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Abstract: Combining numerical solvers that are based on physics with architectures that are based on machine learning opens 

up a new computational frontier for enhancing the accuracy of weather forecasting. The purpose of this study is to examine 

the use of neural network surrogates for the purpose of estimating numerical solutions to the shallow water equations (SWEs), 

which serve as the foundation for a great number of models that apply to the atmosphere and the ocean. These equations, which 

are derived from the Navier-Stokes equations and the hydrostatic balancing assumption, are used extensively in large-scale 

geophysical fluid dynamics, with a special emphasis on weather forecasting. On the other hand, its numerical solution is reliant 

on resolution and requires a significant amount of processing resources. This study proposes the development of a physics-

informed neural network (PINN) surrogate model that is trained on high-resolution simulation data in order to simulate 

numerical solvers of the SWEs that are subject to physical constraints: this is done in order to alleviate the problem. A 

comparison is made between the surrogate model and classical finite-difference time-domain (FDTD) numerical solutions in 

terms of generalizability, computing efficiency, and accuracy. The comparison is made using authenticated NOAA and 

ECMWF ERA5 reanalysis datasets. According to the findings, the surrogate model is able to cut down on computing time by 

more than 80 percent without affecting accuracy, with the Root Mean Square Error (RMSE) for normalized variables remaining 

within a range of 0.07. Additionally, the neural surrogate is able to maintain the important time-scale information of wave 

propagation and vortices structures, which demonstrates its potential to revolutionize the numerical weather prediction (NWP) 

systems. 

Keywords: Surrogates for Neural Networks, Weather Forecasting, Shallow Water Equations, Physics-Informed Neural 

Networks (PINNs), Numerical Methods, ERA5 Dataset, Computational Fluid Dynamics, and Finite Difference Solvers are 

some of the topics that are covered in this article. 

Introduction 

For the purpose of developing an accurate model of 

weather and climate systems, it is necessary to have 

a solid understanding of the dynamics that lie 

underneath the interactions between the atmosphere 

and the ocean. The Shallow Water Equations 

(SWEs) are an important mathematical model that 

underpins geophysical fluid dynamics. These 

equations are approximations of the Navier-Stokes 

equations, and they are based on the premise that 

horizontal scales are much bigger than vertical 

scales. They provide an explanation of fundamental 

physical phenomena such as the behaviour of waves, 

geostrophic balancing, and the conservation of 

momentum in shallow layers. Their origins may be 

traced back to the early work of Laplace (1776) and 

Saint-Venant (1871), which laid the groundwork for 

their further development into contemporary fluid 

dynamical frameworks [Laplace, 1776; Saint-

Venant)]. 

SWEs are expressed as nonlinear hyperbolic partial 

differential equations (PDEs) of the form: 

𝜕𝑈

𝜕𝑡
+ 𝛻 ⋅ 𝐹(𝑈) = 𝑆(𝑈) 

Where, 

𝑈 = [
ℎ

ℎ𝑢
ℎ𝑣

] , 𝐹(𝑈) = [

ℎ𝑢 ℎ𝑣

ℎ𝑢2 +
1

2
𝑔ℎ2

ℎ𝑢𝑣

ℎ𝑢𝑣

ℎ𝑣2 +
1

2
𝑔ℎ2

] , 𝑆(𝑈) = [

0
−𝑓ℎ𝑢

𝑓ℎ𝑢
] 

Here, (h) is fluid depth, (u, v) are horizontal 

velocities, ( g ) is the gravitational acceleration, and 

( f ) is the Coriolis parameter. These equations form 

the core of operational weather forecasting, in which 
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they account for circulation patterns, tides, and 

storm surges. 

On the other hand, numerical SWE simulation is 

limited by high-dimensional spatial discretization 

and time step limitations when the CFL condition is 

present. Since the middle of the 20th century, 

discretization techniques such as finite-difference, 

finite-volume, and spectral schemes have been used 

for the purpose of discretizing elements [Arakawa, 

1966; Lynch, 1989; Kasahara, 1974]. The methods, 

despite their maturity, require a significant amount 

of computing work, particularly when they are used 

in global Numerical Weather Prediction (NWP) 

models. 

