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Abstract 

The deployment of Large Language Models (LLMs) in resource-constrained environments remains challenging due to 

their substantial computational and memory requirements. While numerous benchmarking tools exist, they 

predominantly focus on high-end hardware configurations, leaving a significant gap in understanding LLM 

performance characteristics under resource limitations. This paper introduces EffiLLM, a comprehensive benchmarking 

framework specifically designed to evaluate and optimize LLM inference efficiency across varied hardware 

configurations and quantization techniques. Through extensive experimentation with models ranging from 125M to 13B 

parameters across diverse computational settings, we quantify the impact of batch sizes, sequence lengths, and 

quantization methods on throughput, latency, and memory utilization. Our findings reveal that INT8 quantization offers 

a near-optimal balance, reducing memory requirements by approximately 50% while maintaining 90-95% of baseline 

performance. Furthermore, we identify non-linear scaling patterns in throughput as batch sizes increase, with 

diminishing returns beyond certain thresholds dependent on model size and available resources. The framework’s 

visualization capabilities enable nuanced analysis of efficiency trade-offs, facilitating informed deployment decisions. 

EffiLLM provides researchers and practitioners with an essential tool for optimizing LLM performance in environments 

with limited computational resources, potentially broadening the accessibility of these powerful models. 

 

Keywords: large language models, inference optimization, benchmarking, resource-constrained environments, 

quantization, efficiency analysis 

 

Introduction 

Large Language Models (LLMs) have demonstrated 

remarkable capabilities across diverse natural language 

processing tasks, from text generation to reasoning and 

problem-solving . These capabilities stem from their 

unprecedented scale, with state-of-the-art models 

containing hundreds of billions of parameters . 

However, this scale presents significant challenges for 

deployment, particularly in resource-constrained 

environments such as edge devices, consumer 

hardware, or environments where computational 

resources must be shared among multiple applications. 

The substantial gap between the computational 

requirements of cutting-edge LLMs and the available 

resources in many practical deployment scenarios 

necessitates a systematic approach to optimizing 

inference efficiency. Recent advances in model 

compression, quantization, and inference optimization 

have shown promise in bridging this gap . However, 

the impact of these optimization techniques varies 

significantly across different models, hardware 

configurations, and usage patterns, making it 

challenging to determine optimal deployment 

strategies without extensive experimentation. 

 

Existing benchmarking frameworks for LLMs, such as 

LLM Harness  and HELM , primarily focus on 

evaluating model quality and performance on high-end 

hardware. These frameworks typically measure metrics 

such as accuracy, perplexity, and inference time on 

powerful GPUs, providing valuable insights for 

scenarios where computational resources are abundant. 

However, they offer limited guidance for scenarios 

where resources are constrained, and efficiency is a 

primary concern. This research gap motivates the 

development of EffiLLM, a comprehensive 

benchmarking framework specifically designed to 

evaluate and optimize LLM inference efficiency across 

diverse hardware configurations and optimization 

techniques. EffiLLM focuses on three critical 

dimensions of efficiency: 

1. Throughput: The number of tokens processed per 

second, a key indicator of overall system performance. 

2. Latency: The time required to generate the first 

token, which is crucial for interactive applications. 

3. Memory Usage: The RAM and VRAM 

requirements during inference, which often represent 

the primary constraint in resource-limited 

environments. 
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By systematically measuring these metrics across 

different models, batch sizes, sequence lengths, and 

quantization techniques, EffiLLM provides a 

comprehensive understanding of LLM performance 

characteristics under various resource constraints. This 

understanding enables informed decisions about model 

selection, optimization techniques, and deployment 

strategies for specific hardware configurations and 

usage patterns. 

The primary contributions of this paper are as follows: 

1. We introduce EffiLLM, a flexible and extensible 

benchmarking framework for evaluating LLM 

inference efficiency across diverse hardware 

configurations and optimization techniques. 

2. We present a comprehensive analysis of the impact 

of batch sizes, sequence lengths, and quantization 

methods on LLM throughput, latency, and memory 

utilization. 

3. We quantify the efficiency trade-offs associated 

with different optimization techniques, providing 

practical guidance for deploying LLMs in resource-

constrained environments. 

4. We identify and analyze non-linear scaling patterns 

in LLM performance, revealing insights into optimal 

batch sizes and sequence lengths for different models 

and hardware configurations. 

