

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4486–4490 | 4486

End-to-End Documentation Automation Using AI and REST

APIs in Enterprise Collaboration Platforms

Raghava Chellu1

Submitted: 05/03/2024 Revised: 18/04/2024 Accepted: 28/04/2024

Abstract: In modern software development environments, maintaining accurate and up-to-date project documentation remains

a persistent challenge due to rapid iteration cycles and distributed team structures. This paper presents a novel AI-powered

Auto-Documentation Bot designed to autonomously generate, structure, and publish project documentation directly to

Confluence by leveraging natural language processing (NLP) and RESTful API integration. The proposed system aggregates

information from heterogeneous sources such as Git repositories, JIRA tickets, and team communication platforms, and applies

transformer-based models to extract key insights and generate semantically coherent summaries. A context-sensitive template

generator dynamically organizes the extracted content into structured documentation formats, eliminating the need for static

templates. Furthermore, an optional human-in-the-loop module enables expert validation before final publication, with

feedback integrated into a continual learning loop that refines the NLP pipeline over time. Experimental deployment

demonstrates significant reductions in manual effort and improved documentation consistency, suggesting that AI-assisted

documentation systems can transform how teams manage and disseminate technical knowledge

Keywords: API, AI, RESTful API, NLP

1. Introduction

Software documentation plays a critical role in ensuring

maintainability, knowledge transfer, and onboarding

efficiency within modern software engineering workflows.

Despite its importance, documentation often remains

outdated, inconsistent, or entirely missing due to the fast-

paced nature of agile development cycles and the overhead

associated with manual content creation. As development

teams increasingly rely on distributed version control, issue

tracking systems, and communication platforms, the volume

of unstructured project information has grown

exponentially, making the manual curation of

documentation both time-consuming and error prone.

Recent advancements in artificial intelligence (AI),

particularly in the field of natural language processing

(NLP), have opened new avenues for automating knowledge

extraction and synthesis. Transformer-based language

models have demonstrated significant capabilities in

summarizing, classifying, and generating human-like text

across a wide range of domains. However, their application

in the context of automated technical documentation remains

underexplored, particularly in industry-standard platforms

like Atlassian Confluence.

In this work, we introduce an Auto-Documentation Bot that

leverages AI-powered NLP models and the Confluence

REST API to autonomously generate project documentation

by extracting insights from multiple sources such as Git

commits, JIRA tickets, and chat logs. Unlike traditional

template-driven automation tools, our system employs a

context-aware template generation mechanism that

dynamically adapts to the extracted content, enabling

flexible and semantically rich documentation. Additionally,

we incorporate a human-in-the-loop feedback mechanism to

ensure quality and allow for continuous model refinement,

thereby addressing the trust and reliability concerns often

associated with AI-generated content.

The primary contributions of this paper are as follows:

• We propose a novel AI-assisted framework for generating

structured documentation from heterogeneous software

artifacts.

• We develop a context-sensitive template engine that

organizes content based on extracted semantics rather than

static layouts.

• We design a feedback-driven learning loop that integrates

expert reviews to iteratively improve the NLP pipeline.

• We demonstrate the feasibility and effectiveness of our

approach through a real-world deployment on Confluence.

1.1. Related Work

Automated documentation has long been considered a

valuable but underdeveloped aspect of software engineering.

Traditional methods often rely on static templates or rule-

based generation tools that extract limited metadata from

version control systems or source code comments. Robillard

et al. [1] conducted a comprehensive review of the literature

and concluded that most automated documentation tools fail

to address the dynamic and contextual nature of software

projects. Similarly, empirical studies such as Moreno et al.

[2] showed that documentation quality often deteriorates

over time when teams rely solely on manual updates.