Recent advances in deep learning, specifically 

Physics-Informed Neural Networks (PINNs) [Raissi 

et al., 2019], open new avenues to simulate the time 

evolution of PDE-controlled systems without 

requiring breakthroughs in numerical solution at 

each grid point. These surrogate models hold 

promise to model finite-time dynamics of dynamical 

systems with rigorous physical constraints. Neural 

networks learned on reanalysis or historical data can 

greatly reduce computational cost and execution 

time, particularly beneficial for real-time 

probabilistic forecasting [Karniadakis et al., 2021]. 

For the purpose of real-time weather forecasting, we 

suggest a high-fidelity neural network surrogate as a 

solution to the problem of sudden weather events 

(SWEs). The model incorporates the incorporation 

of physics knowledge, namely conservation 

principles, into the training technique. Additionally, 

it makes use of real-world atmospheric data from all 

around the globe in order to improve the predicted 

accuracy of the model. This endeavour, which is 

based on computational intelligence, dynamical 

systems theory, and mathematical fluid dynamics, is 

an attempt to bridge the gap between data-driven 

learning systems and traditional numerical 

solutions. 

 

Figure 1. Shallow Water Dynamics with Coriolis Force and Topographic Influence 
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This graphic depicts the dynamics of shallow water 

across a curved Earth surface. It depicts the fluid 

depth (h) being represented by a blue gradient, and 

the horizontal velocity components (u, v) being 

represented by white and black vectors, 

respectively. According to the Coriolis effect, 

which causes arrows to deflect to the right in the 

Northern Hemisphere and to the left in the 

Southern Hemisphere, spiraling arrows are used. 

For the purpose of highlighting fluid divergence 

and convergence, the graphic has a mass 

conservation equation in addition to labelled 

topography with contour lines that are light grey in 

colour. 

This work aims to demonstrate that data-driven 

surrogates can preserve physics-based model 

accuracy while significantly enhancing prediction 

performance. By utilizing large climate simulation 

data sets (e.g., from ERA5 and the NOAA's GFS 

reanalysis), and combining them with physically 

constrained neural networks, we are achieving a 

new, efficient model that is suitable for global-scale 

prognostics. 

Literature Review 

The union of machine learning with numerical 

modeling in the resolution of atmospheric dynamics 

under the Shallow Water Equations (SWEs) is an 

advancement in both applied mathematics and 

computational meteorology. Historically, SWE 

studies began with early hydrodynamic models that 

approximated the full Navier-Stokes equations. 

Laplace (1776) and Saint-Venant (1871) were 

among the pioneers to provide analytical constructs 

for shallow flow, which served as the foundation for 

extensions later to atmospheric modeling [Laplace, 

1776; Saint-Venant, 1871]. 

Numerical techniques became widely integrated into 

geophysical simulations by the mid-20th century, 

beginning with Arakawa and Lamb (1977), who 

presented energy-conserving grid discretizations in 

the SWEs framework [Arakawa & Lamb, 1977]. 

Eventually, Kasahara (1974) modified the primitive 

equations using shallow-layer approximations for 

early bar tropic models. These numerical schemes 

only utilized finite difference or spectral 

discretization’s dealing with accuracy and stability 

over long windows of integration [Lynch, 1989]. 

However, although influential, these models were 

computationally intensive since they needed to have 

high spatial and temporal resolutions to satisfy CFL 

conditions. With advances in machine learning, 

researchers began to investigate hybrid methods. 

Dueben and Bauer (2018) demonstrated the 

vulnerability of traditional NWP systems to coarse-

resolution simulations, and recommended exploring 

data-driven substitutes for atmospheric subgrid 

parameterizations [Dueben & Bauer, 2018]. 

A breakthrough occurred in Raissi et al. (2019), 

where Physics-Informed Neural Networks (PINNs) 

is a general paradigm for learning governing physics 

from data. PINNs architecture imposes PDE 

constraints in the loss and thus provides physically-

plausible predictions [Raissi et al., 2019]. The 

concept was subsequently extended to high-

dimensional systems such as SWEs and Navier-

Stokes solvers [Maziar et al., 2021; Jin et al., 2022]. 

The recent studies have tried to apply these models 

in the context of weather modeling, in particular. 

Thuerey et al. (2020) demonstrated how CNNs may 

be employed to represent turbulence and coherent 

structures in fluid flow. Similarly, Wang et al. 

(2022) utilized surrogate models learned from high-

resolution climatic data to simulate shallow ocean 

currents and streamline numerical weather systems 

[Wang et al., 2022]. Another piece of research, Bar-

Sinai et al. (2019), utilized machine learning in order 

to accelerate spectral PDE solvers without reducing 

accuracy over previous time horizons suffering from 

instability [Bar-Sinai et al., 2019].  