5. We develop novel visualization techniques for 

analyzing and communicating complex efficiency 

trade-offs, facilitating more informed deployment 

decisions. 

The remainder of this paper is structured as follows: 

Section 2 reviews related work in LLM benchmarking, 

inference optimization, and deployment in resource-

constrained environments. Section 3 describes the 

EffiLLM framework, including its architecture, 

metrics, and methodology. Section 4 outlines our 

experimental setup, including the models, hardware 

configurations, and evaluation methodology. Section 5 

presents and analyzes our findings, focusing on the 

impact of various factors on LLM efficiency. Section 6 

discusses the implications of our findings for practical 

deployment scenarios and identifies directions for 

future research. Finally, Section 7 concludes the paper 

and summarizes our contributions. 

 

Literature Review 

Large Language Model Development and Scaling 

The field of natural language processing has been 

revolutionized by the development of increasingly 

large language models. The emergence of transformer-

based architectures  has enabled the scaling of models 

to unprecedented sizes. GPT-3  with 175 billion 

parameters demonstrated that scaling models can lead 

to emergent capabilities not seen in smaller models. 

Subsequently, models such as PaLM , LLaMA , and 

GPT-4  have further pushed the boundaries of model 

scale and capability. 

The scaling laws for language models have been 

extensively studied , establishing mathematical 

relationships between model size, training dataset size, 

and performance. These studies suggest that model 

performance continues to improve with scale, albeit 

with diminishing returns. However, these scaling laws 

primarily focus on model quality rather than inference 

efficiency, leaving a gap in our understanding of how 

model scale affects deployment considerations. 

 

LLM Benchmarking and Evaluation 

Evaluation frameworks for LLMs have evolved to 

assess these models’ capabilities across diverse tasks. 

GLUE  and SuperGLUE  established early benchmarks 

for language understanding. More recently, 

frameworks such as HELM , EleutherAI’s LM 

Evaluation Harness , and BIG-bench  have been 

developed to evaluate increasingly capable LLMs. 

However, these benchmarking frameworks primarily 

focus on evaluating model quality rather than 

efficiency. The Stanford CRFM benchmark  includes 

some efficiency metrics but does not provide a 

comprehensive analysis of factors affecting 

deployment efficiency. Similarly, the MLPerf 

Inference benchmark  includes language models but 

does not focus specifically on the unique challenges of 

LLM deployment in resource-constrained 

environments. 

 

Quantization and Compression Techniques for 

LLMs 

Various techniques have been developed to reduce the 

computational and memory requirements of LLMs. 

Quantization has emerged as a particularly effective 

approach, with methods such as GPTQ , ZeroQuant , 

and LLM.int8()  enabling significant reductions in 

memory usage with minimal impact on model quality. 

The mathematical foundation of quantization involves 

mapping floating-point values to integers within a 

specified range. For a floating-point tensor 𝑋 with 

elements 𝑥, the quantization process can be 

represented as: 

𝑄(𝑥) = round (
𝑥 − min(𝑋)

max(𝑋) − min(𝑋)
⋅ (2𝑏 − 1)) 

Where 𝑏 represents the bit width of the quantized 

representation, and round is a function that maps to the 

nearest integer. This process allows the model weights 

to be stored using fewer bits, reducing memory 

requirements. 

[𝑄(𝑥) = round (
𝑥−min(𝑋)

max(𝑋)−min(𝑋)
⋅ (2𝑏 − 1))] 

Other compression techniques include pruning , which 

removes less important weights, and knowledge 

distillation , which transfers knowledge from a larger 

model to a smaller one. However, the relative 

effectiveness of these techniques for different 

deployment scenarios remains an open question. 

 

Inference Optimization for Transformer Models 

Inference optimization techniques for transformer 

models have been extensively studied. Approaches 

such as attention caching  and continuous batching  

have been shown to significantly improve throughput. 

Hardware-specific optimizations, such as those 

implemented in NVIDIA’s FasterTransformer  and 

DeepSpeed , further enhance efficiency on supported 

platforms. 
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The FlashAttention algorithm  has demonstrated 

substantial improvements in memory efficiency and 

throughput by optimizing the attention computation. 

This algorithm reformulates the attention calculation to 

minimize memory movement, a critical bottleneck in 

transformer inference. 

