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Abstract: In modern software development environments, maintaining accurate and up-to-date project documentation remains 

a persistent challenge due to rapid iteration cycles and distributed team structures. This paper presents a novel AI-powered 

Auto-Documentation Bot designed to autonomously generate, structure, and publish project documentation directly to 

Confluence by leveraging natural language processing (NLP) and RESTful API integration. The proposed system aggregates 

information from heterogeneous sources such as Git repositories, JIRA tickets, and team communication platforms, and applies 

transformer-based models to extract key insights and generate semantically coherent summaries. A context-sensitive template 

generator dynamically organizes the extracted content into structured documentation formats, eliminating the need for static 

templates. Furthermore, an optional human-in-the-loop module enables expert validation before final publication, with 

feedback integrated into a continual learning loop that refines the NLP pipeline over time. Experimental deployment 

demonstrates significant reductions in manual effort and improved documentation consistency, suggesting that AI-assisted 

documentation systems can transform how teams manage and disseminate technical knowledge 
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1. Introduction 

Software documentation plays a critical role in ensuring 

maintainability, knowledge transfer, and onboarding 

efficiency within modern software engineering workflows. 

Despite its importance, documentation often remains 

outdated, inconsistent, or entirely missing due to the fast-

paced nature of agile development cycles and the overhead 

associated with manual content creation. As development 

teams increasingly rely on distributed version control, issue 

tracking systems, and communication platforms, the volume 

of unstructured project information has grown 

exponentially, making the manual curation of 

documentation both time-consuming and error prone. 

Recent advancements in artificial intelligence (AI), 

particularly in the field of natural language processing 

(NLP), have opened new avenues for automating knowledge 

extraction and synthesis. Transformer-based language 

models have demonstrated significant capabilities in 

summarizing, classifying, and generating human-like text 

across a wide range of domains. However, their application 

in the context of automated technical documentation remains 

underexplored, particularly in industry-standard platforms 

like Atlassian Confluence. 

In this work, we introduce an Auto-Documentation Bot that 

leverages AI-powered NLP models and the Confluence 

REST API to autonomously generate project documentation 

by extracting insights from multiple sources such as Git 

commits, JIRA tickets, and chat logs. Unlike traditional 

template-driven automation tools, our system employs a 

context-aware template generation mechanism that 

dynamically adapts to the extracted content, enabling 

flexible and semantically rich documentation. Additionally, 

we incorporate a human-in-the-loop feedback mechanism to 

ensure quality and allow for continuous model refinement, 

thereby addressing the trust and reliability concerns often 

associated with AI-generated content. 

The primary contributions of this paper are as follows: 

• We propose a novel AI-assisted framework for generating 

structured documentation from heterogeneous software 

artifacts. 

• We develop a context-sensitive template engine that 

organizes content based on extracted semantics rather than 

static layouts. 

• We design a feedback-driven learning loop that integrates 

expert reviews to iteratively improve the NLP pipeline. 

• We demonstrate the feasibility and effectiveness of our 

approach through a real-world deployment on Confluence. 

1.1. Related Work  

Automated documentation has long been considered a 

valuable but underdeveloped aspect of software engineering. 

Traditional methods often rely on static templates or rule-

based generation tools that extract limited metadata from 

version control systems or source code comments. Robillard 

et al. [1] conducted a comprehensive review of the literature 

and concluded that most automated documentation tools fail 

to address the dynamic and contextual nature of software 

projects. Similarly, empirical studies such as Moreno et al. 

[2] showed that documentation quality often deteriorates 

over time when teams rely solely on manual updates. 

Early attempts to bridge this gap focused primarily on code 

level summarization. For example, Allamanis et al. [3] 

surveyed machine learning techniques applied to big code 
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and highlighted the promise of probabilistic and neural 

models in understanding source code semantics. Hu et al. [4] 

introduced a hybrid deep learning architecture combining 

lexical and syntactic features to generate humanlike 

comments from Java methods. These approaches laid the 

groundwork for applying NLP to code, but they were limited 

in scope to code snippets, ignoring project wide context such 

as bug tracking logs, version history, and team 

communication. 