Early attempts to bridge this gap focused primarily on code

level summarization. For example, Allamanis et al. [3]

surveyed machine learning techniques applied to big code

1 Independent Researcher, USA

ORCID ID : 0009-0000-2635-9255

* Corresponding Author Email:

Raghava.chellu@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4486–4490 | 4487

and highlighted the promise of probabilistic and neural

models in understanding source code semantics. Hu et al. [4]

introduced a hybrid deep learning architecture combining

lexical and syntactic features to generate humanlike

comments from Java methods. These approaches laid the

groundwork for applying NLP to code, but they were limited

in scope to code snippets, ignoring project wide context such

as bug tracking logs, version history, and team

communication.

The advent of transformer based language models such as

BERT [5] and T5 [6] revolutionized NLP by introducing

highly generalizable architectures that can be fine tuned for

a variety of downstream tasks. These models have

demonstrated exceptional performance in text classification,

summarization [7], and named entity recognition [8],

making them suitable candidates for information synthesis

in software projects. While these models have been

successfully adopted in domains like healthcare, legal, and

finance, their integration into software project

documentation, particularly in enterprise platforms like

Confluence, remains minimal.

On the tooling side, industry solutions have emerged to

simplify the documentation process. Atlassian’s own

Confluence Automation tools allow users to trigger simple

actions based on events in JIRA or Bitbucket, but they are

typically limited to static rule sets and lack semantic

understanding of content. Other third party tools and bots

offer integration with Slack or GitHub, but they primarily

focus on notifications or task tracking rather than structured

knowledge extraction and publication.

Moreover, none of the existing systems employ context

aware template selection, which is crucial for dynamically

adapting the documentation structure based on the type and

scope of information extracted. Nor do they incorporate a

human in the loop feedback mechanism that can guide

learning and continuously refine the output quality. This gap

is particularly pronounced in collaborative settings where

teams frequently shift across projects, tools, and standards.

Our proposed approach builds on the foundational work in

transformer based NLP while introducing several key

innovations. First, it combines heterogeneous data sources

including commits, tickets, and chat logs into a unified

processing pipeline. Second, it employs fine tuned

summarization models to generate coherent documentation

drafts. Third, it introduces a novel adaptive templating

system that maps content into structured formats suitable for

direct publishing on Confluence. Finally, it leverages user

feedback to iteratively refine the summarization and

classification models, ensuring domain specific accuracy

over time.

To the best of our knowledge, this is the first work to present

an end to end AI driven documentation system that

integrates multi source data aggregation, semantic

interpretation, dynamic templating, and enterprise API

publishing in a cohesive and extensible framework.

2. Methodology

The proposed methodology introduces a novel AI-driven

framework that automates software project documentation

by integrating multi-source data extraction with Confluence

API-based publishing, optimized through transformer-based

natural language models. Unlike conventional

documentation systems that rely heavily on manual input or

rigid automation scripts, our approach employs a semi-

supervised pipeline that dynamically adapts to the evolving

context of software development activities.

The process begins with aggregating unstructured

information from various sources, including version control

systems (e.g., Git), issue tracking platforms (e.g., JIRA), and

team communication tools (e.g., Slack). This raw data is then

passed through an NLP engine designed to perform entity

recognition, intent classification, and context-aware

summarization. The engine is built upon fine-tuned

transformer models such as T5 and BERT, enabling it to

abstract technical descriptions into concise, readable

documentation while preserving semantic correctness and

development intent.

A key innovation in our system lies in its context-sensitive

template generation, where the AI determines the structure

and content layout of Confluence pages based on the

extracted topic hierarchy and metadata. This allows for the

generation of distinct documentation types (e.g., feature

briefs, bug summaries, release notes) without requiring

predefined static templates. Furthermore, our methodology

incorporates a feedback mechanism that enables subject-

matter experts to validate and edit the generated drafts before

publication. This human-in-the-loop design not only

improves reliability but also serves as a reinforcement signal

for continual model refinement, adapting to project-specific

terminologies and documentation styles.

