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Abstract: As the industry transitions to Industry 4.0, the use of predictive maintenance (PdM) in factories has become crucial 

for achieving high efficiency and lower costs. Despite these powerful models, the use of deep learning in PdM is hindered by 

concerns about their reliability, interpretability, and the uncertainty they introduce. This paper outlines a combination of 

computer vision and probabilistic machine learning that helps improve decision-making in predictive maintenance. Using a 

conversion process, time-series information from sensors is transformed into images, allowing Convolutional Neural Networks 

(CNNs) to understand the spatial details of the machine’s health. The challenge of model confidence is overcome by using 

Monte Carlo (MC) Dropout during inference in the CNN to generate multiple possible outcomes. The integration enables 

immediate uncertainty estimation, which plays a crucial role in critical maintenance decisions. The system proposed in this 

study is evaluated against two well-known interpretable models using classification metrics, ROC curves, and calibration plots. 

This model indicated that CNN+MC Dropout performs better with visual scenes and uncertainty detection, but traditional 

models are better at classifying and guiding predictions. As a result, both understanding and trusting a model, along with 

obtaining accurate results, are crucial. The research demonstrates that uncertainty-aware deep learning enhances our experience 

and trust in the system. Further studies will include work on live camera images using temporal models based on recurrent 

probabilistic networks. 

Keywords: Predictive Maintenance, Computer Vision, Monte Carlo Dropout, Convolutional Neural Network, Uncertainty 

Estimation, Calibration, Random Forest, Support Vector Machine, Industry 4.0, Smart Manufacturing 

1. Introduction 

Predictive maintenance (PdM) plays a vital role in 

Industry 4.0 by helping advanced systems detect 

potential issues and design efficient maintenance 

regimens. PdM is proactive because it uses live 

sensor readings and sophisticated tools to discover 

when a machine is starting to deteriorate, much 

earlier than other types of maintenance [1]. 

Transitioning from routine time maintenance to 

condition-driven, innovative strategies enables 

factories to reduce downtime, extend asset 

lifecycles, and enhance overall operations. As 

industrial systems become increasingly complex and 

interconnected, accurately predicting failures is 

crucial for ensuring production is safe, reliable, and 

affordable. 

With strong tools like pattern recognition, anomaly 

detection, and predictive modeling, Artificial 

Intelligence (AI) has become a key factor in 

enabling predictive maintenance. Computer vision 

techniques help machines recognise certain features 

such as wear, temperature irregularities, or shape 

changes in images, and machine learning algorithms 

take away essential insights from data collected by 

sensors [2]. Among image-related tasks, such as 

defect detection and fault identification in industries, 

Convolutional Neural Networks (CNNs) have 

proven to be the most effective among various 

machine learning methods. Consequently, most 

deep learning models are likely to have 

overconfident predictions, mainly when data is 

imbalanced, as is normal in preventive maintenance 

[3]. Such overoptimism can create big problems 

when making important decisions in maintenance 

planning if false positives or negatives are not 

noticed. 

Deep learning-based PdM models do not currently 

address uncertainty accurately, so both academic 

work and industry are lacking in this area [4]. Even 

if the system can classify accurately, it still does not 

tell whether the predictions are dependable, 

especially when the readings are blurry or uncertain. 

To fill this gap, this paper proposes using both 

machine learning and computer vision models by 

1Georgia Institute of Technology, Atlanta, 

Georgia, U.S.A. 

*Corresponding author email: 

sandeep.sign@gmail.com 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(11s), 822–829  |  823 

 

incorporating MC Dropout for calculating dropout 

probabilities. After training, activating dropout 

layers at inference enables MC Dropout to produce 

a distribution of predictions instead of a single, 

specific answer. By analysing this distribution, it can 

estimate the uncertainty in the model, providing 

greater safety as warnings to decision-makers in 

factories. 

In addition, the study assessed the CNN and MC 

Dropout methods against Random Forest (RF) and 

Support Vector Machine (SVM), two well-

established and easily interpretable classical 

machine learning models. Many predictive 

maintenance tasks choose these models because 

they are reliable, understandable, and excel in 

working with organised numerical data. RF and 

SVM naturally support probabilistic reasoning, and 

they are also less susceptible to overfitting on 

uneven datasets compared to CNNs. The study 

compares the proposed deep learning method with 

these classical models to thoroughly analyse 

accuracy, calibration, interpretation, and how 

uncertainty is considered. 

