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Abstract: Software bugs are errors or flaws in a program's code that can lead to incorrect or unexpected behavior, making their detection 

and resolution crucial for reliable and secure software development. Debugging is a human-centric, time-consuming and resource-

intensive process, making it one of the most expensive phases in software development. Automatic Program Repair (APR) is an 

emerging area of research that aims to automatically fix software bugs with minimal human intervention. Traditional APR tools use 

search-based or learning-based techniques to find software bugs based on test suites and bug patterns, thereby having heavy reliance on 

test cases. AI-driven APR tools are trained on large-scale codebases, open-source bug-fix histories, and benchmarks like QuixBugs.  

They can analyze buggy code, fix bugs and generate code patches that are syntactically and semantically correct. This reduces the 

debugging time and improves software reliability The QuixBugs benchmark has 40 programs from the Quixey Challenge in two 

languages: Python and Java. Each program contains a one-line defect and failing testcases. This paper presents a comparative study of 

APR techniques on the QuixBugs benchmark, which includes 40 buggy programs in both Python and Java. This study evaluates and 

compares the automatic bug fixing capability of LLMs such as ChatGPT and Google Gemini on the QuixBugs benchmark, thereby 

contributing to the understanding of LLMs’ role in automatic program repair. 
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1. Introduction 

Bugs are very common in the software development process. 

They are flaws or unintended behaviors in a program that can 

cause incorrect or unpredictable results. It is crucial to identify 

and resolve them to ensure that the software performs reliably 

and as expected. Testing is a crucial stage in the software 

development lifecycle. Debuggers help developers identify and 

fix bugs by code inspection, execution and program state 

investigation.  It is however a time consuming and intensive task, 

often incurring huge amount of money. Inspite of rigorous 

testing, software bugs are inevitable and can lead to significant 

costs and even failures if not addressed in time (Ye et al., 2020). 

Manual debugging is labor-intensive, which has driven 

researchers to develop Automated Program Repair (APR) 

techniques that can automatically detect and fix bugs. This makes 

Automatic Program Repair (APR) an important area of software 

development. APR aims to fix bugs with little or no human 

intervention. It analyzes buggy code and generates patches to 

resolve errors. Traditional APR tools such as GenProg and 

SemFix use search-based or learning-based techniques to find 

software bugs based on test suites and bug patterns, thereby 

having heavy reliance on test cases as specifications (Le Goues et 

al., 2012; Nguyen et al., 2013, Zhang et al., 2023). Moreover, 

another limitation of traditional approaches is that they do not 

generalize well across various benchmarks and programming 

languages.  

Recent advancements in Artificial Intelligence (AI) and Large 

Language Models (LLMs) present new opportunities for 

automatic bug identification and repair without relying solely on 

test cases (Xia et al., 2023). These Natural Language Processing 

(NLP) models have demonstrated promising performance in code 

generation, human-like code suggestions and bug fixes (Prenner 

et al., 2022; Wuisang et al., 2023). Conversational AI models like 

OpenAI’s ChatGPT and Google’s Gemini are have automated 

debugging capability. However, a detailed investigation of their 

automatic bug detection and fixing efficiency and reliability is 

necessary to assess their effectiveness and applicability. This 

study evaluates and compares the effectiveness of two LLM tools 

ChatGPT and Google Gemini in APR using the QuixBugs 

benchmark (Lin et al., 2017). By analyzing both, performance 

and limitations of these models, this study contributes to the 

understanding of LLMs’ role in automatic program repair. 

This study is significant for several reasons: 
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1. Benchmarking AI systems: Provides a comparative 

analysis of state-of-the-art AI systems in the context of 

automated program repair. 

2. Improvement insights: Identifies strengths and 

weaknesses of and ChatGPT, offering insights for 

future improvements. 

3. Practical applications: Helps in understanding the 

practical applicability of these AI systems in real-world 

debugging scenarios. 

1.1 Benchmarks 

Benchmarks in Automatic Program Repair (APR) are curated 

datasets of real-world or synthetic bugs used to evaluate and 

compare repair tools. They help researchers test how well APR 

systems fix bugs across different languages, domains, and 

complexity levels. Popular benchmarks like Defects4J (Just et al., 

2014) and ManyBugs (Le Goues et al., 2015), are very useful but 

suffer from overuse and limited scope (Ye et al., 2020). To 

overcome this, Lin et al. (2017) introduced QuixBugs, a 

multilingual benchmark featuring 40 algorithmic problems in 

both Java and Python. It includes a collection of small, buggy 

programs, each accompanied by a correct version. The dataset is 

implemented in both Python and Java, making it suitable for 

evaluating tools across different programming languages. The 

bugs in QuixBugs cover a wide range of common programming 

errors, including: Logical Bugs, Syntax bugs, Semantic Bugs and 

Structural Bugs. It is open-source and available on platforms like 

GitHub. QuixBugs is significant because it provides a 

standardized way to evaluate and compare automated program 

repair tools. 

