

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3381–3386 | 3381

Automatic Program Repair: A Comparative Study of LLMs on

QuixBugs

Poonam Ponde1, Manisha Bharambe2 , Vinaya Keskar3 , Harshita Vachhani4

Submitted: 02/11/2024 Revised: 16/12/2024 Accepted: 25/12/2024

Abstract: Software bugs are errors or flaws in a program's code that can lead to incorrect or unexpected behavior, making their detection

and resolution crucial for reliable and secure software development. Debugging is a human-centric, time-consuming and resource-

intensive process, making it one of the most expensive phases in software development. Automatic Program Repair (APR) is an

emerging area of research that aims to automatically fix software bugs with minimal human intervention. Traditional APR tools use

search-based or learning-based techniques to find software bugs based on test suites and bug patterns, thereby having heavy reliance on

test cases. AI-driven APR tools are trained on large-scale codebases, open-source bug-fix histories, and benchmarks like QuixBugs.

They can analyze buggy code, fix bugs and generate code patches that are syntactically and semantically correct. This reduces the

debugging time and improves software reliability The QuixBugs benchmark has 40 programs from the Quixey Challenge in two

languages: Python and Java. Each program contains a one-line defect and failing testcases. This paper presents a comparative study of

APR techniques on the QuixBugs benchmark, which includes 40 buggy programs in both Python and Java. This study evaluates and

compares the automatic bug fixing capability of LLMs such as ChatGPT and Google Gemini on the QuixBugs benchmark, thereby

contributing to the understanding of LLMs’ role in automatic program repair.

Keywords: Bugs, Debugging, Automatic Program Repair, ChatGPT, Gemini.

1. Introduction

Bugs are very common in the software development process.

They are flaws or unintended behaviors in a program that can

cause incorrect or unpredictable results. It is crucial to identify

and resolve them to ensure that the software performs reliably

and as expected. Testing is a crucial stage in the software

development lifecycle. Debuggers help developers identify and

fix bugs by code inspection, execution and program state

investigation. It is however a time consuming and intensive task,

often incurring huge amount of money. Inspite of rigorous

testing, software bugs are inevitable and can lead to significant

costs and even failures if not addressed in time (Ye et al., 2020).

Manual debugging is labor-intensive, which has driven

researchers to develop Automated Program Repair (APR)

techniques that can automatically detect and fix bugs. This makes

Automatic Program Repair (APR) an important area of software

development. APR aims to fix bugs with little or no human

intervention. It analyzes buggy code and generates patches to

resolve errors. Traditional APR tools such as GenProg and

SemFix use search-based or learning-based techniques to find

software bugs based on test suites and bug patterns, thereby

having heavy reliance on test cases as specifications (Le Goues et

al., 2012; Nguyen et al., 2013, Zhang et al., 2023). Moreover,

another limitation of traditional approaches is that they do not

generalize well across various benchmarks and programming

languages.

Recent advancements in Artificial Intelligence (AI) and Large

Language Models (LLMs) present new opportunities for

automatic bug identification and repair without relying solely on

test cases (Xia et al., 2023). These Natural Language Processing

(NLP) models have demonstrated promising performance in code

generation, human-like code suggestions and bug fixes (Prenner

et al., 2022; Wuisang et al., 2023). Conversational AI models like

OpenAI’s ChatGPT and Google’s Gemini are have automated

debugging capability. However, a detailed investigation of their

automatic bug detection and fixing efficiency and reliability is

necessary to assess their effectiveness and applicability. This

study evaluates and compares the effectiveness of two LLM tools

ChatGPT and Google Gemini in APR using the QuixBugs

benchmark (Lin et al., 2017). By analyzing both, performance

and limitations of these models, this study contributes to the

understanding of LLMs’ role in automatic program repair.

This study is significant for several reasons:

1 Associate Professor , Department of Computer Science,

Nowrosjee Wadia College, Pune, India

2 Associate Professor,Department of Computer Science,

Abasaheb Garware College, Pune, India

3 ATSS College of Business Studies and Computer Application

Chinchwad Pune, India

4 Pratibha College of Commerce and Computer Studies, Pune,

India

Email ID : 1 poonamponde@nowrosjeewadiacollege.edu.in,

2mgb.agc@mespune.in 3 vasanti.Keskar@gmail.com

4Profharshita@gmail.com

* Corresponding Author: Poonam Ponde

E-mail Id: poonamponde@nowrosjeewadiacollege.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3381–3386 | 3382

1. Benchmarking AI systems: Provides a comparative

analysis of state-of-the-art AI systems in the context of

automated program repair.