This research has three main goals: (1) to process 

multivariate sensor information into images for 

CNN classification, supporting spatial recognition 

in PdM; (2) to implement MC Dropout so the CNN 

can judge uncertainty and model reliability; and (3) 

to compare the framework with Random Forest and 

SVM using metrics including accuracy, AUC-ROC 

and calibration curves. By using computer vision 

with probability models, this paper shows how the 

reliability of PdM models can be enhanced, and 

maintenance tasks become clear for those working 

with innovative manufacturing systems. 

2. Literature Review 

2.1 Traditional Machine Learning in Predictive 

Maintenance 

Predictive maintenance (PdM) has been 

revolutionized due to artificial intelligence, largely 

helped by ML algorithms processing tabular 

information. Decision Trees, Support Vector 

Machines (SVM), and Random Forests (RF) have 

been favoured by users due to their better 

understanding, smooth setup, and reasonable 

processing requirements [5]. While Decision Trees 

make rule-based models simple to understand, 

SVMs can draw the best separating lines in spaces 

with many dimensions. Random Forests overcome 

the problems of single-tree models by combining the 

predictions of many trees, which makes the model 

more reliable and versatile. The use of these 

algorithms is common in factories, as they review 

ongoing measurements of temperature, vibration, 

and pressure levels to anticipate when a component 

might break or wear down [6]. 

 

2.2 Deep Learning for PdM: CNNs, RNNs, and 

Autoencoders 

As industrial equipment became more complex, the 

capabilities of traditional machine learning models 

were surpassed, so deep learning methods have been 

introduced in predictive maintenance (PdM). 

Convolutional Neural Networks are capable of 

uncovering hierarchical information from images 

and maps, which makes them ideal for working with 

heatmaps from time-series data [7]. Recurrent 

Neural Networks (RNNs) and, in particular, Long 

Short-Term Memory (LSTM) networks are well-

suited for understanding patterns in maintenance 

data over time, making them effective for 

forecasting machines' future condition. In addition, 

Autoencoders help spot anomalies without 

supervision by recognising standard activities and 

reporting situations that indicate faults [8]. Although 

they are reliable, such models are often not 

transparent, making them difficult to interpret and 

trust in mission-critical environments. 

2.3 Computer Vision in Industrial Systems 

In industrial PdM, computer vision is now utilised in 

addition to other technologies, mainly to detect 

surface failures and anomalies found by analysing 

temperature [4]. Nevertheless, a recent development 

involves using multivariate data to create synthetic 

images for analysis in computer vision. The 

technique transforms numeric sensor data into a 

grayscale or heatmap representation, preserving the 

information about time and spacing for CNNs. With 

visual features, it is easier to classify faults by 

examining features from all sensors. It allows PdM 

systems to identify subtle patterns and anomalies 

that may be missed in raw numerical formats, 

offering a new layer of insight into equipment health 

[9]. 

2.4 Probabilistic Machine Learning and Monte Carlo 

Dropout 

Deep learning performs very well, but it lacks 

uncertainty measurement, which can be a significant 

issue in sensitive areas. It addresses this issue by 

estimating the confidence in a prediction. Both 

Bayesian networks and Gaussian processes provide 

uncertainty in their predictions, but are too resource-

demanding for handling large-scale real-world tasks 

such as processing images [10]. With MC Dropout, 

dropout layers added during inference help control 

stochasticity and make training neural networks 

more useful. Through repeating forward passes with 

various random dropout masks, MC Dropout 

recreates Bayesian inference. It produces a 

distribution for the unexpected outcomes, which 

enables the measurement of the variance of the 

estimates. This technique is simple to implement 

and compatible with existing CNN architectures, 

making it particularly useful for uncertainty-aware 

PdM models [11]. 
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2.5 Model Calibration for Reliable Predictions 

It is also important to properly calibrate AIs in 

industrial settings by verifying that the predicted 

probability aligns with the actual observation. 

Predictions made by uncalibrated models can lead to 

maintenance and risk evaluations being steered in 

the wrong direction. Platt scaling and isotonic 

regression are typically applied to adjust model 

predictions after the model has been trained [12]. 