Gap in Current Research 

Despite these advances, there remains a significant gap 

in understanding how various optimization techniques 

interact with different hardware configurations, model 

architectures, and usage patterns. Most existing 

research focuses on isolated optimizations without 

providing a comprehensive framework for evaluating 

their combined impact in diverse deployment 

scenarios. 

Furthermore, there is limited guidance on choosing 

optimal configurations (e.g., batch size, sequence 

length, quantization method) for specific resource 

constraints. This gap particularly affects practitioners 

attempting to deploy LLMs in resource-constrained 

environments, where efficiency is a primary concern. 

Our work addresses this gap by introducing EffiLLM, 

a comprehensive benchmarking framework that 

enables systematic evaluation of LLM inference 

efficiency across diverse scenarios. By providing 

detailed insights into the factors affecting throughput, 

latency, and memory usage, we aim to facilitate more 

informed decisions about LLM deployment in 

resource-constrained environments. 

 

Methodology 

EffiLLM Framework Architecture 

The EffiLLM framework is designed to provide a 

comprehensive and extensible platform for 

benchmarking LLM inference efficiency. The 

architecture consists of four primary components, as 

illustrated in Figure 1: 

 
EffiLLM System Architecture showing the framework’s core components and their interactions. 

 

Core Benchmarking Module 

The Core Benchmarking Module orchestrates the 

overall benchmarking process, loading models, 

applying optimizations, and coordinating the 

measurement of key metrics. This module implements 

a flexible configuration system that allows users to 

specify which models, hardware configurations, batch 

sizes, sequence lengths, and optimization techniques to 

evaluate. 
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EffiLLM Benchmarking Process Flow. 

 

The benchmarking workflow follows a systematic 

approach to ensure reliable and reproducible 

measurements: 

1. Configuration Initialization: The framework 

initializes the benchmark configuration, including 

model selection, hardware settings, and test 

parameters. 

2. Model Loading: The selected model is loaded with 

the specified optimizations (e.g., quantization). 

3. Warmup Phase: The model performs several 

inference runs to ensure that any just-in-time 

compilation, caching, or other initialization processes 

are completed before measurement. 

4. Measurement Phase: The framework 

systematically measures throughput, latency, and 

memory usage across different configurations. 

5. Results Aggregation: Measurements are 

aggregated, analyzed, and prepared for reporting. 

Quantization Support 

The Quantization Support module provides interfaces 

to various quantization methods, including: 

• Post-training Quantization: Converts model 

weights to lower precision formats (e.g., INT8, INT4) 

after training, without requiring additional data. 

• Quantization-Aware Training: Simulates 

quantization during fine-tuning to improve model 

robustness to quantization. 

• Dynamic Quantization: Applies different 

quantization strategies to different parts of the model 

based on sensitivity analysis. 

The quantization process follows the mathematical 

formulation described in Equation [eq:quantization], 

with specific implementations adapted for different 

quantization methods and frameworks. 

 
Impact of Quantization on Performance and Memory Usage. 

Metrics Collection 

The Metrics Collection module is responsible for 

measuring and recording performance metrics during 

benchmark execution. The module is designed to 

minimize its own impact on the measurements while 

providing high-resolution timing information. Key 

metrics include: 
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• Throughput: Measured in tokens per second, 

calculated as: 

Throughput =
Total tokens generated

Generation time
 

  [Throughput =
Total tokens generated

Generation time
] 

• Latency: Time to first token (TTFT), representing 

the delay between sending a prompt and receiving the 

first generated token. 

• Memory Usage: RAM and VRAM consumption 

during model loading and inference, including peak 

memory usage. 

For batch processing scenarios, we also calculate the 

per-instance throughput: 

Per-instance Throughput

=
Total tokens generated

Batch size × Generation time
 

[Per-instance Throughput =
Total tokens generated

Batch size×Generation time
] 

 

 
EffiLLM Metrics Collection Flow. 

Reporting and Visualization 

The Reporting and Visualization module transforms raw benchmark data into actionable insights through 

comprehensive reports and visualizations. This module implements various visualization techniques to highlight 

different aspects of LLM performance, including: 

• Comparative bar charts for cross-model performance analysis 

• Line plots for analyzing scaling behavior with batch size and sequence length 

• Heatmaps for visualizing the joint impact of multiple parameters 

• Scatter plots for efficiency analysis (e.g., throughput vs. memory usage) 

The module also generates tabular data summarizing key metrics and provides statistical analysis to identify significant 

patterns and relationships. 
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EffiLLM Benchmarking Process Flow. 