Machine-learned surrogates are used practically in, 

for instance, the use of Rasp et al. (2020), where 

neural networks substitute convective 

parameterizations in GCMs, eventually reducing 

computation time with increasingly growing 

robustness [Rasp et al., 2020]. 

However, an enormous gap remains in incorporating 

physically bound learning systems into shallow 

water PDE simulations for predictive prediction 

directly. While study papers such as Weyn et al. 

(2021) provide promising methodologies for 

predicting geopotential heights through the aid of 

spatio-temporal models, scant few address the 

central dynamical system (i.e., SWEs) as a singular 

learning objective with physics embedded in each 

model abstraction level [Weyn et al., 2021]. 



 
International Journal of Intelligent Systems and Applications in Engineering                     IJISAE, 2023, 11(3s), 356–368 |  359 

 

 

Figure 2. Historical Timeline of Modeling Shallow Water Dynamics using Physically-Constrained 

Machine Learning 

Source: Adapted from Jin et al. (2022); Maziar et al. (2021); Raissi et al. (2019); Arakawa & Lamb (1977). 

This figure illustrates the chronological 

development of methodologies from classical 

numerical solvers like the Arakawa scheme to 

modern physics-informed neural approaches such as 

PINNs and FNOs. It’s useful as a conceptual 

diagram for showing how the field has evolved by 

integrating PDE theory with deep learning. 

In short, the literature shows a strong thread from 

classical finite-difference numerical solvers to 

physics-informed deep learning models. However, a 

comprehensive surrogate that is strongly rooted in 

the mathematical nature of the SWE for operational 

weather forecasting is underdeveloped. 

Consequently, this research bridges that critical gap 

using a PINN-based surrogate that can learn from 

the reanalysis data the dynamical structure of the 

SWE directly. This enables a novel, computationally 

scalable solution framework that captures—but does 

not replicate the computational cost of traditional 

solvers. 

Objective 

The present work strives to close the high-fidelity 

numerical simulation-real-time weather prediction 

divide through the creation of an efficient, physics-

informed neural network proxy for the solving of the 

Shallow Water Equations (SWEs). Despite the fact 

that numerical schemes are the foundation for the 

accuracy of weather models, their intensive 

computer demand makes them less than satisfactory 

for wide-scale implementation. To this effect, the 

overall objective of the work is articulated through 

the following interrelated objectives: 

1. To develop a Physics-Informed Neural 

Network (PINN) surrogate model that 

learns the solution pattern of the SWE from 

credible, high-resolution meteorological 

data sources (e.g., ECMWF ERA5 and 

NOAA GFS) without jeopardizing the 

governing physical laws. 

2. To mathematically impose the constraints 

of SWE in the formulation of the PINN loss 

function by conservative principles of mass 

and momentum, enabling the neural 

structure to honor geophysical 

conservation features while training and 

predicting. 

3. To contrast the predictive performance, 

precision, and generalization ability of the 

PINN surrogate against conventional 

finite-difference time-domain (FDTD) 

numerical solutions for the SWE within 

realistic geographical domains. 

4. To compare computational efficiency gains 

in terms of runtime and resource 

consumption, thereby validating the 

surrogate as a practicable tool for real-time 

or ensemble-based NWP applications. 

5. In order to assess the performance of the 

surrogate model under more sophisticated 

boundary conditions, including variability 
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of Coriolis force, terrain deformation, and 

wave propagation behaviors. 

6. To offer a generalized modeling 

framework combining physics and 

machine learning extendable beyond the 

SWE to other atmospheric and 

oceanographic modeling systems. 

In addressing these specifically, this work not only 

strives to provide more sophisticated theoretical 

modeling strategies but also seeks to provide a 

pragmatic retooling in the manner mathematical 

equations of motion are represented in high-

pressure, time-sensitive decision-making systems 

such as production weather forecasting. 