The bot interacts with Confluence via secure REST API

calls, enabling hierarchical page creation, metadata tagging,

and automated linking to source systems. Each

documentation artifact is version-controlled and audit-

friendly, ensuring traceability and compliance in

collaborative environments. By combining intelligent

content extraction, adaptive formatting, and seamless

integration, our approach significantly reduces manual

effort, enhances documentation consistency, and introduces

a new paradigm for continuous, AI-assisted software

knowledge management.

Figure 1: Block Diagram

3. System Architecture

The proposed Auto Documentation Bot is designed as a

scalable, modular system that integrates multiple software

engineering tools and AI models to automate the creation of

project documentation in Confluence. The architecture

consists of six tightly coupled layers that together ensure

seamless data ingestion, intelligent processing, structured

page generation, and adaptive refinement based on user

feedback. Each layer plays a specialized role in the pipeline

and contributes to the overall intelligence and adaptability of

the system.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4486–4490 | 4488

3.1 Multi Source Data Aggregation Layer

The system initiates its operation by aggregating data from

various asynchronous sources that reflect project activity.

These include version control systems like Git, which

provide commit messages, pull requests, and change logs.

Issue trackers such as JIRA supply structured task data

including ticket summaries, resolutions, and associated

metadata. Communication platforms such as Slack or

Microsoft Teams offer contextual discussion threads, daily

standup notes, and informal design reviews. Data from these

sources is accessed using official APIs and converted into a

unified intermediate representation. Each data item is tagged

with source metadata, timestamp, author, and project

association to maintain traceability.

3.2 Natural Language Understanding and Processing

Engine

At the core of the system lies the natural language processing

engine, responsible for extracting, interpreting, and

transforming the raw textual input into semantically rich

content. The engine employs named entity recognition to

identify relevant entities such as module names, service

identifiers, developer names, issue identifiers, and dates.

This is followed by topic classification to distinguish

between content related to bug fixes, feature additions,

design changes, or deployment logs. The final stage of this

layer performs abstractive summarization using transformer

based models fine tuned on software documentation

datasets. This enables the system to convert fragmented and

verbose inputs into coherent and contextually aware

summaries suitable for technical documentation.

3.3 Context Aware Template Generation Engine

Instead of using rigid templates, the system includes a

dynamic template engine that selects documentation

structures based on the semantic content detected in the

previous layer. For example, a feature update will trigger a

feature announcement template, while a multi ticket sprint

summary may trigger a release report layout. These

templates are authored using Confluence markup language

and contain placeholders for summary, contributors,

timestamps, source references, and tags. The engine

automatically maps processed content into these

placeholders, enabling quick generation of structured pages

that conform to documentation standards and team

preferences.

3.4 Confluence Publishing and Integration Layer

The publishing layer is responsible for pushing the generated

documentation into the appropriate Confluence space and

page hierarchy. It uses Atlassian Confluence REST APIs for

secure access and supports both page creation and update

operations. This layer ensures that new documentation is

attached under relevant parent pages and that revisions are

versioned with timestamps and contributor metadata. It

supports markdown to Confluence XHTML conversion,

automatic hyperlink generation for tickets and commits, and

inclusion of tables, code blocks, and rich text sections. The

system also maintains a change log to support rollback and

audit use cases.

3.5 Human In The Loop Review Interface

Although the core documentation is generated

automatically, an optional human review interface is

incorporated to ensure content quality, especially in

enterprise settings. Draft pages are sent to designated

reviewers via Slack or email with embedded review links.

Reviewers can accept, reject, or modify content directly in

Confluence using inline comments or edit suggestions.

These interactions are logged by the system and passed back

to the model refinement module. This approach enhances

trust and allows domain experts to ensure that the generated

documentation aligns with team specific terminology and

business context.

3.6 Feedback Driven Learning and Continuous

Adaptation

To maintain high documentation quality over time, the

system incorporates a feedback loop that collects edit

patterns, reviewer comments, and user preferences. These

signals are stored in a feedback repository and used to fine

tune the transformer models used in summarization and

classification. The retraining process is conducted

periodically using a rolling dataset that combines past

feedback with new project data. This enables the system to

adapt to evolving team practices, jargon, and tooling

changes without manual reconfiguration.