Reliability diagrams and calibration curves are used 

to identify and solve misalignments between 

suggested likelihoods and actual probabilities. 

Standard ML models typically provide accurate 

probabilities, whereas deep learning models may 

not, unless dropout or temperature scaling is 

employed. Integration of MC Dropout solves this 

problem by automatically considering uncertainty 

while predicting [13]. 

2.6 Research Gap and Paper Contribution 

Although each domain —traditional ML, deep 

learning, computer vision, probabilistic modelling, 

and calibration —has independently matured, their 

integration into a unified predictive maintenance 

framework remains underexplored. Just a few 

studies integrate synthetic imaging with CNNs, 

uncertainty estimation with MC Dropout, and 

comparison to more interpretable models used as 

calibration benchmarks [14]. There is an essential 

gap in both research and industrial settings, as 

vision-based predictive maintenance (PdM) 

processes that address uncertainty are largely 

lacking. To overcome this issue, the present study 

introduces a new setup that utilizes images 

generated from sensor data, CNNs enhanced with 

MC Dropout for measuring uncertainty, and a 

comparison with Random Forest and Support 

Vector Machine (SVM). In addition to helping 

develop a sound solution, this work encourages the 

use of trustworthy, interpretable, and uncertainty-

aware AI solutions for manufacturing. 

 

3. Methodology 

3.1 Dataset Overview 

This study utilises the Predictive Maintenance 

Dataset (AI4I 2020), which is widely used in 

condition monitoring and failure prediction tasks 

created by IBM. The data includes 10,000 simulated 

readings from machine components in a 

manufacturing setting. The dataset comprises 14 

features, including both numerical and categorical 

values, for air temperature, process temperature, 

torque, rotational speed, and tool wear. An essential 

aspect of the dataset is the binary target label, called 

Machine Failure, which indicates whether a machine 

malfunctioned (1) or not (0). The primary issue with 

this dataset is that it contains a very small number of 

machine failure cases, accounting for only 0.7% of 

all data points. Such behavior resembles difficulties 

found in practice, as failures are rare but essential, 

making it harder for classical approaches to learn 

from the main class. 

3.2 Data Preprocessing 

The dataset had to be processed in several ways 

before it could be used for machine learning and 

deep learning models. Initially, the Type variable, 

which represents the different categories of 

machines (L, M, H), was encoded using label 

encoding. The simple tweak enabled these models to 

utilise FindHome as data with numerical values, 

such as in Support Vector Machines and neural 

networks. Additionally, all numerical features were 

processed using StandardScaler to remove the mean 

and ensure the features had similar variances. This 

step becomes crucial when working with CNNs and 

SVMs, as both depend on the size of the features. 

After normalisation, the data was arranged so that 

80% went to the training set and 20% to the test set. 

Thanks to stratification, any cases that failed in the 

real data were included in both splits, and the class 

balance was maintained as needed. This way, the 

model’s actual performance can be checked, as the 

test set's imbalance may lead to inaccurate scores. A 

correlation analysis was also done using Pearson 

correlation plotted in a heatmap. Using this process, 

the paper determined that features highly correlated 

could be deleted to help reduce multicollinearity, or 

that some related features should be retained to make 

the model easier to interpret. However, for CNN 

modelling, correlated features were not split apart, 

so the model still preserves their space in the image. 

3.3 Computer Vision Representation 

A novel step in this study is the transformation of 

structured tabular features into synthetic grayscale 

images, which facilitates computer vision modeling. 

To analyse fault progression, five critical factors 

were chosen since they are significant in this 

domain: torque, air temperature, process 

temperature, rotational speed, and tool wear. For 

each feature set, a 28×28 grayscale image was 

created, and the feature values were turned into 

vertical bars or stripes to indicate different 

intensities in the image. 

The motivation behind this transformation 

is to exploit the strength of CNNs in capturing 

spatial dependencies and localised patterns. 

Compared to traditional models, CNNs can 

recognise changes in the interaction of features from 

raw images, helping them detect the early signs of 

machine wear. The CNN models used here start with 

these image representations regardless of whether 

the learning applies deterministic rules or focuses on 

probabilities. 