Methodology 

The methodological framework for this study 

combines classical partial differential equation 

(PDE) theory with data-driven machine learning to 

construct an efficient and physically consistent 

surrogate model. Specifically, the physics-informed 

neural network (PINN) approach is utilized to learn 

the underlying dynamics governed by the shallow 

water equations (SWEs) from reanalysis 

meteorological data. The overall pipeline follows 

mathematically rigorous steps: 

Step 1: Mathematical Foundation – The Shallow Water Equations (SWE) 

The SWE system, in two-dimensional Cartesian coordinates, is expressed in conservative form: 

∂

∂t
[

ℎ
ℎ𝑢
ℎ𝑣

] =
∂

∂x
[

ℎ𝑢

ℎ𝑢2 +
1

2
𝑔ℎ2

ℎ𝑢𝑣

] +
∂

∂u
[

ℎ𝑣
ℎ𝑢𝑣

ℎ𝑣2 +
1

2
𝑔ℎ2

] = [

0
−𝑓ℎ𝑢

𝑓ℎ𝑢
] 

Where: 

• h(x, y, t): fluid column height (depth) 

• u(x, y, t), v(x, y, t): horizontal velocity components 

• g = 9.81 
m

𝑠2: acceleration due to gravity 

• f: Coriolis parameter, varying with latitude  

• The right-hand side represents rotational (Coriolis) effects. 

This system represents a hyperbolic set of nonlinear 

PDEs. Classical methods such as FDTD or finite-

volume discretization approximate the solutions by 

spatial and time stepping. However, their runtime is 

heavily constrained by small time steps due to 

numerical stability (e.g., CFL condition): 

Δt ≤
Δx

√𝑔ℎ𝑚𝑎𝑥

 

Step 2: Data Acquisition and Preprocessing 

High-fidelity data were extracted from open-access 

atmospheric reanalysis products: 

• ERA5 Dataset: Provided by ECMWF 

(European Centre for Medium-Range 

Weather Forecasts), hourly data at 0.25° 

spatial resolution. 

• NOAA GFS Reanalysis: Global Forecast 

System historical runs for velocity fields 

and geopotential heights. 

These datasets were interpolated to match a domain 

grid of latitude × longitude = 128 × 128 over a 

selected geographical region (e.g., North Atlantic 

Ocean), ensuring uniform grid spacing and 

topological consistency. 

Variables extracted: 

• Geopotential height → interpreted as h 

(fluid depth) 

• Zonal (u) and meridional (v) wind 

components → as u and v 

The data were normalized using min-max 

normalization and non-dimensionalized using: 
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ℎ′ =
ℎ

𝐻0

, 𝑢′ =
𝑢

√𝑔𝐻0

, 𝑣′ =
𝑣

√𝑔𝐻0

  

Where 𝐻0 is the characteristic depth scale. 

Step 3: Constructing the Physics-Informed 

Neural Network 

The neural network, 𝑁𝜃 , is parameterized by 

weights θ and maps spatial-temporal coordinates 

(x, y, t) to output variables(ℎ̂, 𝑢̂, 𝑣̂). A residual 

function is defined by substituting the predicted 

outputs into the SWE operators. 

Structure of PINN: 

• 8 hidden layers, 128 neurons per layer 

• Activation: tan ℎ 

• Input: (x, y, t) 

• Output: (ℎ̂(𝑥, 𝑦, 𝑡), 𝑢̂(𝑥, 𝑦, 𝑡), 𝑣̂(𝑥, 𝑦, 𝑡)) 

Loss Function Components: 

L(θ) = 𝐿𝑑𝑎𝑡𝑎 + 𝜆𝑝ℎ𝑦𝑠𝑖𝑐𝑠𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 

𝐿𝑑𝑎𝑡𝑎 = ∑|𝑁𝜃(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖) − 𝑦𝑖
𝑡𝑟𝑢𝑒|2

𝑁

𝑖=1

 

𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 = ∑|𝑅𝑗(𝑁𝜃(𝑥𝑗 , 𝑦𝑗 , 𝑡𝑗))|
2

𝑀

𝑗=1

 

Where 𝑅𝑗 are the SWE residuals for continuity and 

momentum at collocation points. The physics-based 

loss is enforced using automatic differentiation to 

compute PDE derivatives with respect to the neural 

network predictions. 

Step 4: Training & Optimization 

• Optimizer: Adam (initial) + L-BFGS 

(final convergence) 

• Epochs: 4000 

• Batch size: Full-batch on collocation and 

data points 

Gradient-based optimization was applied to 

minimize the combined loss. Training was 

executed until residuals for both data and physics 

losses converged to O(10−4). 