 

Benchmarking Methodology 

Our benchmarking methodology aims to provide a 

comprehensive and fair comparison of different 

models, hardware configurations, and optimization 

techniques. To achieve this, we implement several 

methodological principles: 

Controlled Environment 

All benchmarks are conducted in a controlled 

environment to minimize external factors that could 

influence results. This includes: 

• Dedicated hardware with no other significant 

processes running 

• Consistent power settings to prevent thermal 

throttling 

• Controlled room temperature to ensure stable 

hardware performance 

Warmup Procedures 

Modern hardware and software systems often exhibit 

varying performance characteristics during initial 

execution due to caching, just-in-time compilation, and 

other optimization processes. To account for this, our 

methodology includes a systematic warmup procedure: 

1. Load the model and perform multiple inference 

passes with representative inputs 

2. Discard measurements from these initial passes 

3. Begin actual measurements only after performance 

stabilizes 

The number of warmup iterations is determined 

adaptively based on observed performance variation, 

with a minimum of three iterations. 

Statistical Rigor 

To ensure reliable results, each configuration is tested 

multiple times, and statistical aggregates are reported. 

Our approach includes: 

• Minimum of five measurement iterations per 

configuration 

• Reporting of mean, median, standard deviation, and 

95% confidence intervals 

• Identification and handling of outliers, with 

measurement repetition when necessary 

The statistical significance of observed differences is 

assessed using appropriate statistical tests, with a 

threshold of 𝑝 < 0.05 for significance. 

 

Representative Workloads 

LLM performance can vary significantly depending on 

the nature of the input and generation task. To provide 

representative results, our benchmarking methodology 

includes diverse workloads: 

• Short-form question answering (e.g., factual 

queries) 

• Long-form text generation (e.g., creative writing, 

code generation) 

• Chat-style interaction with multiple turns 

• Domain-specific tasks (e.g., legal text analysis, 

scientific reasoning) 

For each workload, we use a consistent set of prompts 

across all tested configurations to ensure fair 

comparison. 

Metrics and Analysis 

Throughput Measurement 

Throughput is measured by timing the generation of a 

specified number of tokens for a given prompt. The 

measurement process can be formalized as: 

𝑇 =
𝑛 × 𝑏

𝑡𝑔 − 𝑡𝑠
 

[𝑇 =
𝑛×𝑏

𝑡𝑔−𝑡𝑠
] 

Where: 

• 𝑇 is the throughput in tokens per second 

• 𝑛 is the number of tokens generated per sequence 

• 𝑏 is the batch size 

• 𝑡𝑠 is the start time of generation 
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• 𝑡𝑔 is the completion time of generation 

To account for potential variability, we perform 

multiple measurements and report statistical 

aggregates. 

Latency Analysis 

Latency is measured as the time to first token (TTFT), 

representing the delay between sending a prompt and 

receiving the first generated token. This metric is 

crucial for interactive applications where 

responsiveness is important. 

For a comprehensive analysis, we also measure the 

distribution of inter-token latencies, defined as the time 

between consecutive token generations. This 

distribution can reveal potential issues with attention 

mechanisms or memory management that might not be 

apparent from aggregate throughput measurements. 

Memory Profiling 

Memory usage is profiled at multiple stages of the 

benchmark process: 

1. Baseline memory usage before model loading 

2. Memory impact of model loading 

3. Peak memory usage during inference 

4. Steady-state memory usage during extended 

generation 

5. Memory release after model unloading 

Both system RAM and GPU VRAM (where 

applicable) are monitored. Memory efficiency is 

calculated as the ratio of throughput to memory usage: 

Memory Efficiency =
Throughput (tokens/s)

Memory Usage (GB)
 

[Memory Efficiency =
Throughput (tokens/s)

Memory Usage (GB)
] 

This metric provides a concise measure of how 

effectively a model utilizes available memory 

resources. 