 

https://www.kaggle.com/datasets/stephanmatzka/predictive-maintenance-dataset-ai4i-2020
https://www.kaggle.com/datasets/stephanmatzka/predictive-maintenance-dataset-ai4i-2020
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3.4 CNN Architecture 

A Convolutional Neural Network (CNN) is used as 

the primary deep learning model to process the 

provided 28×28 grayscale images. The process 

begins with several 3×3 convolutions, ReLU 

activation functions, and pooling layers that reduce 

the spatial size of the data. The method introduces 

dropout to help avoid overfitting, since there is a 

small number of failures in the data. The final steps 

include a regular dense layer followed by a softmax 

layer that outputs figures for class probabilities, 

indicating binary classification (failure vs. no-

failure). 

CNN was trained using the Adam optimizer, 

performing categorical cross-entropy loss over 10 

epochs with a batch size of 64. Although it performs 

well in competition, this model does not account for 

uncertainty, which means it may not be trusted for 

predictive maintenance or other critical applications, 

as missed faults and incorrect but confident 

predictions can lead to problems. 

3.5 MC Dropout for Probabilistic Learning 

To address the issue of uncertainty blindness 

commonly found in standard CNNs, this study 

incorporates Monte Carlo (MC) Dropout into the 

CNN method. While training, dropout randomly 

turns off neurons to avoid co-adaptation; however, 

to make a prediction, this approach turns on the 

dropout layers in the prediction part by setting 

training=True. This procedure estimates a Bayesian 

result by generating a distribution of outputs after 

multiple stochastic forward runs. 

The MC Dropout-enhanced CNN performs 50 

forward passes for each test input, generating a 

distribution of softmax predictions. These 

predictions determine the most likely class for the 

mean and measure the likelihood of each class by 

using the standard deviation. By understanding the 

risks associated with a prediction, the model can 

alert users to when it is best to review or adjust their 

decisions. Additionally, the preliminary model 

results are plotted in a calibration plot to assess the 

similarity between the model’s uncertainty estimates 

and the actual data. 

3.6 Classical Benchmarks 

The performance of the newly proposed CNN + MC 

Dropout framework was checked by training two 

traditional machine learning models, Random Forest 

(RF) and Support Vector Machine (SVM), on the 

same dataset. The original sensor data was not 

adjusted using images in these models. Random 

Forest was configured to use 100 trees with the 

default parameters, and the SVM employed a radial 

basis function (RBF) kernel for its non-linear 

classification task. 

The models were evaluated using measures of 

classification accuracy, ROC AUC, and their 

calibration performance. The baseline performance 

was reliable, and the calibrated probabilities showed 

that RF is well-suited for easy understanding and 

high confidence. Although SVMs were accurate 

competitors, they did not output probabilities as 

most algorithms do and needed an additional 

calibration using Platt scaling. These classical 

results show how to interpret the achievements of 

more sophisticated CNN-based models. 

3.7 Implementation Details 

The implementation process utilized Python in 

Google Colab, leveraging helpful open-source 

libraries such as NumPy, Pandas, Matplotlib, 

Seaborn, scikit-learn, TensorFlow, and TensorFlow 

Probability. To create images from tabular data, 

custom NumPy routines were employed, whereas 

Keras enabled the creation of CNN and MC Dropout 

models through its sequential and functional APIs. 

The preprocessing libraries in scikit-learn were used 

for stratified splitting, normalisation, and label 

encoding. A Bayesian approximation model was 

created by using Flipout layers and distributional 

outputs from TensorFlow Probability for uncertainty 

estimation. 

The evaluation was visualized using ROC curves, 

calibration plots, and histograms to illustrate 

predictive uncertainty. The same splits for the data 

were used when testing all types of models to avoid 

bias. Colab GPUs were utilized to run the model, 

ensuring consistent results each time and facilitating 

rapid training across multiple epochs. The use of 

these methods aligns with best practices for 

reproducible research, ensuring that the proposed 

method is both robust and easy to understand. 

 

 

Figure 1: Proposed Methodology Diagram 

The first step in the framework is to use unprocessed 

AI4I 2020 sensors and change them into grayscale 

before training the CNN on them (Figure 1). The 

tabular features are extracted from the parallel path 

for the use of classical ML models (RF and SVM). 

