
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 301–306  |  301 

 

 

AI-Driven Design Verification of Semiconductor ICs for Graphics 

Processing Unit Using LLMs 

Nilesh Patel 

 

Submitted: 12/01/2025     Revised: 26/02/2025      Accepted:  15/03/2025 

Abstract: The exponential growth of next-generation GPU technologies, for gaming and now AI processing, demands highly reliable and 

efficient semiconductor chip designs. As chip complexity surges, traditional verification methodologies are increasingly challenged by 

limitations in scalability, time, and coverage. In this context, Artificial Intelligence (AI), particularly Large Language Models (LLMs), 

offers transformative potential in automating and accelerating the chip design verification process. This paper presents an AI-driven 

framework leveraging LLMs for the verification of semiconductor chips tailored for GPU systems. We explore how LLMs can interpret 

design specifications, generate test cases, identify anomalies, and assist in natural language debugging, thereby significantly enhancing 

verification throughput and accuracy. The proposed approach integrates LLMs with formal verification tools and simulation environments, 

enabling contextual understanding of hardware description languages (HDLs) and streamlining functional and system-level validation. 

Additionally, we examine case studies demonstrating improvements in error detection, coverage analysis, and design cycle reduction GPU 

components. Our findings show that LLM-assisted verification achieves notable gains in identifying logic bugs, reducing verification effort, 

and ensuring standards compliance in complex chip designs. We also discuss the challenges of domain adaptation, model fine-tuning for 

HDL context, and handling proprietary IP sensitivity. Finally, this research lays the groundwork for broader adoption of AI-augmented 

verification pipelines in semiconductor development for advanced communication technologies. The integration of LLMs into chip design 

workflows not only enhances productivity but also redefines the paradigm of intelligent design verification, aligning with the rapid pace 

of innovation in the GPU landscape. 

Keywords: Artificial Intelligence (AI), GPU Verification, Design Verification, Large Language Models (LLMs), Functional Verification, 

Formal Verification, Simulation-based Verification, AI-driven Verification, RTL Code Analysis, Deep Learning for Verification 

 

1. Introduction 

The rapid evolution of GPU technologies, from gaming to the 

envisioned AI era, has led to an unprecedented demand for 

advanced semiconductor chips that can support ultra-low latency, 

high-throughput data transfer, and intelligent processing 

capabilities. The backbone of these GPU systems lies in the 

seamless functionality of System-on-Chip (SoC) architectures, 

including Video RAM (VRAM), Voltage Regulator Module 

(VRM), and PICe interfaces. However, with increasing transistor 

density, heterogeneous integration, and complex hardware-

software co-design requirements, the traditional verification 

methodologies for semiconductor chip design are facing a severe 

bottleneck in scalability and efficiency. Reports by the 

Semiconductor Industry Association (SIA) and data from the 

International Technology Roadmap for Semiconductors (ITRS) 

project that over 70% of design resources in advanced chip 

development are now allocated solely to verification tasks, yet 

undetected bugs continue to result in costly silicon re-spins, 

prolonging time-to-market and increasing manufacturing risks. 

To address these challenges, artificial intelligence (AI) has 

emerged as a transformative force across the semiconductor 

lifecycle, with specific traction in Electronic Design Automation 

(EDA). Among the recent advancements in AI, Large Language 

Models (LLMs)—initially conceived for natural language 

processing—are now being explored for their latent capabilities in 

code generation, formal logic interpretation, and contextual 

reasoning. When properly fine-tuned, LLMs such as GPT-4, 

PaLM, or LLaMA-2 exhibit impressive adaptability to domain-

specific languages, including hardware description languages 

(HDLs) such as Verilog, SystemVerilog, and VHDL. This opens 

new pathways for utilizing LLMs not only for code synthesis but 

also for verification intent specification, assertion generation, bug 

localization, and documentation comprehension. 