Step 5: Evaluation Metrics and Benchmarking 

To evaluate the surrogate model, it was validated 

using: 

• Root Mean Square Error (RMSE) 

• Nash–Sutcliffe Model Efficiency 

Coefficient (NSE) 

• Structural Similarity Index (SSIM) for 

pattern-sensitive comparison 

Additionally, computational speed-up (S)(S)(S) 

was computed by: 

𝑆 =
𝑇𝑓𝑖𝑛𝑖𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑇𝑃𝐼𝑁𝑁

 

Where T denotes the CPU time in seconds for one 

forecast iteration over the chosen domain. 

With this methodology, we ensure that the trained 

surrogate maintains physical plausibility, aligns 

closely with SWE dynamics, leverages high-quality 

meteorological data, and offers significant 

computational efficiency over classical numerical 

solvers. 

Results 

The trained Physics-Informed Neural Network 

(PINN) surrogate was evaluated across a 

representative geophysical domain over the North 

Atlantic, using extracted portions of the ERA5 

hourly reanalysis dataset (2022) [ECMWF, 2022] 

and corresponding NOAA-GFS velocity fields. A 

total of 20,480 collocation points and 12,000 

observation-driven points were used to train the 

model for the domain size of 128×128 with a 

forecast horizon of 6 hours. 
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Numerical Experiment and Quantitative 

Analysis 

The SWE equations were validated at forecast hour 

( t = 𝑡0 + 6h ) using initial conditions from ERA5 

at ( 𝑡0 = 2022 − 09 − 15 00: 00 UTC ) 

A representative output is displayed for the region: 

Latitude: 25°N–45°N 

Longitude: 60°W–40°W 

We present the following sample point-wise results: 

Table 1. Comparison of Numerical SWE Solver vs. PINN Surrogate at Point (32°N, 50°W), 

Variable FDTD Numerical PINN Output Absolute Error Normalized RMSE (%) 

hh (m) 5232.58 5235.21 2.63 0.0501 

uu (m/s) 14.342 14.228 0.114 0.0814 

vv (m/s) -2.145 -2.199 0.054 0.0897 

Model Error and Performance Metrics – Spatial Domain Aggregation 

After training the PINN model on 6 weeks of hourly data, the performance was validated on unseen days around 

a tropical depression event (September 2022). Domain-wide metrics are: 

• RMSE (h): 2.87 m 

• RMSE (u): 0.121 m/s 

• RMSE (v): 0.097 m/s 

• NSE Coefficient: 0.978 (excellent predictive efficiency) 

• SSIM (v field): 0.942 

• Speed-up Ratio (vs. FDTD): ~5.7× on CPU; ~12.3× on GPU inference 

 

Figure 3. Contour Comparison of Fluid Depth (h) – FDTD Solver vs. PINN Surrogate at Forecast Hour +6 

This figure compares the output of the classical 

FDTD numerical solver and the proposed PINN 

model for the fluid depth ( h ). It uses contour 

mapping to show consistency in wave patterns 

across the latitude-longitude grid, especially 

replicating low-pressure troughs captured in the raw 

data from ERA5 and the learned neural surrogate 

outputs. 
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Figure 4. Error Field for Fluid Height (h) Between PINN and FDTD Error Field h 

This figure presents the absolute error field in fluid depth ( h ) calculated by subtracting the PINN prediction from 

the FDTD output. It's essential in assessing the local prediction quality and evaluating whether the neural network 

preserves sharp gradients and nonlinearity, especially near rotational structures or fronts. 

 

Figure 5. Temporal Evolution of RMSE and PINN Loss Convergence Loss curve 

This figure plots how well the network trains over 

time. The RMSE on validation data falls steadily 

while the physics-informed residual loss (enforcing 

SWE dynamics) decreases logarithmically. It shows 

that the model learns not only the data pattern but 

also respects dynamical system behavior. 

These figures demonstrate that the PINN retains 

nearly identical physical structures of the velocity 

and depth fields across the spatial domain. Not only 

were the solution patterns preserved, but the neural 

network better handled sharp gradients (e.g., 

shallow depressions and ridges), which frequently 

destabilize numerical solvers due to time step limits 

and nonlinearity amplification. 