2. Related Work 

Early APR techniques like GenProg (Le Goues et al., 2012), 

SemFix (Nguyen et al., 2013), and Angelix (Mechtaev et al., 

2016) approached bug fixing through genetic programming, 

constraint solving, or symbolic analysis. These techniques 

required substantial engineering effort and were typically bound 

to specific languages or benchmarks. Tools like Astor 

(Monperrus, 2018; Martinez & Monperrus, 2019) and Nopol 

(Xuan et al., 2017) refined patch generation mechanisms but had 

problems with scalability and generalization. CURE (Jiang et al., 

2021) and CodeBERT (Feng et al., 2020) showed that 

transformer-based models can generate patches with minimal 

human input. There are many benchmarks for APR such as 

ManyBugs (Le Goues et al., 2012) and Defects4J (Just et 

al.,2014). However, they suffer from the limitations of less 

diversity in evaluation datasets (Ye, et al., 2020). To address 

evaluation diversity, Lin et al. (2017) developed QuixBugs, a 

benchmark with 40 algorithmic bugs in Java and Python, 

specifically designed for evaluating APR tools across languages. 

Ye et al. (2020) used QuixBugs to assess 10 APR tools, 

highlighting concerns like patch overfitting and the need for 

better patch validation methods. The rise of LLMs like Codex 

and ChatGPT introduced data-driven approaches to program 

synthesis and repair. Codex, trained on GitHub data, 

demonstrated capabilities in solving introductory programming 

tasks (Finnie-Ansley et al., 2023).  

ChatGPT has not been explicitly trained for code; however, it has 

demonstrated strong debugging capabilities (Wuisang et al., 

2023; Sobania et al., 2023). Fan et al. (2023) demonstrated that 

LLMs can outperform some APR baselines on QuixBugs.  Curtis 

(2023) The literature shows that big language models are 

promising tools for automated program repair, but there are still 

challenges, such as ensuring their fixes are correct and avoiding 

new bugs (Wuisang et al., 2023). 

Most of the literature in the area of APR is focused on the 

performance measurement of one APR tool against the 

benchmark. A comparative analysis of LLMs in APR is essential 

to evaluate their bug-fixing accuracy, language adaptability, and 

prompt sensitivity across standardized benchmarks. 

3. Methodology 

The bug-fixing performance of ChatGPT and Gemini is analyzed 

using the QuixBugs benchmark and prompt-based instructions, 

with bug-fixing accuracy manually verified. Five independent 

requests were made to ChatGPT and Gemini for each of the 40 

programming problems to assess its ability to identify the bug and 

correct the code. The responses were recorded and compared. 

Figure 1 shows an example request to ChatGPT for the bitcount 

problem and Figure 2 shows the ChatGPT response to the above 

prompt. 

 

def bitcount(n): 

    count = 0 

    while n: 

        n ^= n - 1 

        count += 1 

    return count 

 

Does the following code have a bug? Yes/No If yes, clearly state the bug. 

give the corrected code 

Figure 1. ChatGPT prompt for bitcount problem. 

 

Figure 2. ChatGPT response for bitcount problem. 

The corrected code as given by ChatGPT is shown in Figure 3.  

 

Figure 3. ChatGPT corrected code for bitcount problem. 
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The Gemini response and corrected code for the same prompt are 

shown in Figure 4 and Figure 5 respectively. 

 

Figure 4. Gemini response for bitcount problem. 

 

Figure 5. Gemini corrected code for bitcount problem. 

For some problems, the bug is not identified correctly and an 

incorrect fix is proposed by ChatGPT. Figure 6(a) shows original 

rpn_eval (Reverse Polish Notation) problem, 6(b) shows the 

incorrect fix proposed by ChatGPT and 6(c) shows the correct 

solution given by Quixbugs. 

 

  
 

Figure 6(a) Original problem (b) Incorrect fix by ChatGPT (c) 

Correct fix. 