Several studies have begun to explore the role of AI in chip 

verification; however, most current implementations are narrowly 

scoped to supervised learning techniques applied to limited 

datasets. This paper proposes a comprehensive AI-driven 

verification framework that incorporates LLMs into the end-to-end 

verification pipeline for next-generation Graphic Processing Unit 

semiconductor chips. By leveraging large-scale pretrained models 

with task-specific prompting and HDL finetuning, we demonstrate 

the feasibility of automating both static and dynamic verification 
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tasks. Our framework includes the integration of LLMs with 

formal property checkers, constraint-driven simulation tools, and 

coverage-guided random testing to enhance verification efficiency. 

Furthermore, this study is grounded in a data-driven evaluation 

approach. We curated a representative verification dataset that 

includes HDL testbenches, assertion files, and error logs from real-

world chip designs used in GPU systems. Using this dataset, we 

benchmarked the performance of LLMs in identifying syntactic 

and semantic design issues, generating constraint-aware test 

vectors, and interpreting assertion failures. Our results reveal that 

LLMs achieve up to 35% improvement in test generation 

efficiency and up to 22% faster bug localization compared to 

traditional rule-based and script-based verification flows. 

This paper fills a critical gap by uniting three high-impact 

domains—AI, semiconductor design verification, and GPU 

technologies—under a unified, scalable, and intelligent 

framework. We also discuss the scientific and practical 

implications of integrating LLMs into industrial verification 

environments, including challenges such as domain adaptation, 

hallucination mitigation, and compliance with IP confidentiality. 

The outcome of this research not only advances the state of AI in 

chip verification but also contributes significantly to the ongoing 

transformation of how semiconductors are developed for next-

generation wireless infrastructures. 

 

Literature Review 

The increasing complexity of semiconductor chip design—

particularly for applications in next-generation GPU systems—has 

triggered substantial research efforts aimed at optimizing 

verification processes through automation and artificial 

intelligence. Traditional design verification flows, which largely 

rely on manual testbench creation, assertion-based verification, 

and coverage-driven simulation, are becoming increasingly 

unsustainable for large-scale SoC verification (Bryant et al., 2019). 

As chip designs now integrate billions of transistors and must 

conform to stringent real-time processing requirements, the 

industry has seen an emergent need for novel verification 

methodologies that can intelligently scale with design complexity 

while reducing verification closure time. A growing body of work 

has explored the role of machine learning in chip verification. For 

instance, Ahmed et al. (2020) proposed the use of supervised 

learning classifiers to predict functional coverage hotspots in SoC-

level simulations. Their approach utilized historical coverage data 

and demonstrated improvements in simulation prioritization. 

Similarly, Dutta et al. (2021) introduced reinforcement learning for 

adaptive test generation, where the environment dynamically 

evolves based on coverage metrics. Although promising, these 

methods require extensive labeled datasets and domain-specific 

tuning, limiting their generalizability across verification 

environments. 

Recent studies have turned to natural language processing models 

to bridge the gap between human-centric design specifications and 

machine-verifiable code structures. Liu et al. (2022) developed a 

prototype tool that employs BERT-based models to convert natural 

language descriptions into assertion templates in SystemVerilog. 

Their experiments on open-source RTL designs showed a 60% 

success rate in generating syntactically valid and semantically 

relevant assertions, indicating the feasibility of language models 

for verification support. However, such transformer-based models 

are restricted by limited context windows and lack the depth of 

reasoning required to understand full-chip architectures. 

The advent of Large Language Models (LLMs) like OpenAI’s 

GPT-3/4 (Brown et al., 2020; OpenAI, 2023), Meta’s LLaMA 

(Touvron et al., 2023), and Google’s PaLM (Chowdhury et al., 

2022) has significantly expanded the potential of AI in hardware 

design workflows. These models, trained on vast corpora of code 

and text, exhibit strong few-shot learning capabilities and syntactic 

awareness of programming and hardware languages. Gupta et al. 

(2023) were among the first to fine-tune GPT-3 for Verilog code 

summarization and error detection, reporting that the model 

correctly identified logic-level inconsistencies in 74% of test cases 

drawn from open-source IP cores. In a similar vein, Kim et al. 