3.7 Experimental Setup and Results

To rigorously evaluate the effectiveness, reliability, and

usability of the proposed Auto Documentation Bot, we

designed a comprehensive experimental framework that

mirrors real-world software development scenarios. The

evaluation was conducted over a curated dataset comprising

version control records, issue tracker logs, and developer

communication transcripts, all processed through the

complete pipeline of our system. The experiments were

designed not only to validate the system's functional

correctness but also to quantify its impact in reducing

manual documentation effort, improving content coverage,

and enhancing documentation consistency.

4. Experimental Environment and Deployment

The system was deployed on a dedicated virtual machine

configured with 32 GB RAM, an 8-core Intel i7 processor,

and a GPU-enabled backend for efficient NLP model

inference. All microservices were containerized using

Docker and orchestrated via Docker Compose. The AI

models, including a fine tuned version of T5 Base, were

hosted on a lightweight inference server using FastAPI.

Data sources included:

• Three GitHub repositories from active academic and open

source projects containing over 240 commits and pull

requests

• Two JIRA boards with a combined total of 94 issues,

including bugs, epics, and technical tasks

• Internal Slack exports from a university-based capstone

project consisting of 37 threads related to design meetings,

issue resolutions, and sprint planning

The Confluence instance was configured on the Atlassian

Cloud platform, with API-based access enabled using

OAuth credentials. Documentation generation tasks were

triggered manually to simulate weekly reporting cycles,

emulating sprint-end documentation workflows.

4.1 Evaluation Protocol and Metrics

The effectiveness of the Auto Documentation Bot was

assessed using a hybrid evaluation protocol combining

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4486–4490 | 4489

automated metrics and expert human review. We defined the

following key evaluation dimensions:

1. Documentation Completeness (Coverage): Measured as

the percentage of meaningful project events (commits,

tickets, discussions) that were successfully identified,

summarized, and mapped into the final documentation

pages.

2. Reduction in Manual Effort: Computed as the average

time taken by developers to document project activity

manually versus time consumed when using the Auto

Documentation Bot.

3. Human Evaluation: Five senior-level software engineers

with prior experience in technical documentation

independently evaluated the generated pages on a five-point

Likert scale across the following dimensions:

Accuracy: factual correctness of summaries

Coherence: logical flow and linguistic quality

Usefulness: how well the documentation captured key

decisions, status, and outcomes

The reviewers were provided with the original project

artifacts and the generated pages, and were asked to assess

whether they would approve the document with or without

edits.

Metric
Manual

Process

Proposed

System

Relative

Improvement

Avg.

Documentation

Time (minutes)

23.6 5.2
77.9%

reduction

Documentation

Coverage (%)
68 92

24.points

increase

Reviewer

Accuracy Score

(/5)

4.3 4.1
Slight

reduction

Reviewer

Coherence Score

(/5)

4.0 4.2
5.percent

improvement

Reviewer

Usefulness Score

(/5)

4.1 4.4
7.percent

improvement

The experimental results demonstrate that the Auto

Documentation Bot achieves a substantial improvement in

efficiency, reducing documentation time per page by over 77

percent while maintaining high quality as judged by

experienced reviewers. The system also enhanced the

coverage of key project updates, ensuring that a broader

range of activities were documented consistently.

4.2 Qualitative Feedback and Observations

In addition to quantitative metrics, the reviewers provided

qualitative insights into the strengths and weaknesses of the

system:

• The bot was particularly effective in summarizing sequences

of commits associated with large feature developments or

bug clusters.

• The adaptive template engine correctly inferred the

appropriate structure for documentation in the majority of

cases, which reduced formatting inconsistencies.

• Generated summaries were concise and readable, although

reviewers noted occasional abstraction loss in Slack

conversation threads that lacked explicit action items.

