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Abstract: In the last decade, intrusion detection systems (IDS) have grown out of signature‐based filters 

to complex, AI driven platforms that have the ability to identify novel and polymorphic threats in real 

time. This paper will look in detail at artificial intelligence techniques used in IDS, compare and 

contrast the most influential frameworks and architectures, and position the next stage of the 

cybersecurity resilience endeavour. We will start by measuring the stakes: the average cost of a 

network breach in 2024 was USD 4.45 million (an increase of 2.6 percent in relation to 2023), with 

organizations recording a 15 percent increase in zero-day exploits, which highlights the inefficiency of 

the static detection processes. At this point, we categorize AI based IDS as supervised learning, 

unsupervised anomaly detection, deep learning, and new paradigms (graph neural networks, federated 

learning), their advantages and limitations compared across a selection of impactful benchmark 

datasets (NSL-KDD, CIC-IDS2017, UNSW\-NB15) and proprietary highly‐scaled enterprise traffic. 

Using the extensive comparisons to industry benchmarks (e.g., Snort, SVM-based models), we show 

that architecture that combines convolutional and recurrent networks will exceed 97 percent F1- score 

with latency measured at below 100 ms, at a 35 percent reduction in false positives compared to the 

older systems. We reveal in our discussion more long-standing issues dataset biases, adversarial 

robustness, and interpretability and report on newer ones in explainable AI, and differential privacy and 

self-healing IDS. Last, we suggest a future roadmap that can be made possible by embracing continual 

learning and integration of zero-trust policies, edge optimized TinyML agents in enabling scalable and 

privacy protecting detection within the 5g and the IoT ecosystem. It is a synthesis of existing 

knowledge, contains practical results to be taken up by practitioners, and a research road map based on 

future-proof AI-empowered IDS that could identify and counter the cyber threats of tomorrow. 

Keywords: Artificial Intelligence, Intrusion Detection Systems, Machine Learning, Deep Learning, 

Cybersecurity 

I. INTRODUCTION 

A. Background and Motivation 

The introduction of the obfuscation, evasion, and 

AI-based payloads have also made these now 

called advanced persistent threats (APT) evolve 

to be harder to detect as they have introduced 

advanced malware to cyber threats that were 

previously easy to spot as they exhibit some 

basic malware characteristics. International 

businesses recorded a 25 percent increase in the 

number of zero-days per annum in the planetary 

warm in 2024 alone, and over a third of the hits 

were caused by polymorphic malware and 

fileless intrusions [1]. Conventional intrusion 

detection systems (IDS), most notably those 

which employ signatures such as Snort, have 

been found insufficient with this pressure and 

can often show false-positive rates running in the 

50-60 percent range, and average detection 

timelines often lasting days or even weeks 

[6][12]. 

The latest innovations in artificial intelligence 

have brought a novel paradigm in the world of 

cybersecurity eliminating a static detection logic 

and leaving it to adaptive, self-learning systems. 
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Research has established that AI-based IDS has 

the potential of decreasing false positives by 

3040 percent, dynamically adjust to fresh threat 

behavior and significantly reduce the mean time 

to detection (MTTD) [5][3]. Nonetheless, the 

threat actors have also started to embrace AI, 

which has now given rise to novel types of 

attacks, like deepfake phishing, adversarial 

payload generation, and automated command-

and-control traffic emulation [8]. Defense 

systems must follow the trends of change in the 

threat actors. The concept of AI is so much more 

than enabling proactive threat hunting, enabling 

autonomous incident response, and turning 

cybersecurity into a predictive science rather 

than a reactive one. 

B. Problem statement 

Although great advancements have been made in 

intrusion using machine learning, most existing 

systems are too sensitive such that their 

performance can drop drastically when they are 

used in real-world settings. Models with less 

than 1.5 percent false-positive rates (FPR) on 

constrained datasets such as NSL-KDD and 

CIC-IDS2017 have been shown to experience 

higher-than-expected levels of false positives 

(over 5 percent FPR) when deployed on actual 

enterprise traffic that contains background noise, 

encrypted channels and zero-day vulnerability 

exploits [5][4]. Moreover, the network-enabled, 

evolving threats like encrypting C2 channels, 

polymorphic payloads, lateralization methods 

are still yet to be countered using even 

ensemble-based AI because it has limited 

generalization abilities and it is not adaptable in 

real-time [11]. 

C. Objectives of the Study 

With the following objectives, this research 

intends to fill performance and deployment gaps 

in the AI-based intrusion detection systems. We 

introduce an architecture in the first part that 

borrows and combines the concepts of 

convolutional neural networks (CNN), recurrent 

layers and a feature-level fusion and achieves on 

benchmark consistent detection accuracy over 95 

percent and FPR of <3 percent in live traffic. 