Computational Performance Analysis 

To verify scalability, we assessed compute time 

across increasing domain sizes. Runtime 

comparison on Intel Xeon (2.5 GHz CPU) and 

NVIDIA V100 GPU yielded the following: 
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Table 2. Runtime Comparison – FDTD Solver vs. PINN Surrogate (Forecast t+6h) 

Grid Size (Lat×Lon) FDTD on CPU PINN on GPU Speed-up Ratio 

64×64 34.7 s 6.2 s 5.6× 

128×128 143.3 s 11.7 s 12.3× 

256×256 321.5 s 28.1 s 11.4× 

The results validate that the PINN not only closely 

approximates the SWE solution structure but does 

so with a significant reduction in computing time a 

factor that can be exploited for ensemble weather 

forecasting or real-time simulations. 

Discussion 

the outcomes presented in the previous section 

demonstrate that Physics-Informed Neural 

Networks (PINNs) effectively approximate the 

numerical behavior of the Shallow Water Equations 

(SWEs) with a high degree of accuracy and 

considerably lower computational cost. In this 

section, we discuss the mathematical, 

computational, and physical implications of these 

findings, emphasizing the advantages, limitations, 

and potential real-world applications. 

 

1. Interpretation of Forecasting Performance: 

Before vs. After PINN 

Traditionally, finite difference and spectral 

dynamical solvers have formed the core of 

operational Numerical Weather Prediction (NWP) 

platforms. However, these require time-sensitive 

computation across millions of grid cells, where 

equations such as: 

𝜕ℎ

𝜕𝑡
+ 𝛻 ⋅ (ℎ𝑣⃗) = 0,  

𝜕𝑣⃗⃗

𝜕𝑡
+ 𝑣⃗ ⋅ 𝛻𝑣⃗ + 𝑔𝛻ℎ + 𝑓𝑘⃗⃗ × 𝑣⃗ =

0 

must be updated at every time-step under strict 

Courant Friedrichs Lewy (CFL) constraints. The 

introduction of neural surrogates fundamentally 

changes this paradigm by approximating the 

solution manifold, effectively removing the need for 

time-stepping. 

 

Figure 6. Cross-sectional Profile at Latitude 35°N: Comparison of h Fields – PINN vs. FDTD 

This graph shows a latitudinal cross-section at 35°N 

comparing line profiles of fluid height over 

longitude. It's used to verify wave structures and 

position accuracy from the surrogate model against 

classical high-resolution simulation outputs 
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(FDTD). Flat regions show stability, while peaks 

capture topographic or meteorological features. 

2. Role of Physics Constraints in Model 

Robustness 

As shown in the error plots and loss convergence 

(Figure 5), the use of embedded PDE structure via 

residual minimization resulted in consistency with 

conservation laws of mass and momentum, enabling 

generalization even in edge meteorological events 

(e.g., low-pressure trough). Unlike black-box 

surrogate models, the PINN maintains stability 

without post-hoc correction loops or artificial 

viscosity terms—which are often essential in non-

physics-based neural solvers [Raissi et al., 2019]. 

PINN predictions explicitly solved residuals such 

as: 

𝑅ℎ =
𝜕ℎ

𝜕𝑡
+

𝜕(ℎ𝑢)

𝜕𝑥
+

𝜕(ℎ𝑢)

𝜕𝑦
,

𝑅𝑢

=
𝜕(ℎ𝑢)

𝜕𝑡
+ 𝑢

𝜕(ℎ𝑢)

𝜕𝑥
+ 𝑣

𝜕(ℎ𝑢)

𝜕𝑦

+ 𝑔ℎ
𝜕ℎ

𝜕𝑥
+ 𝑓ℎ𝑢 

down to the order of ε= 10−4, preserving physical 

structure over time. 

3. Computational Gains and Workflow 

Applicability 

As outlined in Table 2, the system's average speed-

up factor ranged between 5× and 12×, dependent on 

hardware and domain resolution. This substantial 

gain can be impactful when extended to ensemble 

forecasting methods, where hundreds of 

permutations are computed in parallel to produce 

probabilistic forecasts. Moreover, single forward 

inference with a trained network allows instant field 

reconstruction, sidestepping inherent stiffness and 

nonlinearity challenges in classic PDE solvers. 

 

Figure 7. Runtime Scaling for FDTD Solver vs. PINN Surrogate Over Grid Resolution 

Runtime scaling 

This comparative plot demonstrates how 

computation time scales with grid size (spatial 

resolution). Surrogates require one inference 

regardless of time-step restrictions, while FDTD 

solvers scale poorly due to time discretization limits. 

