 

unable to accurately capture intervention effects 

because they lack causal structure. For com- plex 

trajectories, causal inference without generative 

components lacks expressive power. Analyzing the 

learned causal structures provides valuable 

information about the patterns of user behavior. The 

identified causal pathways between interventions and 

important outcome variables are depicted in Figure 1. 

 

 

Fig. 1. Causal pathways between feature interventions and user behavior outcomes. The diagram 

illustrates direct effects, mediation paths, and feedback loops discovered in the e-commerce dataset. 

Numerous important causal mechanisms were found: 

heterogeneous effects across user segments, with 

experienced users exhibiting distinct response patterns; 

temporal causal patterns, with some interventions 

showing delayed impacts on behavior; and 

significant indirect effects between feature 

exposures and conversion out- comes, mediated by 

intermediate engagement metrics. Certain 

counterfactual scenarios of practical interest were 

analyzed using the framework. The results of these 

scenario analyses are compiled in Table 2. By 

modeling intricate behavioral reactions to possible 

interventions, the analysis shows how the framework 

can offer useful insights. Product teams can assess 

design options prior to implementation thanks to the 

counterfactual scenarios, which lowers development 

risks and improves user experience. 

4 Conclusion 

In this paper, we propose a new framework for 

counterfactual human behavior forecasting that 

combines transformer-based generative AI with 

structural causal models. With applications in e- 

commerce, mobile applications, and web services, the 

method allows for a more accurate prediction of 

behavioral responses to interventions than 

conventional forecasting and causal inference 

techniques. 

Table 2. Counterfactual Scenario Analysis Results 
 

Scenario Key Findings 

Alternative Onboarding Simplified flow increases initial activation but reduces feature discovery; 

Technical users show higher sensitivity 

Feature Rollback Removing recommendation feature reduces session depth primarily among 

casual users; Engaged users show resilience 
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UI Layout Change Grid layout improves discovery metrics compared to list view; Performance 

gap diminishes over repeated sessions 

Pricing Model Change Subscription model increases retention among power users; Conversion barriers 

significant for intermittent users 

 

By extending causal inference to sequential decision 

processes, integrating genera- tive models with 

causal structures, and naturally providing 

distributions over counterfactual outcomes, the 

research advances causal inference in behavioral 

contexts. Future research avenues include modeling 

long-term effects beyond immediate responses, 

multi-modal counterfactual reasoning across various 

data types, interfaces for non-technical stakeholders to 

explore counterfactual scenar- ios, and causal 

representation learning from behavioral data. 
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