The advent of transformer based language models such as 

BERT [5] and T5 [6] revolutionized NLP by introducing 

highly generalizable architectures that can be fine tuned for 

a variety of downstream tasks. These models have 

demonstrated exceptional performance in text classification, 

summarization [7], and named entity recognition [8], 

making them suitable candidates for information synthesis 

in software projects. While these models have been 

successfully adopted in domains like healthcare, legal, and 

finance, their integration into software project 

documentation, particularly in enterprise platforms like 

Confluence, remains minimal. 

On the tooling side, industry solutions have emerged to 

simplify the documentation process. Atlassian’s own 

Confluence Automation tools allow users to trigger simple 

actions based on events in JIRA or Bitbucket, but they are 

typically limited to static rule sets and lack semantic 

understanding of content. Other third party tools and bots 

offer integration with Slack or GitHub, but they primarily 

focus on notifications or task tracking rather than structured 

knowledge extraction and publication. 

Moreover, none of the existing systems employ context 

aware template selection, which is crucial for dynamically 

adapting the documentation structure based on the type and 

scope of information extracted. Nor do they incorporate a 

human in the loop feedback mechanism that can guide 

learning and continuously refine the output quality. This gap 

is particularly pronounced in collaborative settings where 

teams frequently shift across projects, tools, and standards. 

Our proposed approach builds on the foundational work in 

transformer based NLP while introducing several key 

innovations. First, it combines heterogeneous data sources 

including commits, tickets, and chat logs into a unified 

processing pipeline. Second, it employs fine tuned 

summarization models to generate coherent documentation 

drafts. Third, it introduces a novel adaptive templating 

system that maps content into structured formats suitable for 

direct publishing on Confluence. Finally, it leverages user 

feedback to iteratively refine the summarization and 

classification models, ensuring domain specific accuracy 

over time. 

To the best of our knowledge, this is the first work to present 

an end to end AI driven documentation system that 

integrates multi source data aggregation, semantic 

interpretation, dynamic templating, and enterprise API 

publishing in a cohesive and extensible framework. 

2. Methodology 

The proposed methodology introduces a novel AI-driven 

framework that automates software project documentation 

by integrating multi-source data extraction with Confluence 

API-based publishing, optimized through transformer-based 

natural language models. Unlike conventional 

documentation systems that rely heavily on manual input or 

rigid automation scripts, our approach employs a semi-

supervised pipeline that dynamically adapts to the evolving 

context of software development activities. 

The process begins with aggregating unstructured 

information from various sources, including version control 

systems (e.g., Git), issue tracking platforms (e.g., JIRA), and 

team communication tools (e.g., Slack). This raw data is then 

passed through an NLP engine designed to perform entity 

recognition, intent classification, and context-aware 

summarization. The engine is built upon fine-tuned 

transformer models such as T5 and BERT, enabling it to 

abstract technical descriptions into concise, readable 

documentation while preserving semantic correctness and 

development intent. 

A key innovation in our system lies in its context-sensitive 

template generation, where the AI determines the structure 

and content layout of Confluence pages based on the 

extracted topic hierarchy and metadata. This allows for the 

generation of distinct documentation types (e.g., feature 

briefs, bug summaries, release notes) without requiring 

predefined static templates. Furthermore, our methodology 

incorporates a feedback mechanism that enables subject-

matter experts to validate and edit the generated drafts before 

publication. This human-in-the-loop design not only 

improves reliability but also serves as a reinforcement signal 

for continual model refinement, adapting to project-specific 

terminologies and documentation styles. 

The bot interacts with Confluence via secure REST API 

calls, enabling hierarchical page creation, metadata tagging, 

and automated linking to source systems. Each 

documentation artifact is version-controlled and audit-

friendly, ensuring traceability and compliance in 

collaborative environments. By combining intelligent 

content extraction, adaptive formatting, and seamless 

integration, our approach significantly reduces manual 

effort, enhances documentation consistency, and introduces 

a new paradigm for continuous, AI-assisted software 

knowledge management. 