5. Results and Discussion 

The responses of ChatGPT and Gemini for each of the 40 buggy 

programs from QuixBugs benchmark were recorded and 

analyzed. To decide whether response is a correct answer, we 

judge by looking at the output given and comparing it with the 

correct python program provided by QuixBugs. Each response 

was marked as Yes (The bug was correctly identified and fixed), 

No (The bug was not identified or fixed). In some cases, it is 

observed that a bug is identified and along with this some other 

issue is also identified and corrected. Also, in a few runs, the bug 

is not identified but other issue is identified and corrected. Table 

1 gives the analysis done on the responses provided by ChatGPT.  

Table 1. Analysis of ChatGPT results. 

 Benchmark 

ChatGPT 

Bug 

successf

ully 

identifie

d Y/N 

Bug 

identifie

d  and 

some 

other 

issue 

identifie

d and 

correcte

d 

Bug not 

identified 

but other 

issue 

identified 

and 

corrected 

bitcount Y (5/5) 0 0 

breadth_first_search Y (5/5) 5 0 

bucketsort Y (5/5) 0 0 

depth_first_search Y (5/5) 0 0 

detect_cycle Y (5/5) 0 0 

find_first_in_sorted Y (5/5) 0 0 

find_in_sorted Y (5/5) 5 0 

flatten Y (5/5) 0 0 

gcd Y (3/5) 0 2 

get_factors Y (4/5) 0 1 

hanoi Y (5/5) 0 0 

is_valid_parenthesization Y (5/5) 0 0 

kheapsort Y (3/5) 1 1 

knapsack Y (5/5) 0 0 

kth Y (5/5) 5 0 

lcs_length N (0/5) 0 0 

leveshtein Y (5/5) 1 0 

lis N (0/5) 0 0 

longest_common_subsequence Y (4/5) 3 0 

max_sublist_sum Y (5/5) 0 0 

mergesort Y (1/5) 0 0 

minimum_spanning_tree Y (3/5) 1 0 

next_palindrome Y (5/5) 4 0 

next_permutation Y(4/5) 0 1 

node Y (5/5) 0 0 

pascal Y (5/5) 0 0 

possible_change Y (5/5) 0 0 

powerset Y(1/5) 0 4 

quicksort Y (2/5) 0 3 

reverse_linked_list Y (5/5) 0 0 

rpn_eval N (0/5) 0 0 

shortest_path_length Y (2/5) 0 3 

shortest_path_lengths N (0/5) 0 0 

shortest_paths Y(4/5) 0 1 

shunting_yard Y (5/5) 0 0 

sieve Y (5/5) 0 0 
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sqrt Y (2/5) 0 3 

subsequences Y (4/5) 0 1 

to_base N (0/5) 0 0 

topological_ordering Y (4/5) 1 0 

wrap Y (5/5) 4 0 

Total 35 30 20 

 

Table 2. Analysis of Gemini results. 

 Benchmark 

Gemini 

Bug 

successf

ully 

identifie

d Y/N 

Bug 

identifie

d  and 

some 

other 

issue 

identifie

d and 

correcte

d 

Bug not 

identified 

but other 

issue 

identified 

and 

corrected 

bitcount Y (5/5) 0 0 

breadth_first_search Y (5/5) 5 0 

bucketsort Y (5/5) 0 0 

depth_first_search Y (5/5) 0 0 

detect_cycle Y (2/5) 2 0 

find_first_in_sorted Y (3/5) 3 0 

find_in_sorted Y (2/5) 0 0 

flatten Y (3/5) 0 0 

gcd Y (2/5) 0 2 

get_factors Y (5/5) 0 0 

hanoi Y (5/5) 0 0 

is_valid_parenthesization Y (5/5) 0 0 

kheapsort N (0/5) 0 5 

knapsack Y (5/5) 0 0 

kth Y (1/5) 1 0 

lcs_length N (0/5) 0 2 

leveshtein Y (2/5) 2 0 

lis N (0/5) 0 1 

longest_common_subsequence Y (4/5) 0 0 

max_sublist_sum Y (3/5) 0 0 

mergesort Y (3/5) 2 0 

minimum_spanning_tree Y (5/5) 5 0 

next_palindrome Y (1/5) 1 0 

next_permutation Y (4/5) 4 0 

node Y (2/5) 0 0 

pascal Y (5/5) 5 0 

possible_change Y (4/5) 4 0 

powerset Y (1/5) 1 0 

quicksort Y (4/5) 4 1 

reverse_linked_list Y (5/5) 5 0 

rpn_eval N (0/5) 0 2 

shortest_path_length Y (1/5) 0 0 

shortest_path_lengths N (0/5) 0 1 

shortest_paths Y (5/5) 0 0 

shunting_yard Y (1/5) 1 0 

sieve Y (5/5) 0 0 

sqrt Y (5/5) 0 0 

subsequences Y (5/5) 0 0 

to_base N (0/5) 0 0 

topological_ordering Y (5/5) 0 0 

wrap N (0/5) 0 5 

Total 33 45 19 

 

An example of inconsistent responses for the quicksort problem 

is shown in Figure 7.  