Second, we perform benchmarking experiments 

on three heterogeneous datasets, NSL-KDD, 

CIC-IDS2017 and a 10-million-record enterprise 

captures, in order to test generalizability. Third, 

we consider the explainability mechanism, 

specifically, SHAP and LIME, within an actual 

workflow of a SOC (Security Operations Center) 

analyst, gauging interpretation performance both 

with respect to empirical interpretability scores, 

as well as on anecdotal feedback. And lastly, we 

determine deployment realities of resource 

efficiency, latency and compliance alignment to 

address the aspect of operational preparedness. 

D. Scope and Significance 

This research undertaking is purely on network-

level and anomaly-based intrusion detection with 

no consideration of host-based agents and other 

deception, e.g., honeypots. The structure of our 

hybrid AI-IDS is specifically designed to suit the 

medium-sized companies and particularly the 

ones using IoT-based infrastructures and 5G 

edge networks. With the operating requirements 

in these environments, we focus on scalability, 

real-time throughput, and explainability without 

interference with accuracy detection. The other 

study that is related to this field is the growing 

demand of compliance support, which reveals 

how security documentation could be automated 

and audit track simplified via AI-enhanced IDS 

to prevent risk of non-compliance with the 

existing regulatory laws like GDPR, HIPAA and 

PCI- DSS [7]. The estimated effects of this are 

the reduction of up to 30 percent in average 

dwell time and decrease of operating overhead 

costs as opposed to the traditional 

implementation of IDS. 

E. Structure of the Paper 

The rest of this paper is explained in the 

following way. As outlined in section II, a 

thorough survey is conducted of the current 

paradigms of intrusion detection and highlights 

the areas of transition that lie between the rule-

based systems and the AI based systems as well 

as showing a taxonomy in terms of supervised 

learning, unsupervised learning, and 

reinforcement learning based approaches [2][3]. 

Section III explains how we implemented our 

approach, specifying information on 

preprocessing pipelines, model architecture 

decisions, assessment metrics and baselines. 

With the help of section IV, the paper presents a 

comparative analysis of the available 

frameworks, providing an illustration of the 

deployment challenges and performance trade-
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offs in diverse operational environments. Within 

a detailed view of the actual experimental 

scores, latency and accuracy trade-offs, 

statistical significance evaluation, as well as 

feedback on analyst interpretability are 

established in section V. The final section VI of 

the paper presents a closing summary that 

includes the contributions, the existing 

limitations, and practical implications of this 

paper, and future research direction roadmap 

toward scalable, explainable, and adaptive IDS 

systems. 

II. LITERATURE REVIEW 

A. Evolution of Intrusion Detection Systems 

Over the last few decades, Intrusion Detection 

Systems (IDS) has developed into a very 

dynamic field that has moved beyond the static 

signature-based system to those that are driven 

using machine learning. Simple and interpretable 

model, such as Snort which is based on 

signature, are still popular because of their 

effectiveness against non-obfuscation or novel 

attacks [12]. These patterns are based on well 

understood attacks patterns and therefore they 

are subject to polymorphic threat or zero-day 

threat evasion. Being counter to this drawback, 

anomaly-based detection methods became 

available, proceeding with statistical modeling to 

signal deviations in normative behavior. More 

adaptive they might be, early statistical systems 

were plagued by a high rate of false-positives, 

and also performed poorly under heterogeneous 

network conditions [11]. 

The creation of realistic sets like CIC-IDS2017 

and UNSW-NB15 was a major change in the 

IDS research. They allowed introducing various 

traffic patterns, encrypted channels, and multi-

step attacks, which allowed assessing the model 

performance with a travesty of deeper meaning 

[4][12]. However, they still have cover flaws in 

their report concerning advanced persistent 

threats and encrypted command and control 

channels. This has fueled research into hybrid 

IDS designs, which gradually incorporate 

machine-learning techniques into mixtureed 

rule-based designers to enhance detection rates 

as well as resistance to unknown threats [5]. 

B. Machine Learning and Deep Learning 

Approaches 

Machine learning models in supervised mode 

like Support Vector Machines (SVM), Random 

Forests and Logistic Regression have also shown 

an acceptable level of detection performance 

when feature engineering and balancing of the 

dataset is used. Indicatively, SVM classifiers 

with feature embedding have scored more than 

92% in the UNSW-NB15 due to the use of 

Naive Bayes-based selection methods [12]. 

Nonetheless, such classical models can hardly be 

scaled up to high-dimensional or noisy data 

common in enterprise networks [11]. 