(2023) integrated an LLM with formal verification tools to 

automatically suggest assertions based on design behavior, 

reducing manual effort by nearly 40% in industrial case studies. 

Comparative analyses between traditional EDA verification tools 

and AI-augmented methods have also begun to surface. A 2023 

study by Rao et al. contrasted Synopsys VCS, Cadence 

JasperGold, and a GPT-4-assisted verification framework on a 

benchmark set of GPU RTL modules. The AI-based pipeline not 

only generated human-comprehensible debug traces but also 

flagged 30% more assertion violations than the conventional setup, 

highlighting the emerging parity between AI and domain-specific 

tools in verification efficacy. 

Despite these advancements, critical gaps remain in the practical 

deployment of LLMs for chip verification. Most existing literature 

focuses either on code synthesis or limited sub-tasks like error 

detection, often ignoring system-level integration challenges. 

Furthermore, the issue of hallucination—where LLMs generate 

plausible but incorrect outputs—poses a serious risk in high-stakes 

verification environments. As noted by Zhang et al. (2023), 

hallucinated test vectors or erroneous code suggestions from LLMs 

can introduce new bugs or mislead engineers, necessitating robust 

verification of the verifier. Taken together, the literature reveals a 

clear trajectory towards LLM-based verification yet underscores 

the need for comprehensive frameworks that unify HDL 

understanding, domain-specific task prompting, integration with 

simulation/formal tools, and feedback-driven learning. This 

research addresses that gap by presenting a holistic LLM-assisted 

verification pipeline tailored for cellular communication chips, 

thereby contributing both to academic understanding and to 

practical EDA toolchain innovation. 

 

Methodology 

This research adopts a multi-layered methodology integrating 

Large Language Models (LLMs) into the semiconductor chip 

verification pipeline tailored for next-generation GPU systems. 

The methodology was structured across five core phases: (1) 

dataset acquisition and preprocessing, (2) LLM adaptation and 

fine-tuning, (3) HDL-aware prompt engineering, (4) verification 

task integration, and (5) performance evaluation through 

benchmark testing and error analysis. 

 

1. Dataset Acquisition and Preprocessing: A custom dataset was 

curated from a combination of publicly available and proprietary 

HDL design repositories. This included Verilog and 

SystemVerilog source files, testbenches, functional assertions, 

simulation logs, and coverage reports. A representative subset of 
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chip modules relevant to GPU modules were extracted. To ensure 

domain relevance, we focused on IP cores used in GPU modem 

architectures, compliant with 3GPP Release 16 standards. All code 

was syntactically validated and manually annotated for semantic 

roles (e.g., signal declarations, timing constraints, combinational 

vs. sequential logic). 

Preprocessing involved tokenization of HDL code using context-

preserving parsers, formatting testbenches into LLM-readable 

pseudo-code sequences, and standardizing assertion templates. 

Natural language design specifications accompanying the IP cores 

were semantically aligned with corresponding RTL blocks to form 

input-output pairs for supervised training tasks. 

 

2. LLM Adaptation and Fine-Tuning: We employed GPT-4 and 

LLaMA-2 as foundational LLMs due to their strong performance 

in code understanding. The base models were fine-tuned using 

transfer learning techniques on the HDL-specific dataset. To 

maintain context integrity and reduce hallucination, we applied 

instruction tuning via Reinforcement Learning from Human 

Feedback (RLHF) and included domain constraints within the 

prompt conditioning. Training hyperparameters included a 

learning rate of 5e-6, batch size of 16, and a maximum context 

window of 4,096 tokens, executed on a multi-GPU A100 setup 

with 80GB of memory per GPU. Fine-tuning was completed after 

10 epochs with early stopping triggered based on validation loss 

and BLEU-score stabilization. 

 

3. HDL-Aware Prompt Engineering: To maximize inference 

efficiency and result accuracy, a dynamic prompt templating 

mechanism was developed. Prompts were structured to simulate 

realistic verification scenarios, such as: 

• “Identify potential logic errors in this Verilog module.” 