MC Dropout includes uncertainty calculation in its 

predictions. All models are assessed using AUC, 

accuracy, and measures of calibration. 
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4. Result 

 

Figure 2: Distribution of Machine Failure Cases 

The dataset is unbalanced, since there are nearly 

9,932 normal operations and only 68 failure cases 

(Figure 2). The lack of data balance presents a 

challenge in training the model, as classifiers may 

exhibit a preference for the higher-represented 

group. To ensure a model behaves fairly, test it using 

precision, recall, and procedures such as stratified 

sampling or class-weight adjustment. 

 

 

Figure 3: Feature Correlation Heatmap 

The process temperature is strongly correlated with 

air temperature, as shown in Figure 3 (r = 0.88). 

Torque and rotational speed also exhibit a strong 

negative correlation with a correlation coefficient of 

r = -0.88. Strong positive relationships are seen 

between Machine failure and torque (r = 0.19) and 

tool wear (r = 0.11). From these insights, the feature 

significance can be determined and influence the 

choice of dimensionality reduction or regularization 

methods. 

 

 

Figure 4: Training vs Validation Accuracy (CNN) 

Figure 4 produces accuracy of over 96% for both 

validation and training sets, with little change, 

suggesting no overfitting. Still, such a flat graph can 

also be a sign that students are approaching their 

limit or are not learning effectively. This result 

indicates that the model is well-trained; however, it 

could benefit from either stricter regularization or 

information-rich features to further improve its 

generalization. 

 

 

Figure 5: Predictive Uncertainty via MC Dropout 

The standard deviation of the predictions at each 

input is shown in Figure 5 using 50 Monte Carlo 

samples. The high confidence of the model is 

evident in most predictions, which have a standard 

deviation of less than 0.03. Investigations with a 

right-skewed distribution tend to encounter 

situations where the model is uncertain. Uncertainty 

quantification supports managers in predictive 

maintenance (PdM) before investing in preventive 

maintenance. 
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Figure 6: Classification Report – Random Forest 

In Figure 6, Random Forest achieves 100% 

precision and recall in the presence of healthy seeds 

and 97% recall when failures occur. F1-score is still 

very good (0.99) for the minority class, indicating 

performance isn’t affected by the class imbalance. 

This suggests that MC Dropout achieves a high level 

of accuracy and provides confident predictions for 

unusual yet vital failures. 

 

 

Figure 7: Confusion Matrix – Random Forest 

With Random Forest, there are two misclassified 

failure cases, and the outcome reflects near 

perfection with 1932 true negatives and 66 true 

positives (Figure 7). It suggests that the device can 

classify well and handle both types of errors equally. 

The model works well for datasets that are not in 

sequence, such as AI4I 2019, since it provides a 

simple and quick way to compare performances on 

PD M tasks. 

 

 

Figure 8: Classification Report – SVM 

Just like Random Forest, the SVM model reached 

100% precision and 97% recall for the class with 

failures (Figure 8). Macro and weighted average F1-

scores stay between 0.99 and 1.00. It proves that, 

similar to Random Forest, SVM is effective at 

dealing with data imbalance, which helps its place 

as a reliable choice for forecasting in maintenance. 

 

Figure 9: Confusion Matrix – SVM 

The SVM confusion matrix corresponds to the 

Random Forest, showing that 1932 categories were 

well classified as non-failure, and 66 were true 

positives, while only 2 cases were missed, falling 

into the false negative category. The symmetry in 

the model demonstrates that it is stable and sound 

(Figure 9). A low false negative rate is significant in 

PdM because missing a failure could result in 

expensive damage to the system or extended 

downtime. 

 

Figure 10: ROC Curve – Classical Models 

Both methods, Random Forest and SVM, have an 

AUC of 0.98, which means they are excellent at 

differentiating between following and non-next time 

points. The models show both high sensitivity and 

specificity since their ROC curves are very close to 

the top-left point (Figure 10). Their ROC results 

demonstrate that these models are effective for rapid 
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and accurate failure detection in factories. 

 

 

Figure 11: ROC Curve – CNN vs MC Dropout 

The ROC curve is used to measure the accuracy of 

the conventional CNN versus the CNN powered by 

MC Dropout. Both models show AUC scores of 

0.63 and 0.64, which indicates a moderate capacity 

to separate people who failed from those who did not 

fail (Figure 11). However, the results from MC 

Dropout suggest a slight gain in sensitivity 

compared to approaches without uncertainty 

estimation. 