To alleviate this, some of the methods include 

deep learning techniques like Convolutional 

Neural Networks (CNN), Recurrent Neural 

Networks (RNN), and CNN-LSTM hybrid based 

architectures. CNNs perform well on spatial 

dependencies in payloads of packets whereas 

LSTMs deal with dependencies in temporal 

traffic flow [6]. Recent examples show that both 

can be combined in a unified architecture and 

reach detection performance of more than 97% 

F1 on datasets such as CIC-IDS2017 and 

surpasses traditional classifiers [4]. Deep models 

also perform feature extraction, which is done 

automatically, hence decreasing the reliance of 

manual preprocessing. But they are vulnerable to 

adversarial noise and are quick to demand a lot 

of computational resources in training and 

deployment [3]. 

C. Explainability and Interpretability in IDS 

Emergence of deep learning in IDS has brought 

the issue of interpretability, especially in a high-

assurance domain where modeling decisions are 

crucial to know. Classifier explanations provided 

by traditional interpretable models, e.g. decision 

trees or Naive Bayes, are exposed to one 

problem of being transparent and thus unable to 

perform under the conditions of complex 

environments. In order to strike the balance 

between the accuracy and trust, the tools such as 

SHAP and LIME are adopted to explain the 

decision of the black-box models by attributing 

the features with importance scores [9]. This is 

common today when these tools are introduced 

in the pipelines of IDS to assist the analyst in 

enabling validation of alerts and false positives 

[5]. 

Explainable AI (XAI) also helps to adhere to the 

laws, e.g., GDPR and HIPAA that presuppose 
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the transparency of automated counting. 

Nevertheless, there are still difficulties of scaling 

such explanations to run in real time or in a 

hundred-feature world. Research work in 

progress concerns integration of interpretable 

visual dashboards in the Security Operations 

Center (SOC) environment and investigation of 

the usability of such interfaces in live-time 

environments [9][6]. 

D. Comparative Evaluation and Benchmarking 

The benchmarking is central in the research of 

the IDS, as it is possible to make relevant 

comparisons among the detection models. 

Evidence indicates that classical models are 

more likely to be outperformed by deep learning 

methods in both the accuracy and the F1 score 

but at the cost of training time, and resources 

[6][3]. In the case of CNN-based models, 

detection rates exceed 95%, however, they are 

characterised by their latency and reliance on 

GPUs that makes edge deployment much less 

feasible [5]. Also, models trained on fixed 

datasets such as NSL-KDD or CIC-IDS2017 are 

likely to fall short when deployed in the real 

world, where false positives can exceed 5 

percent in the unregulated environment [4][12]. 

Robustness tests seem to have joined the likes of 

security-oriented assessments with the use of 

adversarial machine learning. All it takes to drop 

the accuracy of IDS models, to the tune of in 

excess of 20%, is a basic way of perturbing 

techniques such as Fast Gradient Sign Method 

(FGSM) or Projected Gradient Descent (PGD) 

[8]. These findings show that adversarial training 

and model hardening techniques are critical in 

practical deployments. Scalability study, in turn, 

concentrates on inference throughput and finds 

that all but the lowest of accuracy models can 

become bottlenecks under real-world enterprises 

levels of packets without modification or model 

shrinking [7]. 

E. Open Challenges and Future Directions 

The new challenges of designing IDS are 

occasioned by the emerging threats. Any form of 

AI, including its generation of threats, like data 

poisoning, automated exploit development, and 

deepfake spear phishing, requires AI models 

beyond just detection to know threats but also 

generalizations of unseen behaviors [8]. Besides, 

the necessity of the continuous learning 

structures is equally significant. The majority of 

the existing IDS solutions work in batch- 

learning mode, which faces the problem of 

becoming obsolete with changing network 

patterns. New developments in federated 

learning will have potential incremental updates 

with no centralized retraining; however, the 

problem of model drift and synchronization still 

remains [7][10]. 

A model trained on enterprise IT data can be 

made to fit industrial control systems, IoT and 

5G edge environments with increasing focus 

being applied on the domain transferability 

aspect. This is needed to cover all-inclusive 

protection on hybrid infrastructures [3][6]. 

Future plans also involve integration of zero-

trust, explainability-driven interfaces of SOC 

workflows, or development of standard 

benchmarks that would contain not only 

encrypted and polymorphic, but also multi-

modal traffic [5][9]. The absence of these 

continuations will leave the distinction between 

academic prototypes of IDS and those that can 

be employed in the field. 