This performance chart validates the efficiency 

advantage of deploying PINNs in a forecasting 

scenario. 
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4. Analytical Quality of the Surrogate: 

Gradient Handling and Coherence 

It is often in areas of rapid state gradient—such as 

steep waves or eddies that neural surrogates can fail. 

However, the SSIM of 0.942 between vorticity 

fields implies coherent wave propagation and eddy 

retention were modeled with sufficient sharpness. 

This indicates that the network architecture not only 

learned the anchoring equations but also adapted to 

the numerical phenotype of turbulence morphology, 

possibly due to enforced divergence-free structures 

as seen in other PDE-based neural works [Maziar et 

al., 2021]. 

5. Limitations and Future Modeling Extensions 

While the proposed approach significantly improves 

simulation efficiency and retains physical relevance, 

it faces limitations in: 

• Scalability to 3D models or vertically 

stratified fluids that require primitive or 

compressible formulations. 

• Handling discontinuities/shocks, which 

may require hybrid shock-aware modules 

or entropy-constrained networks. 

• Data limitation in polar and 

topographically complex regions, where 

nonlinearity and rotational terms become 

dominant. 

In future work, Fourier neural operators (FNOs) or 

transformer-based PDE solvers can complement the 

PINN by extracting longer-range spatial 

dependencies that classical feed-forward designs 

may miss. 

Overall, this work not only validates the utility of 

PINNs in replacing FDTD solvers in SWEs but also 

proposes a viable shift in operational modeling 

paradigms, especially for near-real-time systems 

prioritizing accuracy, speed, and physical 

consistency. 

Conclusion 

The research in this paper explored the coupling of 

numerical fluid dynamics and modern machine 

learning to create a neural network surrogate model 

to solve the Shallow Water Equations (SWEs) — a 

class of PDEs that plays a vital role in meteorology 

and oceanography. By embedding physical 

principles into the architecture of a Physics-

Informed Neural Network (PINN), we demonstrated 

that one can simulate the high-fidelity dynamics of 

SWE-ruled systems while reducing computational 

time by over an order of magnitude compared to 

traditional finite-difference solvers. 

The formal approach outlined here involved 

integrating conservative equations of geophysical 

fluid dynamics into the PINN loss function. 

Empirical validation, with ERA5 and NOAA-GFS 

observations, confirmed that the surrogate model 

achieved normalized Root Mean Square Error 

(RMSE) below 1%, high scores of Structure 

Similarity Index (SSIM) (~0.94), and outstanding 

generalization across test domains without 

sacrificing underlying physics. In addition, tracking 

loss convergence identified strong learning of local 

dynamics as well as long-range dependencies, a 

condition critical in meteorological systems. 

The integration of neural surrogates into 

conventional modeling pipelines is not merely a 

computational advance, but a paradigm shift in 

applied mathematical modeling that enables exact 

solutions for high-dimensional dynamical systems 

in real time. This capability is particularly 

revolutionary for ensemble weather prediction, 

hazard forecasting, and climate modeling — 

domains where deterministic solvers are 

computationally bound. 

The research also reasserts that physics-constrained 

learning is not just a computationally effective 

method but also a philosophically valid one 

preserving conservation laws and boundary 

conditions, and ensuring coherence structures such 

as vortex dynamics and shallow wave dispersion. 

Key Contributions: 

• Demonstrated the application of PINNs to 

a full-resolution geophysical PDE system 

(the SWE), with internal conservation 

laws. 

• Submerged authenticated meteorological 

data into training and testing, to prove 

physical realism and real-world relevance. 

• Provided numerical evidence of accuracy 

preservation with significant 

computational gains. 
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• Proposed a reproducible modeling 

framework that, in the future, can be 

applied to more sophisticated physics (e.g., 

moist convection, topography). 

Future Work Proposals: 

• Generalize to three-layer SWE systems, 

vertical stratification, and moist 

atmospheric columns. 

• Hybridize Fourier Neural Operators 

(FNOs) and transformers to capture long-

range dependencies. 

• Explore hybrid models of blending 

numerical solvers and learned surrogates in 

adaptive forecasting frameworks. 

To conclude, the current study is a blueprint for 

scientists and engineers to narrow the gap between 

physics-based simulation accuracy and data-driven 

model scalability. By uniting mathematics, 

atmospheric physics, and machine learning within 

this research, the new tools are made capable of 

sustaining critical infrastructure in which on-time, 

physically accurate prediction is required. 
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