2. Improvement insights: Identifies strengths and

weaknesses of and ChatGPT, offering insights for

future improvements.

3. Practical applications: Helps in understanding the

practical applicability of these AI systems in real-world

debugging scenarios.

1.1 Benchmarks

Benchmarks in Automatic Program Repair (APR) are curated

datasets of real-world or synthetic bugs used to evaluate and

compare repair tools. They help researchers test how well APR

systems fix bugs across different languages, domains, and

complexity levels. Popular benchmarks like Defects4J (Just et al.,

2014) and ManyBugs (Le Goues et al., 2015), are very useful but

suffer from overuse and limited scope (Ye et al., 2020). To

overcome this, Lin et al. (2017) introduced QuixBugs, a

multilingual benchmark featuring 40 algorithmic problems in

both Java and Python. It includes a collection of small, buggy

programs, each accompanied by a correct version. The dataset is

implemented in both Python and Java, making it suitable for

evaluating tools across different programming languages. The

bugs in QuixBugs cover a wide range of common programming

errors, including: Logical Bugs, Syntax bugs, Semantic Bugs and

Structural Bugs. It is open-source and available on platforms like

GitHub. QuixBugs is significant because it provides a

standardized way to evaluate and compare automated program

repair tools.

2. Related Work

Early APR techniques like GenProg (Le Goues et al., 2012),

SemFix (Nguyen et al., 2013), and Angelix (Mechtaev et al.,

2016) approached bug fixing through genetic programming,

constraint solving, or symbolic analysis. These techniques

required substantial engineering effort and were typically bound

to specific languages or benchmarks. Tools like Astor

(Monperrus, 2018; Martinez & Monperrus, 2019) and Nopol

(Xuan et al., 2017) refined patch generation mechanisms but had

problems with scalability and generalization. CURE (Jiang et al.,

2021) and CodeBERT (Feng et al., 2020) showed that

transformer-based models can generate patches with minimal

human input. There are many benchmarks for APR such as

ManyBugs (Le Goues et al., 2012) and Defects4J (Just et

al.,2014). However, they suffer from the limitations of less

diversity in evaluation datasets (Ye, et al., 2020). To address

evaluation diversity, Lin et al. (2017) developed QuixBugs, a

benchmark with 40 algorithmic bugs in Java and Python,

specifically designed for evaluating APR tools across languages.

Ye et al. (2020) used QuixBugs to assess 10 APR tools,

highlighting concerns like patch overfitting and the need for

better patch validation methods. The rise of LLMs like Codex

and ChatGPT introduced data-driven approaches to program

synthesis and repair. Codex, trained on GitHub data,

demonstrated capabilities in solving introductory programming

tasks (Finnie-Ansley et al., 2023).

ChatGPT has not been explicitly trained for code; however, it has

demonstrated strong debugging capabilities (Wuisang et al.,

2023; Sobania et al., 2023). Fan et al. (2023) demonstrated that

LLMs can outperform some APR baselines on QuixBugs. Curtis

(2023) The literature shows that big language models are

promising tools for automated program repair, but there are still

challenges, such as ensuring their fixes are correct and avoiding

new bugs (Wuisang et al., 2023).

Most of the literature in the area of APR is focused on the

performance measurement of one APR tool against the

benchmark. A comparative analysis of LLMs in APR is essential

to evaluate their bug-fixing accuracy, language adaptability, and

prompt sensitivity across standardized benchmarks.

3. Methodology

The bug-fixing performance of ChatGPT and Gemini is analyzed

using the QuixBugs benchmark and prompt-based instructions,

with bug-fixing accuracy manually verified. Five independent

requests were made to ChatGPT and Gemini for each of the 40

programming problems to assess its ability to identify the bug and

correct the code. The responses were recorded and compared.

Figure 1 shows an example request to ChatGPT for the bitcount

problem and Figure 2 shows the ChatGPT response to the above

prompt.

def bitcount(n):

 count = 0

 while n:

 n ^= n - 1

 count += 1

 return count

Does the following code have a bug? Yes/No If yes, clearly state the bug.

give the corrected code

Figure 1. ChatGPT prompt for bitcount problem.

Figure 2. ChatGPT response for bitcount problem.

The corrected code as given by ChatGPT is shown in Figure 3.

Figure 3. ChatGPT corrected code for bitcount problem.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3381–3386 | 3383

The Gemini response and corrected code for the same prompt are

shown in Figure 4 and Figure 5 respectively.

Figure 4. Gemini response for bitcount problem.