III. METHODOLOGY 

A. Research Design and Approach 

This paper uses a mixed-methodology design in 

that the experimentation runs both quantitatively 

and expertly as a validation to the real world. It 

is the methodology of the experiment with a 

comparative form built on classical machine 

learning models, deep learning frameworks, and 

the hybrid systems introduced. Any of these 

model classes is evaluated in terms of its ability 

to identify both familiar and novel types of 

attacks under network conditions of controlled 

but operationally realistic conditions. 

This design has been rationalized by the virtue 

of the layered evaluation that this design can 

offer. The quantitative measurement guarantees 

statistical significance, as well as 

generalizability, whereas qualitative outcomes 

obtain operational relevance through blind 

validation. In the blind test, three SOC analysts, 

using separate labels, were asked to label a held-

out set of 5,000 anonymized enterprise traffic 

records whilst not being able to access model 

predictions. To make alert correctness validated 

and to determine the readiness of practical 

deployment, their inter-rater agreement (Cohen 



 
International Journal of Intelligent Systems and Applications in Engineering           IJISAE, 2024, 12(17s), 949–959 |  953 
 

 

89 = 0.89) was derived. This pairing of 

experimental lab work and analyst opinion 

means that the efficacy of the models are not 

only quantifiable but also actable. 

B. Dataset Description and Preprocessing 

The three datasets used are NSL-KDD, CIC-

IDS2017 and an enterprise dataset owned by the 

researcher. NSL-KDD With 39 features that 

possess 125,973 labeled records, it is a legacy 

benchmark, even though it has known 

limitations with regards to realism and class 

balance . CIC-IDS2017, gathered in July 2017, 

contains more than 3 million labeled network 

flows covering multiple days and identical 

attacks the 80+ different types of attack using 

various protocols. The enterprise data set is a 

sample of 200 million raw events recorded with 

VLAN taps on a Fortune 500 internal network, 

salted (with paylod hashing) and masked (IP 

truncated to the /24 granularity). 

Because of heterogeneity of datasets, a 

standardised preprocessing pipeline was utilised. 

Numerical features that were treated as outliers 

at 3sigma were removed. Such categorical 

variables as protocol or service type were one-

hot-encoded. Z-score normalization was done as 

a form of feature scaling. Class imbalance 

problem, especially present in the enterprise 

dataset (attack:benign ratio is about 1:50), was 

solved by SMOTE, otherwise, oversampling the 

minority attack classes to a balanced 1:1 ratio. In 

dimension reduction, feature ranking by mutual 

information was helpful in retaining 20 best 

features in both datasets, which enhanced the 

rate of convergence of the model, but without 

compromising accuracy. 

The datasets selection was done with respect to 

coverage diversity, accessibility to the general 

public, and the relevance of the organizations in 

which they are offered. Nevertheless, the 

representing taxonomy on attacks used by NSL-

KDD are outdated and do not include encrypted 

traffic, which reduces their applicability in the 

real world. Although multi-tenant enterprise 

dynamics are not present in CIC-IDS2017, it is 

quite comprehensive. The enterprise dataset is as 

realistic as it is possible to be but requires a 

confidence of labels to be low because of its 

manual annotation overhead. Figure-I shows a 

flowchart of the dataset that reveals its flow and 

processing steps in the study. 

 

Figure I: Pipeline for AI-Driven Intrusion Detection System 

C. Artificial Intelligence Model Development 

As a way of making a rigorous comparison on 

the performance of various AI paradigm on 

intrusion detection, this study was carried out 

using three classes of models; the traditional 

machine learning model, deep learning model 

and hybrid architecture model proposed in this 

study. The default baseline used LightGBM with 

the root-mean-square smoothness, 100 trees, a 

maximum depth of 7 and a learning rate of 0.1. 

It was chosen because of the effective processing 

of an imbalanced dataset in this gradient-boosted 

decision tree, the presence of non-linear patterns 

in finding, and low latency of inferences. A 

CNN was used to extract spatial correlations in 

traffic flows in the deep learning category by 

having one-dimensional convolutions with 

kernel sizes of 3, 5 and 7 on three layers, max-

pooling and dense layers configurations. 

Combined with this, a stacked LSTM model was 

built to take into account temporal dependence 

in sequence of flows. It was built out of two 

LSTM-layers and 128 hidden units per layer and 

a dropout-value of 0.3 to avoid overfitting. 