Figure 1: Block Diagram 

3. System Architecture 

The proposed Auto Documentation Bot is designed as a 

scalable, modular system that integrates multiple software 

engineering tools and AI models to automate the creation of 

project documentation in Confluence. The architecture 

consists of six tightly coupled layers that together ensure 

seamless data ingestion, intelligent processing, structured 

page generation, and adaptive refinement based on user 

feedback. Each layer plays a specialized role in the pipeline 

and contributes to the overall intelligence and adaptability of 

the system. 
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3.1 Multi Source Data Aggregation Layer 

The system initiates its operation by aggregating data from 

various asynchronous sources that reflect project activity. 

These include version control systems like Git, which 

provide commit messages, pull requests, and change logs. 

Issue trackers such as JIRA supply structured task data 

including ticket summaries, resolutions, and associated 

metadata. Communication platforms such as Slack or 

Microsoft Teams offer contextual discussion threads, daily 

standup notes, and informal design reviews. Data from these 

sources is accessed using official APIs and converted into a 

unified intermediate representation. Each data item is tagged 

with source metadata, timestamp, author, and project 

association to maintain traceability. 

3.2 Natural Language Understanding and Processing 

Engine 

At the core of the system lies the natural language processing 

engine, responsible for extracting, interpreting, and 

transforming the raw textual input into semantically rich 

content. The engine employs named entity recognition to 

identify relevant entities such as module names, service 

identifiers, developer names, issue identifiers, and dates. 

This is followed by topic classification to distinguish 

between content related to bug fixes, feature additions, 

design changes, or deployment logs. The final stage of this 

layer performs abstractive summarization using transformer 

based models fine tuned on software documentation 

datasets. This enables the system to convert fragmented and 

verbose inputs into coherent and contextually aware 

summaries suitable for technical documentation. 

3.3 Context Aware Template Generation Engine 

Instead of using rigid templates, the system includes a 

dynamic template engine that selects documentation 

structures based on the semantic content detected in the 

previous layer. For example, a feature update will trigger a 

feature announcement template, while a multi ticket sprint 

summary may trigger a release report layout. These 

templates are authored using Confluence markup language 

and contain placeholders for summary, contributors, 

timestamps, source references, and tags. The engine 

automatically maps processed content into these 

placeholders, enabling quick generation of structured pages 

that conform to documentation standards and team 

preferences. 

3.4 Confluence Publishing and Integration Layer 

 

The publishing layer is responsible for pushing the generated 

documentation into the appropriate Confluence space and 

page hierarchy. It uses Atlassian Confluence REST APIs for 

secure access and supports both page creation and update 

operations. This layer ensures that new documentation is 

attached under relevant parent pages and that revisions are 

versioned with timestamps and contributor metadata. It 

supports markdown to Confluence XHTML conversion, 

automatic hyperlink generation for tickets and commits, and 

inclusion of tables, code blocks, and rich text sections. The 

system also maintains a change log to support rollback and 

audit use cases. 

3.5 Human In The Loop Review Interface 

Although the core documentation is generated 

automatically, an optional human review interface is 

incorporated to ensure content quality, especially in 

enterprise settings. Draft pages are sent to designated 

reviewers via Slack or email with embedded review links. 

Reviewers can accept, reject, or modify content directly in 

Confluence using inline comments or edit suggestions. 

These interactions are logged by the system and passed back 

to the model refinement module. This approach enhances 

trust and allows domain experts to ensure that the generated 

documentation aligns with team specific terminology and 

business context. 

3.6 Feedback Driven Learning and Continuous 

Adaptation 

To maintain high documentation quality over time, the 

system incorporates a feedback loop that collects edit 

patterns, reviewer comments, and user preferences. These 

signals are stored in a feedback repository and used to fine 

tune the transformer models used in summarization and 

classification. The retraining process is conducted 

periodically using a rolling dataset that combines past 

feedback with new project data. This enables the system to 

adapt to evolving team practices, jargon, and tooling 

changes without manual reconfiguration. 