Scaling Analysis 

To understand how performance scales with system 

resources and model configuration, we analyze the 

relationship between throughput (𝑇), batch size (𝑏), 

and sequence length (𝑠). Ideally, throughput would 

scale linearly with batch size, but in practice, we 

observe non-linear scaling that can be approximated 

by: 

𝑇(𝑏, 𝑠) ≈ 𝛼 ⋅ 𝑏𝛽(𝑠) 
[𝑇(𝑏, 𝑠) ≈ 𝛼 ⋅ 𝑏𝛽(𝑠)] 
Where: 

• 𝛼 is a model-specific constant 

• 𝛽(𝑠) is the scaling exponent, which is a function of 

sequence length 𝑠 

We determine 𝛽(𝑠) empirically for different models 

and hardware configurations, providing insights into 

the efficiency of parallelism utilization. 

Experimental Setup 

Models and Implementations 

To ensure a comprehensive evaluation, we selected a 

diverse range of models spanning different sizes, 

architectures, and design philosophies. Table 1 

summarizes the models included in our benchmark. 

 

Models included in the benchmarking evaluation 

Model Parameters Architecture Context Window Source 

OPT-125M 125M Decoder-only 2,048 Meta AI 

OPT-350M 350M Decoder-only 2,048 Meta AI 

OPT-1.3B 1.3B Decoder-only 2,048 Meta AI 

OPT-2.7B 2.7B Decoder-only 2,048 Meta AI 

OPT-6.7B 6.7B Decoder-only 2,048 Meta AI 

Pythia-70M 70M Decoder-only 2,048 EleutherAI 

Pythia-160M 160M Decoder-only 2,048 EleutherAI 

Pythia-410M 410M Decoder-only 2,048 EleutherAI 

Pythia-1B 1B Decoder-only 2,048 EleutherAI 

Pythia-2.8B 2.8B Decoder-only 2,048 EleutherAI 

Pythia-6.9B 6.9B Decoder-only 2,048 EleutherAI 

Pythia-12B 12B Decoder-only 2,048 EleutherAI 

BLOOM-560M 560M Decoder-only 2,048 BigScience 

BLOOM-1.1B 1.1B Decoder-only 2,048 BigScience 

BLOOM-3B 3B Decoder-only 2,048 BigScience 

BLOOM-7.1B 7.1B Decoder-only 2,048 BigScience 

Llama-2-7B 7B Decoder-only 4,096 Meta AI 

Llama-2-13B 13B Decoder-only 4,096 Meta AI 

Mistral-7B 7B Decoder-only 8,192 Mistral AI 

 

All models were implemented using the Hugging Face 

Transformers library , which provides a consistent 

interface for model loading, inference, and 

optimization. For quantization, we utilized the 

following implementations: 

• INT8 Quantization: Implemented using the 

bitsandbytes library , which provides efficient Int8 

quantization with minimal accuracy loss through 

vector-wise quantization. 

• INT4 Quantization: Implemented using 

bitsandbytes’ recent 4-bit quantization support. 

• GPTQ: Implemented using the AutoGPTQ library 

, which provides state-of-the-art post-training 

quantization specifically designed for transformer 

models. 

Hardware Configurations 

To evaluate model performance across a spectrum of 

deployment scenarios, we conducted benchmarks on a 
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diverse set of hardware configurations, summarized in 

Table [tab:hardware]. 

These configurations represent a broad spectrum of 

deployment scenarios, from high-end servers in data 

centers to edge devices with limited resources. By 

testing across this range, we can provide insights 

applicable to diverse real-world use cases. 

Benchmark Parameters 

For each model and hardware configuration, we 

systematically varied the following parameters to 

assess their impact on performance: 

• Batch Size: [1,2,4,8,16,32,64] (subject to memory 

constraints) 

• Sequence Length: 

[128,256,512,1024,2048,4096,8192] (subject to 

model support) 

• Precision/Quantization: 

o Full Precision (FP32) 

o Half Precision (FP16) 

o INT8 Quantization (bitsandbytes) 

o INT4 Quantization (bitsandbytes) 

o GPTQ Quantization (where available) 

Not all combinations were feasible for all models and 

hardware configurations due to memory constraints. In 

such cases, we reported the maximum batch size and 

sequence length achievable for each configuration. 

Evaluation Methodology 

Each benchmark configuration was evaluated using the 

following methodology: 

1. Warmup Phase: 3 inference runs to stabilize 

performance 

2. Measurement Phase: 10 inference runs, with 

metrics recorded for each run 

3. Analysis: Calculation of mean, median, standard 

deviation, and 95% confidence intervals for all metrics 

For throughput measurement, we generated 256 tokens 

for each prompt, ensuring that the model reached a 

steady state of generation. Latency was measured 

separately, focusing specifically on the time to first 

token after providing a prompt. 