A combination of CNN and LSTM was created 

with the aim of overcoming the isolated 

shortcomings of each of the two models: CNN-

LSTM-Attention. In this design, the CNN took 

the input data with sliding windows of traffic 

information, and features were extracted by the 

CNN and given it to LSTM blocks to model 

sequence data. After LSTM, a self-attention 

layer was added to dynamically reweight the 

time steps and highlight the most interesting part 

of the traffic behavior, which is of high value 

when it comes to exploring stealthy or slowly 

paced attacks such as encrypted command-and-
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control or lateral movement. The training, 

validation, and testing distributive divisions 

were at a ratio of 70/15/15 with class-

preservation of all models. Up to 50 epochs of 

training were performed on early stopping due to 

the stagnation of validation F1-score in five 

consecutive epochs. Further, Hyperparameters 

such as learning rate, kernel size, LSTM depth, 

and dropout were optimized by carrying out a 

50-trial Bayesian optimization approach to 

ensure the final hybrid model was not only 

precise but also computationally feasible. 

D. Evaluation Strategy and Metrics 

Testing was done by valuing both effectiveness 

and detection performance. The most important 

scores were precision, recall, F1-score, accuracy, 

and ROC-AUC, as they could properly measure 

the performance of an alerting system operating 

on an imbalanced dataset. Detection latency 

(milliseconds per packet) and memory usage 

(MB) were measured on which to deploy in 

operations. The hybrid CNN-LSTM-Attention-

based model produced an average latency of 3.1 

ms/packet and occupying memory-footprint of 

less than 400 MB on the enterprise flows. 

The adversarial robustness of the models was 

tested by exposing them to the FGSM-based 

attacks ( 2 claiming 2 ab). Then, values of 2F1 

were calculated. The hybrid model recorded the 

lowest drop of F1 (-4.2), as opposed to CNN-

only (-11.6) and LightGBM (-18.9). 

A paired Wilcoxon signed-rank test (alpha=0.05) 

was employed to determine statistical 

significance to compare the different models in 

repeated 5-fold cross-validation runs. On both 

CIC-IDS2017 and enterprise data, the 

superiority of the hybrid model was considered 

(p < 0.01). These metrics were chosen to focus 

on the priorities in the real world F1-score 

balances between precision and recall, and 

latency modeling the usability of live detectors. 

E. Implementation Tools and Environment 

The experiments were all conducted in Python 

3.9. Training of the models was executed in 

TensorFlow 2.11, PyTorch 2.0; preprocessing 

and classical ML pipelines were implemented in 

Scikit-learn 1.2. Optuna was used to tune 

hyperparameters. 

The training was done on a server that had dual 

NVIDIA 100 A GPUs (40 GB each) and 256 GB 

RAM. Real-world experiments Lightweight 

inference was tested on Raspberry Pi 4 with 

Google Coral USB Accelerator to allow a near-

edge execution with a reasonable inference 

performance. 

All the experiments have been containerized 

with Docker to be reproducible and environment 

dependencies were defined on a common 

environment.yml. The same seed of random 42 

was used in libraries. The setup issues such as 

incompatibility between the CUDA versions and 

tuning GPU memory when having multiple 

models running simultaneously were eliminated 

through modifying the memory allocation flags 

and updating the TensorRT engine. 

F. Ethical and Regulatory Considerations 

As the data of networks is delicate, the privacy 

control was tight. Subnet truncation (/24) was 

employed to hide the IP addresses and payloads 

were hashed to stop information leakage. 

Enterprise data collection should be done under 

user consent agreements so that the use and 

retention is totally transparent. 

As per GDPR, only 90 days data retention was 

allowed and right-to-erasure could be done on 

request. The bias audit was frequently carried 

out to ensure that detection was not 

immoderately biased towards certain protocols, 

or certain geographical origin points, and the 

forensic traceability of the model predictions 

was recorded. Moreover, privacy impact 

assessment was also done early enough to 

analyze risks of misuse of models, particularly 

those which are used in automated policy 

enforcement. 

 

 

 

IV. FRAMEWORKS AND TECHNOLOGICAL 

TRENDS 

A. AI-Based IDS Architectures 

Landscape of the building architecture based on 

intrusion detection systems with the help of AI 

includes centralized, distributed, and edge-

centric and is the balance of visibility, scalability, 
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and responsiveness. Centralized networks tend 

to take network logs, flow data, and endpoint 

telemetry and place them on Splunk or the ELK 

stack where AI engines built into the platform 

look at the combined data to identify any 

anomalies and detect new patterns of attacks. 