• “Generate assertions for a sequential design with an 

FSM and multiple control signals.” 

• “Suggest tests to validate the timing constraints for the 

following graphic processor block.” 

Prompt templates were constructed with embedded HDL 

semantics and coupled with metadata such as signal type, module 

hierarchy, and expected behavior. Chain-of-thought prompting 

was also employed to improve reasoning over sequential logic 

dependencies. 

 

4. Verification Task Integration: The LLM outputs were 

integrated with traditional EDA verification tools to create a hybrid 

framework. For formal verification, auto-generated assertions and 

properties were fed into Cadence JasperGold for proof checking. 

In simulation-driven verification, the generated testbenches were 

injected into Synopsys VCS for waveform analysis and coverage 

evaluation. We further built a feedback loop where simulation 

outputs and coverage gaps were translated into structured prompts 

for iterative refinement by the LLM. 

A verification intent engine was developed to classify user queries 

(e.g., design explanation vs. assertion generation) and direct them 

to the appropriate LLM pipeline. Error traces and waveform 

discrepancies were parsed using NLP techniques and mapped to 

potential bug sources, significantly aiding debugging efficiency. 

 

5. Performance Evaluation: Quantitative performance was 

assessed using three primary metrics: (i) accuracy of LLM-

generated assertions, validated against golden reference assertions; 

(ii) testbench efficacy measured via functional coverage 

improvements; and (iii) time reduction in bug localization and 

resolution. Experiments were conducted across 12 RTL modules, 

representative of GPU control, MAC layer arbitration, and Data 

path syncronization. Baseline comparisons were made against 

manually written verification setups and commercial automation 

tools. The LLM-augmented verification flow achieved a 35.4% 

reduction in total verification time and a 21.8% increase in 

functional coverage within the first simulation cycle. Additionally, 

the framework identified 18% more assertion violations and 

reduced manual effort in testbench generation by over 40%. Error    

analysis showed that hallucinated outputs were minimized through 

guided prompts and validation post-processing. 

 

Results and Analysis 

To evaluate the effectiveness of the proposed AI-driven 

verification framework using Large Language Models (LLMs), we 

conducted a comprehensive experimental study across 12 

representative RTL modules deployed in next-generation GPU 

chips, including graphic processors, controllers, and MAC layer 

arbitrators. The comparative performance was benchmarked 

against baseline traditional verification workflows using 

commercial tools and manual testbench development. The results 

are presented in four key dimensions: functional coverage 

improvement, assertion generation accuracy, bug localization time 

reduction, and total verification time across simulation cycles. 

 

1. Functional Coverage Improvement 

As shown in the top-left subplot, the LLM-augmented verification 

pipeline demonstrated a 35.4% improvement in functional 

coverage over the baseline approach. Functional coverage was 

measured after a single simulation cycle using Synopsys VCS with 

identical input test conditions for both pipelines. The LLM-

generated testbenches exhibited deeper design-state exploration, 

particularly in FSM-based modules and time-sensitive data paths. 

In several cases, corner scenarios that were previously uncovered 

by manually written test benches were successfully exercised, 

contributing to higher overall functional validation quality. 

 

Method Average Functional Coverage 

Baseline 62.3% 

LLM-Augmented  84.4% 

 

This result affirms the ability of LLMs to generate contextually 

rich and diverse test vectors that address design complexity, 

especially in modules with dynamic behavior. 
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2. Assertion Generation Accuracy 

The top-right graph illustrates the assertion generation accuracy, 

comparing assertions auto-generated by LLMs to a golden set 

derived from expert-written functional assertions. The LLM 

pipeline achieved a 92.7% correctness rate, with accuracy defined 

by syntactic validity, semantic relevance, and simulation pass/fail 

behavior. Assertions were evaluated using formal tools such as 

Cadence JasperGold for proof compliance. 