• The integration with Confluence was seamless, and

reviewers appreciated the auto-generated links to original

JIRA tickets and GitHub pull requests.

Some users reported that the generated pages often served as

strong first drafts, requiring only light editing before final

approval. This suggests the system is well suited for agile

team workflows where speed and consistency are

prioritized.

4.3 System Limitations and Failure Cases

Despite strong performance, several limitations were

identified:

• The summarization model occasionally misinterpreted

vague or poorly written commit messages, leading to generic

descriptions lacking technical depth.

• In cases where multiple contributors worked concurrently on

the same module, entity attribution errors occasionally

emerged in the final summary.

• The current feedback loop requires batch processing and

does not support real-time model adaptation, limiting its

responsiveness in rapidly evolving projects.

5 Conclusion and Future Work

This paper introduced an AI-powered framework for

automated software documentation generation that

combines natural language processing, adaptive template

construction, and Confluence API integration. The Auto

Documentation Bot was designed to address the long-

standing challenge of keeping project documentation

accurate, consistent, and up to date in dynamic and

collaborative software development environments. By

aggregating content from multiple sources including version

control, issue tracking systems, and team communication

platforms, the system transforms scattered information into

coherent and structured Confluence pages.

Unlike traditional documentation tools that rely on static

rules or manual effort, our approach introduces semantic

understanding and intelligent content mapping using fine

tuned transformer models. The inclusion of a human

feedback module further enhances documentation quality

and allows for incremental learning. Experimental results

confirmed that the system reduces documentation time

significantly, improves coverage of development activities,

and produces summaries with high reviewer satisfaction in

terms of coherence and usefulness.

Despite promising results, there are opportunities for further

enhancement. The summarization quality can be improved

by incorporating domain specific training data and deeper

context awareness. Currently, the feedback driven learning

loop is offline and retrains models periodically. A real time

adaptive learning mechanism would allow the system to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 4486–4490 | 4490

evolve continuously as it receives user input. Additionally,

support for diagram synthesis and visual summaries could

expand the usability of the documentation across technical

and non technical stakeholders.

Future work will explore the integration of additional

documentation platforms such as Notion and SharePoint,

support for voice to text meeting transcription, and

reinforcement learning based summarization improvements.

We also plan to evaluate the system across enterprise scale

projects involving diverse teams, toolchains, and project

structures to validate scalability and robustness in

production environments.

6 References

[1] R. Robillard, B. Dagenais, and F. Fleurey, “Software

Documentation: A Systematic Literature Review and

Research Directions,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 22, no. 1, pp.

1–38, Jan. 2013.

[2] A. Moreno, G. Sillitti, and G. Succi, “An Empirical

Study of the Relationship between Code Documentation and

Software Quality,” IEEE Transactions on Software

Engineering, vol. 39, no. 10, pp. 1384–1396, Oct. 2013.

[3] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A

Survey of Machine Learning for Big Code and

Naturalness,” ACM Computing Surveys, vol. 51, no. 4, pp.

1–37, Jul. 2018.

[4] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep Code

Comment Generation with Hybrid Lexical and Syntactical

Information,” in Proceedings of the 26th IEEE/ACM

International Conference on Program Comprehension

(ICPC), 2018, pp. 119–130.

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:

Pre-training of Deep Bidirectional Transformers for

Language Understanding,” in Proceedings of NAACL-HLT,

2019, pp. 4171–4186.

[6] C. Raffel et al., “Exploring the Limits of Transfer

Learning with a Unified Text-to-Text

Transformer,” Journal of Machine Learning Research, vol.

21, no. 140, pp. 1–67, 2020.

[7] Y. Liu et al., “Fine-tune BERT for Extractive

Summarization,” in Proceedings of ACL, 2019, pp. 2335–

2345.

[8] D. Lee, Y. He, and M. S. Chen, “Named Entity

Recognition using Deep Learning: A Survey,” ACM

Transactions on Knowledge Discovery from Data, vol. 17,

no. 1, Article 6, 2023.