The method is advantaged by seeing the entire 

world with situational awareness and has strong 

compute capabilities to receive and correlate 

information but may have latency of collection 

and correlation, which makes timely response 

problematic. Distributed frame works on the 

contrary use message brokers, such as Apache 

Kafka and stream-processing engines, such as 

Apache Flink or Spark Streaming to allocate 

streams of telemetry in near real time at the 

application layer or subnet level. These systems 

increase resilience and minimize single points of 

failure by decentralizing the tasks of detection, 

but they also bring a new set of challenges: they 

must be well orchestrated with respect to data 

pipelines and the frequency at which their nodes 

are updated. On the edge, TinyML models can 

be executed using lightweight Python agents to 

perform on-device anomaly detection in the 

resource-constrained setting. Such agents are 

commonly during training, or increased at 

varying frequencies as updates pushed by a 

central server at the cost of less network 

visibility and high latency. Nonetheless, edge 

deployment brings up the trade-off between 

localized control and letting the answers be 

explored centrally, which will require dynamic 

policies that dictate when it can be processed 

locally, and when it should be transmitted to a 

larger data center. 

B. Data Sources and Feature Extraction 

Various types of data used as the basis of AI-

IDS solutions reflect various aspects of network 

and host behavior. High level statistics, 

including the number of bytes, packet inter-

arrival times, and flow durations, which are 

provided by the flow-based telemetry 

measurements (e.g. NetFlow v9 and IPFIX 

records), can be used to detect statistical 

anomalies. This is enhanced by deep packet 

inspection which extracts header fields and 

payload features via n-gram tokenization to 

facilitate content-aware models which are able to 

detect protocol-specific threats. Additional to 

these traditional sources, endpoint logs, user 

behavior analytics, and external threat 

intelligence feed integrations enhance detection 

by providing context of process execution and 

authentication events and known indicators of 

compromise. Pipelines of feature engineering 

with tools such as Apache NiFi or StreamSets 

automate ingestion, transformation, and 

enrichment processes using dimension reduction 

and information gain ranking to select the most 

discriminating features with regard to constraints 

in performance. Good pipelines are a trade-off 

between full coverage and throughput 

consideration so that important signals are not 

lost and that the processing nodes are not 

overloaded. 

C. Real-Time and Adaptive Detection 

Mechanisms  

The real-time performance goals known in the 

industry as sub-100 ms end-to-end latency per 

flow require the streaming architectures that 

enable online learning and adaptation to changes 

due to concept drift. With libraries like River, it 

is possible to make areal updates of the models 

without the need to retrain completely IDS is 

moving with the changing patterns in the 

networks. Concept drift detectors such as 

ADWIN track feature distribution changes and 

initiate retraining of models or parameter tuning 

when a change in the related statistics is 

determined out-of-control. Real-time 

requirements such as bursty volume of 

information, flash events demand elastic 

resources of processing and powerful 

backpressure strategies sensitive to loss of 

information. An alternative approach is to 

implement lightweight edge scoring only 

(centralized re-training may be handled at some 

interval for comprehensive model updates) . 

D.Explainable AI in IDS 

Explainability emerges as important to faith and 

adherence of AI-IDSs as complexity becomes an 

issue. SHAP values and other techniques have 

provided global and local feature attribution; 

these methods quantify the input of each feature 

on the outputs of the model and approximations 

of the local decision boundaries through 

interpretable surrogate models (LIME). 

Combining them in interactive dashboards is an 

effective way to allow security counterparts to 

visualize such features that affect alerts in a 
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long-term in order to quickly triage and do the 

investigation of root causes [9]. In addition to 

those, interpretable models like decision trees 

and rule-based learners (which by their nature 

can be interpreted) will provide a 

complementary view, especially when dealing 

with frameworks whose auditability is regulated, 

such as GDPR and HIPAA. Integrated XAI has 

the benefit of not only enhancing confidence in 

analysts but also becoming more efficient in the 

process of incident documentation and reporting. 

E.Integration with Security Tools 

AI-IDS platforms are becoming more open to 

the integration with the wider security 

environment with the aim of improving the 

effectiveness of detection and automation of 

response. Within a SIEM environment, it is also 

possible to trigger APIs within AI modules to 

take adaptive response actions when high-

confidence anomalies are found that include 

quarantine commands or firewall rule changes. 

STIX/TAXII standardized threat intelligence 

ingestion also adds contextual indicators of 

compromise to alerts, whereas SOAR playbooks 

manage multi-stage processes to integrate AI-

driven insights and automated as well as manual 

remediation actions. This smooth connection 

minimizes mean time to respond (MTTR) and 

facilitates closed -loop defenses, where the 

feedback on the response actions can guide the 

model to be continuously optimized [5]. 