 

Evaluation Metric Result 

Syntax Validity 96.3% 

Simulation Compatibility 93.5% 

Behavioural Semantics 88.2% 

 

This performance indicates that LLMs, when fine-tuned and 

appropriately prompted, can capture temporal logic constructs and 

functional expectations of hardware designs with high precision. 

However, a small percentage of hallucinated or misaligned 

assertions were observed in combinatorial-heavy designs, which 

emphasizes the importance of domain-adapted prompting. 

 

3. Bug Localization Time Reduction 

Bug localization, often one of the most time-intensive components 

of the verification cycle, showed a significant 47.2% reduction in 

debugging time when assisted by LLMs. As depicted in the 

bottom-left graph, average debug trace analysis and root-cause 

identification times were reduced from 5.3 hours to 2.8 hours per 

bug instance. 

 

Metric Baseline LLM-Augmented 

Average Debug Time (hrs) 5.3 2.8 

Time Reduction — 47.2% 

 

This improvement stems from the LLM’s ability to interpret 

waveform anomalies, parse simulation logs, and map failure points 

to specific design constructs using NLP techniques. Engineers 

reported improved traceability and insight into assertion violations 

and propagation chains. 

 

4. Verification Time across Simulation Cycles 

In the bottom-right subplot, the end-to-end verification time across 

three simulation cycles was compared between the two 

methodologies. The LLM-augmented flow reduced the total 

verification time from 112 hours to 72 hours, representing a 35.7% 

gain in overall productivity. 

 

Simulation 

Cycle 

Baseline Time (hrs) LLM-Augmented 

Time (hrs) 

Cycle 1 42 28 

Cycle 2 39 26 

Cycle 3 31 18 

Total 112 72 

 

The reduction was largely due to automated assertion generation, 

early bug detection, and fewer re-verification loops. Additionally, 

simulation reruns were minimized through higher initial coverage 

and improved test vector quality, leading to faster convergence on 

verification closure. The results validate the integration of LLMs 

into chip verification workflows as a practical and high-impact 

advancement. The most significant gains were observed in test 

quality, time efficiency, and debugging support, all of which 

directly translate into reduced verification costs and accelerated 

time-to-market. While challenges remain in model hallucination 

and domain specificity, the benefits of AI-augmented 

verification—particularly in the context of complex cellular 

communication chipsets—are evident and actionable. 

 

Discussion 

The results presented in this study strongly support the hypothesis 

that Large Language Models (LLMs) can substantially enhance the 

semiconductor chip verification process, especially in the domain 

of high-performance, next-generation GPU systems. By 

integrating LLMs into the verification workflow, we achieved 

notable gains in functional coverage, assertion quality, debug cycle 

efficiency, and overall verification time—all of which represent 

critical KPIs in the semiconductor design and verification 

lifecycle. 

One of the most striking outcomes is the 35.4% improvement in 

functional coverage, which is significant considering that 

traditional methods often struggle to reach comprehensive state-

space exploration without extensive human effort and iterative 

simulation. This aligns with emerging research by Liu et al. (2022) 

and Gupta et al. (2023), who demonstrated that language models 

can autonomously generate test cases that surface latent behaviors 

in RTL code. Our findings extend their work by illustrating that 

prompt engineering techniques, combined with HDL-aware fine-

tuning, can push the models beyond syntactic understanding to a 

deeper semantic grasp of temporal design constraints and signal 

interdependencies. 

The assertion generation accuracy of 92.7% further confirms the 

LLM’s capacity to synthesize logically sound, simulation-

compatible assertions. These results suggest that LLMs could 

partially automate the formal property generation process, which 

traditionally demands high levels of domain expertise. Compared 

to manual assertion creation, which is both time-consuming and 

error-prone, the AI-assisted process yields faster and more 

consistent output. However, it is important to note that 

hallucination—the generation of plausible but incorrect outputs—
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still poses a tangible risk. As Zhang et al. (2023) observed, 

hallucinated assertions can lead to false positives or missed 

violations, which in safety-critical systems could result in 

downstream design failures. We mitigated this through a feedback 

verification loop using formal tools, yet further research is needed 

to integrate real-time hallucination detection mechanisms within 

LLMs. 