Memory usage was measured at multiple points during 

the benchmark process, including before model 

loading, after model loading, during inference, and 

after model unloading. Both system RAM and GPU 

VRAM (where applicable) were monitored. 

Benchmark Workloads 

To ensure representative results across different use 

cases, we developed a suite of benchmark workloads 

covering various types of language tasks: 

• Short-form QA: 50 factual questions requiring 

concise answers 

• Summarization: 20 news articles and scientific 

abstracts to be summarized 

• Creative Writing: 20 prompts for creative text 

generation 

• Code Generation: 30 prompts for generating code 

in various programming languages 

• Chat Simulation: 25 multi-turn conversations 

simulating interactive use 

These workloads were designed to represent the 

diversity of real-world applications while enabling 

consistent measurement across different models and 

configurations. 

Results and Analysis 

Throughput Analysis 

Impact of Model Size on Throughput 

Our experiments reveal a clear relationship between 

model size and throughput, with smaller models 

generally achieving higher token generation rates. 

Figure 2 illustrates this relationship across different 

hardware configurations. 

 

 
Throughput (tokens/second) vs. Model Size across different hardware configurations. Batch size fixed at 1, sequence 

length at 128 tokens. 

 

The relationship between model size and throughput can be approximated by a power-law relationship: 

Throughput ≈ 𝛾 ⋅ (Model Size)−𝛿  
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[Throughput ≈ 𝛾 ⋅ (Model Size)−𝛿] 

Where 𝛾 is a hardware-dependent constant and 𝛿 

represents the scaling exponent. Through regression 

analysis of our experimental data, we found that 𝛿 

typically ranges from 0.4 to 0.6, depending on the 

hardware configuration and other parameters. 

Batch Size Scaling 

Increasing batch size generally improves throughput, 

but the scaling is not linear and varies significantly 

across models and hardware configurations. Figure 3 

shows throughput scaling with batch size for several 

representative models. 

 
Throughput scaling with batch size for different models on RTX 4090. Sequence length fixed at 128 tokens. 

 

The observed scaling behavior can be characterized by a scaling efficiency metric 𝜂𝑏, defined as: 

𝜂𝑏 =
𝑇(𝑏)

𝑏 ⋅ 𝑇(1)
 

[𝜂𝑏 =
𝑇(𝑏)

𝑏⋅𝑇(1)
] 

Where 𝑇(𝑏) is the throughput at batch size 𝑏, and 𝑇(1) is the throughput at batch size 1. A value of 𝜂𝑏 = 1 indicates 

perfect linear scaling, while 𝜂𝑏 < 1 indicates sublinear scaling. 

 

Our results show that scaling efficiency generally 

decreases with increasing batch size, with the rate of 

decrease varying by model and hardware. Larger 

models tend to exhibit better scaling efficiency, likely 

due to their higher arithmetic intensity, which allows 

better utilization of parallel computing resources. 

Sequence Length Impact 

Sequence length has a significant impact on 

throughput, with longer sequences generally resulting 

in lower throughput. Figure 4 illustrates this 

relationship. 

 
Impact of sequence length on throughput for different models on A100 GPU. Batch size fixed at 4. 
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The relationship between sequence length and 

throughput follows an approximate power-law 

relationship similar to that of model size: 

Throughput ≈ 𝜆 ⋅ (Sequence Length)−𝜇 

[Throughput ≈ 𝜆 ⋅ (Sequence Length)−𝜇] 

Where 𝜆 is a model and hardware-dependent constant, 

and 𝜇 represents the scaling exponent. For most 

models and configurations, 𝜇 ranges from 0.2 to 0.5, 

with larger models generally having higher values of 𝜇. 

Joint Impact of Batch Size and Sequence Length 

The combined effect of batch size and sequence length 

on throughput is complex and exhibits interesting 

interactions. Figure 5 presents a heatmap visualization 

of this relationship for a representative model. 

 

 
Heatmap of throughput as a function of batch size and sequence length for PYTHIA-1.4B on A100 GPU. 

 

We observe that for shorter sequence lengths, 

increasing batch size provides substantial throughput 

improvements. However, for longer sequences, the 

benefits of increased batch size diminish rapidly. This 

interaction can be attributed to memory bandwidth 

limitations and the quadratic complexity of attention 

operations with respect to sequence length. 