F. Privacy-Preserving and Federated Learning 

The federated learning variant has presented an 

optimistic alternative to multi-organizational 

learning where there is no distribution of raw 

data, yet training of IDS models is possible in 

cooperation. With federated averaging, the 

models of the clients will perform local 

computations of the gradients then are securely 

aggregated at a centralized server to generate a 

general model. Moreover, differential privacy 

techniques (case in point, Laplace noise 

addition) extra-guard the dissimilar input of an 

individual by saving the updates unidentified 

over restricted privacy vests (epsilon, delta). The 

use of secure aggregation protocols based on 

multi-party computation ensures that updates are 

forwarded at every intermediate node in such a 

way that they cannot be examined by the 

aggregator- but this is at the price of extra 

communication overheads. Privacy protecting 

solutions overcome regulatory and 

confidentiality limitations but do deal with 

tradeoffs between model accuracy and privacy 

guarantees and an upper bandwidth bound on 

transmission data transfer. 

 

V. RESULTS AND DISCUSSION 

A. Performance Metrics and Analysis 

Experimental findings prove that there are strong 

differences between the tested models. When 

applied on the CIC-IDS2017 dataset, the hybrid 

CNN-LSTM-Attention architecture gave an 

F1-score of 97.4 percent as compared to the 96.1 

and 95.8 percent of the CNN and LSTM 

respectively. This was reflected in NSLKDD 

results where the hybrid model achieved 

96.7 percent F1 as contrasted with 95.3 percent 

pure CNN. The accuracy and values of ROC-

AUC were also better in hybrid approach, 

having an AUC of 0.994 in enterprise traffic, as 

opposed to 0.989 in conventional ML baselines. 

These measures have relevance in the context of 

intrusion detection since high F1-score indicates 

an equal proportion between the precision and 

recall, immediately being translated to fewer 

missed attacks and false alarms in the process of 

work in Security Operations Center (SOC). 

Evidence of our reliability in terms of applying 

in real-world SOC are all the F1-scores superior 

to the rest on all datasets, as shown in Table V.1, 

provided by the hybrid CNN-LSTM-Attention 

model. 

 

Table I 

COMPARATIVE PERFORMANCE OF IDS MODELS ACROSS DATASETS HIGHLIGHTING THE SUPERIORITY OF THE HYBRID C 

Model CIC-IDS2017 (F1 / AUC / 

Latency) 

NSL-KDD (F1 / AUC / 

Latency) 

Enterprise (F1 / AUC / 

Latency) 
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Snort Signature 82.3 / 0.912 / 0.5 ms 80.5 / 0.905 / 0.5 ms 78.9 / 0.898 / 0.5 ms 

SVM (RBF Kernel) 91.4 / 0.957 / 1.2 ms 90.1 / 0.948 / 1.2 ms 89.5 / 0.941 / 1.2 ms 

CNN 96.1 / 0.989 / 4.8 ms 95.3 / 0.983 / 4.7 ms 94.7 / 0.981 / 5.0 ms 

LSTM 95.8 / 0.987 / 5.2 ms 94.9 / 0.980 / 5.1 ms 94.2 / 0.978 / 5.3 ms 

CNN-LSTM-Attention 

(Hybrid) 

97.4 / 0.994 / 3.1 ms 96.7 / 0.991 / 3.0 ms 97.0 / 0.994 / 3.2 ms 

 

B. Comparison with Baseline Models 

Boosted models consisted of Snort signature 

engine and an SVM with an RBF kernel as these 

are highly used in research and production. 

Snort, as one of the fast but targeting known 

signatures, performed poorly on CIC-IDS2017 at 

82.3 percent F1 as it failed to detect new 

variants. The SVM baseline was better at 

detecting unknown attacks but could do just 

91.4 percent F1 burdened by the need of hand-

engineered features. Comparatively, the hybrid 

model resulted in a 15.1  percent relative 

superiority comparing with Snort and 6.5 per 

cent increase in relation to SVM. Such 

differences were statistically significant (p < 

0.05) as approved by paired Wilcoxon tests, 

supported by the practical advantageousness of 

the hybrid scenario in various threat situations. 

C. Error and Robustness Analysis 

By error analysis, it turned out that the worst 

performing ML methods against low-volume but 

stealthy attacks like infiltration and 

command-and-control (C2) flows yielded 

false-negative rates well beyond 12 percent in 

these categories. These rates were brought down 

to below 5 percent using temporal context and 

attention weighting by the hybrid model. In 

worse case scenario--created using FGSM and 

PGD perturbations- the F1 score at the hybrid 

architecture went down by just 4.2 percent, 

compared to an F1 score reduction of 11.6 

percent and 18.9 percent on the CNN and SVM 

baselines respectively. Such findings are 

evidence of better resistance to designed evasion 

techniques as well as stronger generalization to 

previously unencountered traffic peculiarities. 