3.7 Experimental Setup and Results 

To rigorously evaluate the effectiveness, reliability, and 

usability of the proposed Auto Documentation Bot, we 

designed a comprehensive experimental framework that 

mirrors real-world software development scenarios. The 

evaluation was conducted over a curated dataset comprising 

version control records, issue tracker logs, and developer 

communication transcripts, all processed through the 

complete pipeline of our system. The experiments were 

designed not only to validate the system's functional 

correctness but also to quantify its impact in reducing 

manual documentation effort, improving content coverage, 

and enhancing documentation consistency. 

4. Experimental Environment and Deployment 

The system was deployed on a dedicated virtual machine 

configured with 32 GB RAM, an 8-core Intel i7 processor, 

and a GPU-enabled backend for efficient NLP model 

inference. All microservices were containerized using 

Docker and orchestrated via Docker Compose. The AI 

models, including a fine tuned version of T5 Base, were 

hosted on a lightweight inference server using FastAPI. 

Data sources included: 

• Three GitHub repositories from active academic and open 

source projects containing over 240 commits and pull 

requests 

• Two JIRA boards with a combined total of 94 issues, 

including bugs, epics, and technical tasks 

• Internal Slack exports from a university-based capstone 

project consisting of 37 threads related to design meetings, 

issue resolutions, and sprint planning 

The Confluence instance was configured on the Atlassian 

Cloud platform, with API-based access enabled using 

OAuth credentials. Documentation generation tasks were 

triggered manually to simulate weekly reporting cycles, 

emulating sprint-end documentation workflows. 

4.1 Evaluation Protocol and Metrics 

The effectiveness of the Auto Documentation Bot was 

assessed using a hybrid evaluation protocol combining 
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automated metrics and expert human review. We defined the 

following key evaluation dimensions: 

1. Documentation Completeness (Coverage): Measured as 

the percentage of meaningful project events (commits, 

tickets, discussions) that were successfully identified, 

summarized, and mapped into the final documentation 

pages. 

2. Reduction in Manual Effort: Computed as the average 

time taken by developers to document project activity 

manually versus time consumed when using the Auto 

Documentation Bot. 

3. Human Evaluation: Five senior-level software engineers 

with prior experience in technical documentation 

independently evaluated the generated pages on a five-point 

Likert scale across the following dimensions: 

 

Accuracy: factual correctness of summaries 

 

Coherence: logical flow and linguistic quality 

 

Usefulness: how well the documentation captured key 

decisions, status, and outcomes 

The reviewers were provided with the original project 

artifacts and the generated pages, and were asked to assess 

whether they would approve the document with or without 

edits. 

Metric 
Manual 

Process 

Proposed 

System 

Relative 

Improvement 

Avg. 

Documentation 

Time (minutes) 

23.6 5.2 
77.9% 

reduction 

Documentation 

Coverage (%) 
68 92 

24.points 

increase 

Reviewer 

Accuracy Score 

(/5) 

4.3 4.1 
Slight 

reduction 

Reviewer 

Coherence Score 

(/5) 

4.0 4.2 
5.percent 

improvement 

Reviewer 

Usefulness Score 

(/5) 

4.1 4.4 
7.percent 

improvement 

 

The experimental results demonstrate that the Auto 

Documentation Bot achieves a substantial improvement in 

efficiency, reducing documentation time per page by over 77 

percent while maintaining high quality as judged by 

experienced reviewers. The system also enhanced the 

coverage of key project updates, ensuring that a broader 

range of activities were documented consistently. 

4.2 Qualitative Feedback and Observations 

In addition to quantitative metrics, the reviewers provided 

qualitative insights into the strengths and weaknesses of the 

system: 

• The bot was particularly effective in summarizing sequences 

of commits associated with large feature developments or 

bug clusters. 

• The adaptive template engine correctly inferred the 

appropriate structure for documentation in the majority of 

cases, which reduced formatting inconsistencies. 

• Generated summaries were concise and readable, although 

reviewers noted occasional abstraction loss in Slack 

conversation threads that lacked explicit action items. 

• The integration with Confluence was seamless, and 

reviewers appreciated the auto-generated links to original 

JIRA tickets and GitHub pull requests. 