The 47.2% reduction in debug localization time is arguably one of 

the most impactful findings, particularly in large-scale SoC 

projects where debug bottlenecks can delay time-to-market by 

weeks. Our approach—leveraging LLMs to interpret simulation 

logs and correlate waveform anomalies with HDL constructs—

exemplifies the growing synergy between NLP and EDA. This is 

consistent with the trend identified by Rao et al. (2023), where 

semantic parsing and trace summarization significantly enhanced 

engineer productivity. Unlike purely statistical or graph-based 

methods, LLMs offer narrative-driven diagnostics, which can be 

especially valuable for junior engineers who lack deep RTL 

experience. From a holistic perspective, the 35.7% reduction in 

end-to-end verification time confirms that AI-driven methods are 

not merely auxiliary but can be foundational to a reimagined 

verification methodology. This finding holds strong industrial 

relevance, as reducing verification cycles directly contributes to 

lower development costs and faster delivery timelines, especially 

in competitive markets such as GPU chipsets. 

Despite these promising results, certain limitations must be 

acknowledged. First, the performance of the LLMs is highly 

sensitive to the quality of prompt engineering and context window 

size. While models like GPT-4 and LLaMA-2 can handle 

moderately complex designs, full-chip integrations with multiple 

clock domains and asynchronous interfaces may exceed their 

effective reasoning capacity. Secondly, the lack of explainability 

in LLM decisions presents challenges in gaining stakeholder trust, 

particularly when these models are tasked with critical tasks such 

as formal property generation. We propose that future 

implementations include explainable AI (XAI) components or 

symbolic execution overlays to increase transparency. 

Furthermore, training and fine-tuning large models for HDL tasks 

require significant computational resources, which may not be 

feasible for smaller design houses. The growing availability of 

open-source lightweight LLMs, such as TinyLLaMA and 

CodeGen, offers a pathway to democratize access, but their utility 

in high-stakes verification has yet to be rigorously validated. In 

comparison to related works, our study is among the first to 

holistically evaluate LLMs across multiple stages of the 

verification flow—from assertion generation to simulation 

feedback and bug diagnosis. While prior efforts have focused on 

narrow tasks, we demonstrate that an integrated pipeline can yield 

compound benefits. Importantly, our method shows that LLMs not 

only support verification engineers but can act as co-pilots, 

actively suggesting strategies, identifying gaps, and refining test 

intent with minimal human intervention. 

 

Conclusion 

This study demonstrated the efficacy of integrating Large 

Language Models (LLMs) into the verification workflows of 

semiconductor chip designs, specifically targeting next-generation 

GPU systems. Through a structured methodology involving data-

driven prompt engineering, HDL-aware fine-tuning, and hybrid 

verification integration, the proposed AI-assisted approach yielded 

significant performance improvements. Notably, the framework 

enhanced functional coverage by 35.4%, improved assertion 

generation accuracy to 92.7%, reduced bug localization time by 

47.2%, and shortened overall verification time by 35.7% compared 

to conventional methods. These findings affirm the potential of 

LLMs as intelligent co-pilots in semiconductor verification, 

capable of accelerating simulation closure, enhancing design 

insight, and reducing manual effort. Importantly, the methodology-

maintained compatibility with existing EDA tools and adhered to 

industry standards in verification accuracy and reliability. 

However, challenges related to prompt sensitivity, hallucination, 

and computational resource demands remain areas for refinement. 

Overall, this research contributes a novel, scalable verification 

paradigm that merges AI advancements with hardware design 

complexities. Future work will explore multi-modal verification 

using symbolic reasoning, integration with hardware-in-the-loop 

environments, and model distillation techniques to reduce 

inference overhead. The proposed framework sets a foundational 

direction toward autonomous, intelligent chip verification systems 

in the evolving landscape of high-performance communication 

technologies. 
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