 

 

Figure 12: Calibration Curve – MC Dropout 

It demonstrates the correspondence between what is 

predicted and what happens. In lower bins, MC 

Dropout’s curve roughly matches the diagonal, 

which is evidence of proper confidence calibration 

for low-risk predictions (Figure 12). The limitation 

is that the model fails to provide mid-to-high 

confidence estimates, which means its prediction 

values might be too modest. Being cautious in 

critical systems is wise, as being too confident often 

results in costly mistakes. 

5. Discussion 

Utilizing computer vision in predictive maintenance 

(PdM) tasks has transformed the way industrial 

sensor data is utilized. When we map multivariate 

time series using grayscale images, CNN models 

can detect similarities between time series that 

would be challenging to find in only numerical 

features. Learning from visual examples helps the 

system see how different sensors are linked in space, 

enabling it to recognise both compound and minor 

faults. The study confirms that using these synthetic 

visions provides CNNs with an extensive range of 

information that supports flexible pattern 

recognition in the complex, nonlinear domains 

typical of smart manufacturing. Monte Carlo (MC) 

Dropout during inference is a key change introduced 

in this research, enabling the CNN to estimate the 

uncertainty of its predictions. In these complex 

safety systems, this prediction highlights any results 

that seem less confident or are not very clear. Instead 

of making confident predictions at every 

opportunity, MC Dropout can advise against relying 

on the model when something unexpected can go 

wrong, making workplaces safer. Although ROC 

analysis shows that the CNN + MC Dropout model 

excels at identifying uncertainty, it does not perform 

as well as traditional algorithms, such as Random 

Forest and Support Vector Machines, in terms of 

raw classification. Particularly, Random Forest 

performs better in terms of AUC and is perceived as 

well-balanced for parallel variations of sensitivity 

and specificity, particularly with table-shaped data 

based on sensor measurements. This makes it 

simpler to use the model when the amounts of data 

are limited and the categories are easy to interpret. 

From this, an essential choice between accuracy and 

speed becomes apparent in making AI models for 

PdM. Although adaptable and presenting powerful 

visuals, deep learning models are commonly 

challenging to understand and require a substantial 

amount of data and powerful processing to achieve 

their full potential. However, classical ML models 

provide more precise explanations and are simpler 

to set up for calibration between precision and recall 

in live operations. For this reason, while CNNs 

outperform other models in many ways, classical 

ML remains competitive when working with small 

and well-organized datasets. Model calibration 

plays a critical role in this area. Models with high 

accuracy may still perform poorly if the scores 

indicating their confidence are not accurate. The 

results show that the Random Forest model outputs 

were more accurately calibrated than those from the 

augmented CNN model. Still, MC Dropout plays a 

vital role in this work because it supplies 

probabilistic information to overconfident black-

box models, helping to improve decision-making in 

key maintenance areas. 

6. Conclusion 

A novel strategy for predictive maintenance is 

created by merging computer vision and 

probabilistic machine learning into a single process. 
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Using sensor time series, the pipeline generates 

synthetic images, on which CNNs can classify the 

states of a machine. To overcome the need for 

specific predictions, MC Dropout is joined with the 

CNN, making it possible to measure the model’s 

faithfulness in manufacturing areas that focus on 

safety. For comparison, the system is evaluated 

against existing interpretable models, such as 

Random Forest and SVM, allowing us to examine 

their performance, calibration, and the level of 

confidence we have in their results. The primary 

objective of this study is that using accuracy alone is 

insufficient to evaluate the suitability of a model in 

Predictive Maintenance (PdM). When it comes to 

machine safety and extended equipment life, 

considering interpretability and calibration is 

crucial. Although CNN models allow for different 

levels of complexity, adding mechanisms such as 

MC Dropout is necessary to make their outcomes 

truly actionable. Future work will involve utilizing 

absolute sensor data from industrial cameras to 

enhance picture quality. Additionally, models that 

utilize CNNs to extract features and Random Forests 

as classifiers can be created. Furthermore, 

probabilistic RNNs will be examined to ensure time-

based uncertainties are captured in the PdM system. 
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