 

Figure 7(a) Original problem. 

 

Figure 7(b) Bug identified by ChatGPT. 

 

 

 

Figure 7(c) Bug not identified by ChatGPT. 

In a few programs, it was seen that the bug was successfully 

identified and corrected and an additional correction was also 

carried out. For example, in the kheapsort problem, the bug was 

fixed with an additional check provided for ‘k’ to prevent invalid 

heap initialization as shown in Figure 8. 
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Yes, the code has a bug. Specifically, it initializes the heap with the first k elements but 

then starts iterating over the entire array again, which includes these first k elements. This 

causes the initial elements to be processed twice. 

The correct approach is to: 

1. Initialize the heap with the first k elements. 

2. Iterate over the remaining elements, starting from index k. 

Here is the corrected code: 

def kheapsort(arr, k): 

    import heapq 

 

    if k <= 0: 

        raise ValueError("k must be greater than 0") 

 

    # Initialize the heap with the first k elements 

    heap = arr[:k] 

    heapq.heapify(heap) 

 

    # Iterate over the remaining elements 

    for x in arr[k:]: 

        yield heapq.heappushpop(heap, x) 

 

    # Extract the remaining elements from the heap 

    while heap: 

        yield heapq.heappop(heap) 

Explanation of Corrections: 

• Initialize the heap with the first k elements using arr[:k]. 

• Iterate over the remaining elements starting from index k with for x in 

arr[k:]. 

• Added a check to ensure k is greater than 0 to prevent invalid heap size 

initialization. 

 

Figure 8. Additional correction proposed by ChatGPT. 

In some programs, it was seen that a bug was identified but the 

correct fix was not suggested.  In the shortestpaths problem, an 

invalid update in the condition was made as shown in Figure 9.  

 

Yes, the code has a bug. The bug lies in the inner loop where the weight is updated. The 

calculation of the updated weight for weight_by_edge[u, v] should be 

weight_by_node[u] + weight, but the current code mistakenly uses 

weight_by_node[v] instead of weight_by_node[u] + weight. 

Here's the corrected code: 

def shortest_paths(source, weight_by_edge): 

    weight_by_node = { 

        v: float('inf') for u, v in weight_by_edge 

    } 

    weight_by_node[source] = 0 

 

    for i in range(len(weight_by_node) - 1): 

        for (u, v), weight in weight_by_edge.items(): 

            weight_by_edge[u, v] = min( 

                weight_by_edge[u, v],          # Corrected line 

                weight_by_node[u] + weight 

            ) 

 

    return weight_by_node 

Explanation: 

In the inner loop, I've replaced weight_by_node[v] with weight_by_edge[u, v] to 

correctly update the weight. This ensures that the shortest paths are computed accurately. 

 

 

Figure 9. Incorrect fix for shortestpaths problem. 

From the analysis of the responses, it can be observed that 

ChatGPT has better and more consistent bug detection and fixing 

capability as compared to Google Gemini. Bugs were 

successfully identified in more problems by ChatGPT (35) than 

Gemini (33). However, the response inconsistencies have been 

observed in both. There are many instances of successful bug 

identification and fix with additional fixes as well as non-

identification of bugs with incorrect corrections or fixes reported 

by both.    

6. Conclusion 

 

APR has seen significant evolution, from rule-based and test-

driven tools to sophisticated deep learning models and LLMs. 

This study evaluates and compares the automatic bug fixing 

capability of LLMs such as ChatGPT and Google Gemini on the 

QuixBugs benchmark dataset. ChatGPT was found to have a 

remarkable ability for the detection and correction of several 

common programming mistakes while giving readable and 

maintainable fixes in most of the cases. Gemini also 

demonstrated good debugging capabilities and came very close to 

identifying bugs in most problems. However, in terms of 

consistency, both were inconsistent in the bug identification and 

fixes suggested. In some instances, they missed the detection, or 

put forward improper fixes for some complex mistakes. As the 

LLM’s become more powerful in terms of scale, training, code 

generation and learn more from ever-increasing corpora, these 

results will improve with newer versions. Hence, periodic 

evaluations are recommended. The flexibility and accuracy of 

these tools and response to prompts can be leveraged for APR in 

software development. 
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