Figure 5. Gemini corrected code for bitcount problem.

For some problems, the bug is not identified correctly and an

incorrect fix is proposed by ChatGPT. Figure 6(a) shows original

rpn_eval (Reverse Polish Notation) problem, 6(b) shows the

incorrect fix proposed by ChatGPT and 6(c) shows the correct

solution given by Quixbugs.

Figure 6(a) Original problem (b) Incorrect fix by ChatGPT (c)

Correct fix.

5. Results and Discussion

The responses of ChatGPT and Gemini for each of the 40 buggy

programs from QuixBugs benchmark were recorded and

analyzed. To decide whether response is a correct answer, we

judge by looking at the output given and comparing it with the

correct python program provided by QuixBugs. Each response

was marked as Yes (The bug was correctly identified and fixed),

No (The bug was not identified or fixed). In some cases, it is

observed that a bug is identified and along with this some other

issue is also identified and corrected. Also, in a few runs, the bug

is not identified but other issue is identified and corrected. Table

1 gives the analysis done on the responses provided by ChatGPT.

Table 1. Analysis of ChatGPT results.

 Benchmark

ChatGPT

Bug

successf

ully

identifie

d Y/N

Bug

identifie

d and

some

other

issue

identifie

d and

correcte

d

Bug not

identified

but other

issue

identified

and

corrected

bitcount Y (5/5) 0 0

breadth_first_search Y (5/5) 5 0

bucketsort Y (5/5) 0 0

depth_first_search Y (5/5) 0 0

detect_cycle Y (5/5) 0 0

find_first_in_sorted Y (5/5) 0 0

find_in_sorted Y (5/5) 5 0

flatten Y (5/5) 0 0

gcd Y (3/5) 0 2

get_factors Y (4/5) 0 1

hanoi Y (5/5) 0 0

is_valid_parenthesization Y (5/5) 0 0

kheapsort Y (3/5) 1 1

knapsack Y (5/5) 0 0

kth Y (5/5) 5 0

lcs_length N (0/5) 0 0

leveshtein Y (5/5) 1 0

lis N (0/5) 0 0

longest_common_subsequence Y (4/5) 3 0

max_sublist_sum Y (5/5) 0 0

mergesort Y (1/5) 0 0

minimum_spanning_tree Y (3/5) 1 0

next_palindrome Y (5/5) 4 0

next_permutation Y(4/5) 0 1

node Y (5/5) 0 0

pascal Y (5/5) 0 0

possible_change Y (5/5) 0 0

powerset Y(1/5) 0 4

quicksort Y (2/5) 0 3

reverse_linked_list Y (5/5) 0 0

rpn_eval N (0/5) 0 0

shortest_path_length Y (2/5) 0 3

shortest_path_lengths N (0/5) 0 0

shortest_paths Y(4/5) 0 1

shunting_yard Y (5/5) 0 0

sieve Y (5/5) 0 0

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3381–3386 | 3384

sqrt Y (2/5) 0 3

subsequences Y (4/5) 0 1

to_base N (0/5) 0 0

topological_ordering Y (4/5) 1 0

wrap Y (5/5) 4 0

Total 35 30 20

Table 2. Analysis of Gemini results.