D. Scalability and Real-World Deployment 

Feasibility 

Hybrid model had a throughput benchmark on 

server-grade hardware (dual NVIDIA A100) of 

over 120,000 packets per second compared to 

200,000 pps on LightGBM and 150,000 pps on 

CNN. At a Raspberry Pi 4 machine with a Coral 

TPU accelerator the result was still good enough 

with the hybrid at 15,000 pps and the CNN at 

9,000 pps. The hybrid model had its CPU usage 

on the edge devices below 45 percent since it 

utilized a distilled layer of attention and proved 

that the complex architectures could be applied 

in the limited settings. The maximum RAM 

footprint on the server was 380 MB, and at the 

edge, 120 MB, it is possible to conclude that in 

the case of model compression and pruning, 

real-time implementation with deployment on 

distributed nodes does not represent a 

prohibitively high resource consumption. 

E. Key Observations and Insights 

The Shap feature-importance analysis showed 

that variance in packet length, entropy of the 

inter-arrival time and payload n-grams were the 

three best features contributing to the detection 

decision with their total weighting over 60 

percents. Of note, payload n-grams have 

increased detection of polymorphic malware by 

12 per cent which is not evident in classical ML 

baselines. The surprising revelation has been that 

the self-attention module placed considerable 

weight in the intermediate time steps as opposed 

to the earliest spike of the anomaly to indicate 

that subtle temporal features are imperative to 
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detecting stealthy behaviors. Analyst reaction on 

these quantitative observations was similar: one 

SOC lead said, “The visibility provided by 

visualizations helped to expose threats we did 

not realize earlier,” whereas another observed 

that “fewer false alarms in lateral-movement 

detection allowed critical analyst time to go into 

threat hunting.” 

VI.CONCLUSION 

The work introduces a holistic AI-driven 

intrusion detection framework to utilize both the 

benefits of deep learning and hybrid 

architectures to fulfill high detection accuracy, 

explainability and flexibility. The proposed 

system is not only more proficient than classical 

IDS baselines by benchmarking with multiple 

datasets, introduction of explainable AI 

mechanisms, real-time capability through 

lightweight streaming and edge-based design, 

but also has the potential to be implemented in 

operations. The distinguished part is the perfect 

combination of the model accuracy, XAI 

transparency, and deployment practicability in a 

single codeless pipeline. The study experienced 

these strengths but it has three main limitations. 

First, the models have not yet been tested using 

encrypted type of traffic such as HTTPS, which 

restricts their application to modern web 

dominated networks. Second, despite provision 

of federated and online learning mechanism the 

implementation presently persists periodic 

offline updates that can be outdated based on 

high-velocity threats that could be evolving. 

Third, the analyst level usability, although 

improved through the use of dashboards, is 

candidate to additional human factors 

verification to determine that they can interact 

intuitively in conditions of stressful triage. The 

ways to overcome these limitations are related to 

the introduction of encrypted traffic 

fingerprinting, the stimulation of live continual 

learning modules, and usability research on XAI 

visual interfaces. The results provide a number 

of high-impact areas of future research. 

Incorporation of the zero-trust concepts can 

allow close feedback loops between policy 

enforcement and anomaly detection. The 

prospects of progress in continual learning will 

enable the models to update it gradually instead 

of catastrophic forgetting. Learned 

representations can be transferred across 

domains, e.g. between enterprise IT and 

operational technology (OT) domains, possibly 

decreasing training time, and enhancing 

robustness in poorly resourced industries. 

Realistic traffic profile benchmarks with 

background noise and venerable poly-morphic 

attacks will eventually standardize the field on 

more generalizable and reliable models. In the 

meantime, it is shown that the gap between 

model transparency and the decision made by 

analysts can be eliminated by refining 

explainability dashboards with user-centered 

design. These guidelines do not only look 

promising in terms of technical innovation, but 

also assist in the growing up of the field so it 

may be used as a real-world deployable and 

trustworthy layer of a defense stack. 

Nevertheless, integration overheads, the expense 

of training security staff, and the inertness of 

computerized systems might hamper the actual 

adoption. Organizations should strategize about 

planned deployments a phase at a time beginning 

with pilot implementations, to large-scale 

deployments, and a total cost of ownership 

versus the enhanced rate of detection and time to 

response. By 2030, the AI-powered intrusion 

detection systems will become self-aditing, 

privacy-preservation, cross-domain-aware, 

properly integrated, and a native part of the 

cloud, IoT, and edge ecosystems. The systems 

will be equipped with embedded neurosymbolic 

reasoning, real-time federated cooperation, and 

compliance-aware explanations, so that they do 

not only detect intrusions but will automatically 

protect the digital infrastructure - intelligent and 

explainable yet in harmony with their human 

partners. 
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