Some users reported that the generated pages often served as 

strong first drafts, requiring only light editing before final 

approval. This suggests the system is well suited for agile 

team workflows where speed and consistency are 

prioritized. 

4.3 System Limitations and Failure Cases 

Despite strong performance, several limitations were 

identified: 

• The summarization model occasionally misinterpreted 

vague or poorly written commit messages, leading to generic 

descriptions lacking technical depth. 

• In cases where multiple contributors worked concurrently on 

the same module, entity attribution errors occasionally 

emerged in the final summary. 

• The current feedback loop requires batch processing and 

does not support real-time model adaptation, limiting its 

responsiveness in rapidly evolving projects. 

5 Conclusion and Future Work 

This paper introduced an AI-powered framework for 

automated software documentation generation that 

combines natural language processing, adaptive template 

construction, and Confluence API integration. The Auto 

Documentation Bot was designed to address the long-

standing challenge of keeping project documentation 

accurate, consistent, and up to date in dynamic and 

collaborative software development environments. By 

aggregating content from multiple sources including version 

control, issue tracking systems, and team communication 

platforms, the system transforms scattered information into 

coherent and structured Confluence pages. 

Unlike traditional documentation tools that rely on static 

rules or manual effort, our approach introduces semantic 

understanding and intelligent content mapping using fine 

tuned transformer models. The inclusion of a human 

feedback module further enhances documentation quality 

and allows for incremental learning. Experimental results 

confirmed that the system reduces documentation time 

significantly, improves coverage of development activities, 

and produces summaries with high reviewer satisfaction in 

terms of coherence and usefulness. 

Despite promising results, there are opportunities for further 

enhancement. The summarization quality can be improved 

by incorporating domain specific training data and deeper 

context awareness. Currently, the feedback driven learning 

loop is offline and retrains models periodically. A real time 

adaptive learning mechanism would allow the system to 
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evolve continuously as it receives user input. Additionally, 

support for diagram synthesis and visual summaries could 

expand the usability of the documentation across technical 

and non technical stakeholders. 

Future work will explore the integration of additional 

documentation platforms such as Notion and SharePoint, 

support for voice to text meeting transcription, and 

reinforcement learning based summarization improvements. 

We also plan to evaluate the system across enterprise scale 

projects involving diverse teams, toolchains, and project 

structures to validate scalability and robustness in 

production environments. 

6 References 

[1] R. Robillard, B. Dagenais, and F. Fleurey, “Software 

Documentation: A Systematic Literature Review and 

Research Directions,” ACM Transactions on Software 

Engineering and Methodology (TOSEM), vol. 22, no. 1, pp. 

1–38, Jan. 2013. 

[2] A. Moreno, G. Sillitti, and G. Succi, “An Empirical 

Study of the Relationship between Code Documentation and 

Software Quality,” IEEE Transactions on Software 

Engineering, vol. 39, no. 10, pp. 1384–1396, Oct. 2013. 

[3] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A 

Survey of Machine Learning for Big Code and 

Naturalness,” ACM Computing Surveys, vol. 51, no. 4, pp. 

1–37, Jul. 2018. 

[4] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep Code 

Comment Generation with Hybrid Lexical and Syntactical 

Information,” in Proceedings of the 26th IEEE/ACM 

International Conference on Program Comprehension 

(ICPC), 2018, pp. 119–130. 

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: 

Pre-training of Deep Bidirectional Transformers for 

Language Understanding,” in Proceedings of NAACL-HLT, 

2019, pp. 4171–4186. 

[6] C. Raffel et al., “Exploring the Limits of Transfer 

Learning with a Unified Text-to-Text 

Transformer,” Journal of Machine Learning Research, vol. 

21, no. 140, pp. 1–67, 2020. 

[7] Y. Liu et al., “Fine-tune BERT for Extractive 

Summarization,” in Proceedings of ACL, 2019, pp. 2335–

2345. 

[8] D. Lee, Y. He, and M. S. Chen, “Named Entity 

Recognition using Deep Learning: A Survey,” ACM 

Transactions on Knowledge Discovery from Data, vol. 17, 

no. 1, Article 6, 2023. 

 

 

 