 Benchmark

Gemini

Bug

successf

ully

identifie

d Y/N

Bug

identifie

d and

some

other

issue

identifie

d and

correcte

d

Bug not

identified

but other

issue

identified

and

corrected

bitcount Y (5/5) 0 0

breadth_first_search Y (5/5) 5 0

bucketsort Y (5/5) 0 0

depth_first_search Y (5/5) 0 0

detect_cycle Y (2/5) 2 0

find_first_in_sorted Y (3/5) 3 0

find_in_sorted Y (2/5) 0 0

flatten Y (3/5) 0 0

gcd Y (2/5) 0 2

get_factors Y (5/5) 0 0

hanoi Y (5/5) 0 0

is_valid_parenthesization Y (5/5) 0 0

kheapsort N (0/5) 0 5

knapsack Y (5/5) 0 0

kth Y (1/5) 1 0

lcs_length N (0/5) 0 2

leveshtein Y (2/5) 2 0

lis N (0/5) 0 1

longest_common_subsequence Y (4/5) 0 0

max_sublist_sum Y (3/5) 0 0

mergesort Y (3/5) 2 0

minimum_spanning_tree Y (5/5) 5 0

next_palindrome Y (1/5) 1 0

next_permutation Y (4/5) 4 0

node Y (2/5) 0 0

pascal Y (5/5) 5 0

possible_change Y (4/5) 4 0

powerset Y (1/5) 1 0

quicksort Y (4/5) 4 1

reverse_linked_list Y (5/5) 5 0

rpn_eval N (0/5) 0 2

shortest_path_length Y (1/5) 0 0

shortest_path_lengths N (0/5) 0 1

shortest_paths Y (5/5) 0 0

shunting_yard Y (1/5) 1 0

sieve Y (5/5) 0 0

sqrt Y (5/5) 0 0

subsequences Y (5/5) 0 0

to_base N (0/5) 0 0

topological_ordering Y (5/5) 0 0

wrap N (0/5) 0 5

Total 33 45 19

An example of inconsistent responses for the quicksort problem

is shown in Figure 7.

Figure 7(a) Original problem.

Figure 7(b) Bug identified by ChatGPT.

Figure 7(c) Bug not identified by ChatGPT.

In a few programs, it was seen that the bug was successfully

identified and corrected and an additional correction was also

carried out. For example, in the kheapsort problem, the bug was

fixed with an additional check provided for ‘k’ to prevent invalid

heap initialization as shown in Figure 8.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3381–3386 | 3385

Yes, the code has a bug. Specifically, it initializes the heap with the first k elements but

then starts iterating over the entire array again, which includes these first k elements. This

causes the initial elements to be processed twice.

The correct approach is to:

1. Initialize the heap with the first k elements.

2. Iterate over the remaining elements, starting from index k.

Here is the corrected code:

def kheapsort(arr, k):

 import heapq

 if k <= 0:

 raise ValueError("k must be greater than 0")

 # Initialize the heap with the first k elements

 heap = arr[:k]

 heapq.heapify(heap)

 # Iterate over the remaining elements

 for x in arr[k:]:

 yield heapq.heappushpop(heap, x)

 # Extract the remaining elements from the heap

 while heap:

 yield heapq.heappop(heap)

Explanation of Corrections:

• Initialize the heap with the first k elements using arr[:k].

• Iterate over the remaining elements starting from index k with for x in

arr[k:].

• Added a check to ensure k is greater than 0 to prevent invalid heap size

initialization.

Figure 8. Additional correction proposed by ChatGPT.

In some programs, it was seen that a bug was identified but the

correct fix was not suggested. In the shortestpaths problem, an

invalid update in the condition was made as shown in Figure 9.

Yes, the code has a bug. The bug lies in the inner loop where the weight is updated. The

calculation of the updated weight for weight_by_edge[u, v] should be

weight_by_node[u] + weight, but the current code mistakenly uses

weight_by_node[v] instead of weight_by_node[u] + weight.

Here's the corrected code:

def shortest_paths(source, weight_by_edge):

 weight_by_node = {

 v: float('inf') for u, v in weight_by_edge

 }

 weight_by_node[source] = 0

 for i in range(len(weight_by_node) - 1):

 for (u, v), weight in weight_by_edge.items():

 weight_by_edge[u, v] = min(

 weight_by_edge[u, v], # Corrected line

 weight_by_node[u] + weight

)

 return weight_by_node

Explanation:

In the inner loop, I've replaced weight_by_node[v] with weight_by_edge[u, v] to

correctly update the weight. This ensures that the shortest paths are computed accurately.

Figure 9. Incorrect fix for shortestpaths problem.

From the analysis of the responses, it can be observed that

ChatGPT has better and more consistent bug detection and fixing

capability as compared to Google Gemini. Bugs were

successfully identified in more problems by ChatGPT (35) than

Gemini (33). However, the response inconsistencies have been

observed in both. There are many instances of successful bug

identification and fix with additional fixes as well as non-

identification of bugs with incorrect corrections or fixes reported

by both.

6. Conclusion

APR has seen significant evolution, from rule-based and test-

driven tools to sophisticated deep learning models and LLMs.

This study evaluates and compares the automatic bug fixing

capability of LLMs such as ChatGPT and Google Gemini on the

QuixBugs benchmark dataset. ChatGPT was found to have a

remarkable ability for the detection and correction of several

common programming mistakes while giving readable and

maintainable fixes in most of the cases. Gemini also

demonstrated good debugging capabilities and came very close to

identifying bugs in most problems. However, in terms of

consistency, both were inconsistent in the bug identification and

fixes suggested. In some instances, they missed the detection, or

put forward improper fixes for some complex mistakes. As the

LLM’s become more powerful in terms of scale, training, code

generation and learn more from ever-increasing corpora, these

results will improve with newer versions. Hence, periodic

evaluations are recommended. The flexibility and accuracy of

these tools and response to prompts can be leveraged for APR in

software development.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Fan, Y., Wang, S., Liu, Y., & Zhang, L. (2023). Towards

generalizable program repair with large language models:

An empirical study. Proceedings of the 45th International

Conference on Software Engineering.

[2] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M.,

... & Zhou, M. (2020). CodeBERT: A pre-trained model for

programming and natural languages. Proceedings of the

2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 1536–1547.

[3] Finnie-Ansley, J., Sivaraman, A., Vasilescu, B., & DeLine,

R. (2023). Robots need social skills: Exploring social

behavior in code generation tools. IEEE Transactions on

Software Engineering.

[4] Jiang, J., Zhang, D., Wang, S., Yin, G., & Zhou, J. (2021).

CURE: Code-aware neural machine translation for

automatic program repair. IEEE Transactions on Software

Engineering.

[5] Just, R., Jalali, D., & Ernst, M. D. (2014). Defects4J: A

database of existing faults to enable controlled testing

studies for Java programs. In Proceedings of the 2014

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3381–3386 | 3386

International Symposium on Software Testing and Analysis

(ISSTA) (pp. 437–440). ACM.

https://doi.org/10.1145/2610384.2628055

[6] Le Goues, C., Nguyen, T., Forrest, S., & Weimer, W.

(2012). GenProg: A generic method for automatic software

repair. IEEE Transactions on Software Engineering, 38(1),

54–72.

[7] Lin, D., Koppel, J., Chen, A., & Solar-Lezama, A. (2017).

QuixBugs: A Multi-Lingual Program Repair Benchmark Set

Based on the Quixey Challenge. SPLASH Companion 2017.

https://doi.org/10.1145/3135932.3135941. GitHub.

https://github.com/jkoppel/QuixBugs

[8] Martinez, M., & Monperrus, M. (2019). Astor: A program

repair library for Java. Proceedings of ISSTA, ACM.

[9] Mechtaev, S., Yi, J., & Roychoudhury, A. (2016). Angelix:

Scalable multiline program patch synthesis via symbolic

analysis. Proceedings of the 38th International Conference

on Software Engineering, 691–701.

[10] Monperrus, M. (2018). Automatic software repair: A

bibliography. ACM Computing Surveys (CSUR), 51(1), 1–

24.

[11] Nguyen, H. D. T., Qi, D., Roychoudhury, A., & Chandra, S.

(2013). SemFix: Program repair via semantic analysis.

Proceedings of the 2013 International Conference on

Software Engineering, 772–781.

[12] Prenner, J. A., Babii, H., & Robbes, R. (2022). Can

OpenAI's Codex Fix Bugs? An Evaluation on QuixBugs.

International Workshop on Automated Program Repair

(APR’22). https://doi.org/10.1145/3524459.3527351

[13] Sobania, D., Briesch, M., Hanna, C., & Petke, J. (2023). An

analysis of the automatic bug fixing performance of chatgpt.

In 2023 IEEE/ACM International Workshop on Automated

Program Repair (APR) (pp. 23-30). IEEE.

[14] Wuisang, M. C., Kurniawan, M., Santosa, K. A. W.,

Gunawan, A. A. S., & Saputra, K. E. (2023). An Evaluation

of the Effectiveness of OpenAI's ChatGPT for Automated

Python Program Bug Fixing Using QuixBugs. 2023

International Seminar on Application for Technology of

Information and Communication (iSemantic), IEEE.

https://doi.org/10.1109/iSemantic59612.2023.10295323

[15] Xia, C. S., Wei, Y., & Zhang, L. (2023). Automated

program repair in the era of large pre-trained language

models. Proceedings of the 2023 IEEE/ACM 45th

International Conference on Software Engineering (ICSE),

1482–1494. https://doi.org/10.1109/ICSE48619.2023.00129

[16] Xuan, J., Martinez, M., Demarco, F., Clement, M., Danglot,

B., Le Berre, D., & Monperrus, M. (2017). Nopol:

Automatic repair of conditional statements in Java programs.

IEEE Transactions on Software Engineering, 43(1), 34–55.

[17] Ye, H., Martinez, M., Durieux, T., & Monperrus, M. (2020).

A comprehensive study of automatic program repair on the

QuixBugs benchmark. Journal of Systems and Software,

171, 110825. https://doi.org/10.1016/j.jss.2020.110825

[18] Zhang, D., Liu, Y., Wang, S., & Zhou, J. (2023). A survey

of learning-based automated program repair. ACM

Computing Surveys (CSUR), 55(9), 1–39.