 

Latency Analysis 

Model Size Impact on Latency 

Larger models generally exhibit higher latency (time to 

first token), as illustrated in Figure 6. 

 

 
Latency (time to first token in ms) vs. Model Size across different hardware configurations. Batch size fixed at 1. 

 

The relationship between model size and latency follows an approximately linear relationship for most hardware 

configurations: 

Latency ≈ 𝛼 + 𝛽 ⋅ (Model Size) 
[Latency ≈ 𝛼 + 𝛽 ⋅ (Model Size)] 
 

Where 𝛼 represents a constant overhead, and 𝛽 represents the sensitivity of latency to model size. The values of 𝛼 and 

𝛽 vary significantly across hardware configurations, with higher-end GPUs showing much lower values of 𝛽. 



 
International Journal of Intelligent Systems and Applications in Engineering                          IJISAE, 2024, 12(17s), 982–999 |  992 

Batch Size Impact on Latency 

Unlike throughput, which generally benefits from increased batch size, latency is negatively impacted by larger batch 

sizes, as shown in Figure 7. 

 
Impact of batch size on latency for different models on RTX 3080. 

The relationship can be approximated by: 

Latency(𝑏) ≈ Latency(1) ⋅ 𝑏𝜙 

[Latency(𝑏) ≈ Latency(1) ⋅ 𝑏𝜙] 

Where 𝜙 represents the scaling exponent, typically 

ranging from 0.2 to 0.5. This sublinear scaling 

indicates that while latency does increase with batch 

size, the per-instance processing time actually 

decreases, consistent with the throughput 

improvements observed with larger batch sizes. 

Sequence Length Effect on Latency 

Sequence length also affects latency, with longer input 

sequences generally resulting in higher latency, as 

shown in Figure 8. 

 

 
Impact of sequence length on latency for different models on T4 GPU. Batch size fixed at 1. 

The relationship can be approximated by: 

Latency ≈ 𝜅 + 𝜈 ⋅ (Sequence Length)𝜔 

[Latency ≈ 𝜅 + 𝜈 ⋅ (Sequence Length)𝜔] 

 

Where 𝜅 represents a constant overhead, 𝜈 is a model-dependent coefficient, and 𝜔 is typically between 0.5 and 1.0. 

The higher values of 𝜔 compared to the batch size exponent 𝜙 indicate that latency is more sensitive to sequence length 

than to batch size. 
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Latency Distribution Analysis 

Beyond the mean latency, we analyzed the distribution of latencies across different runs and configurations. Figure 9 

presents a heatmap visualization of latency as a function of batch size and sequence length. 

 

 
Heatmap of latency as a function of batch size and sequence length for Mistral-7B on A100 GPU. 

 

The heatmap reveals complex interactions between 

batch size and sequence length, with certain 

combinations resulting in disproportionately high 

latencies. These "latency cliffs" often correspond to 

memory hierarchy transitions (e.g., when the working 

set exceeds GPU cache capacity), highlighting the 

importance of careful configuration for latency-

sensitive applications. 

 

Memory Usage Analysis 

Model Size and Memory Requirements 

Model size is the primary determinant of memory 

usage, with an approximately linear relationship 

between parameter count and memory footprint. Figure 

10 illustrates this relationship. 

 

 
Memory usage vs. Model Size for different precision formats. Batch size fixed at 1. 

 

For full precision (FP32) models, the relationship can 

be approximated by: 

Memory (GB) ≈ 4 × Parameters (billions) + Overhead 
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[Memory (GB) ≈ 4 × Parameters (billions) +
Overhead] 

Where the overhead represents constant memory 

requirements for model architecture, optimization 

states, and other invariant components. For half 

precision (FP16) models, the coefficient reduces to 

approximately 2, while for INT8 and INT4 

quantization, the coefficients are approximately 1 and 

0.5, respectively. 

Impact of Quantization on Memory Usage 

Quantization significantly reduces memory 

requirements, as illustrated in Figure 11. 

 

 
Memory usage by quantization method for different models. Batch size fixed at 1. 

 

The memory reduction from quantization can be calculated as: 

Memory Reduction = 1 −
Bits in quantized format

Bits in original format
 

[Memory Reduction = 1 −
Bits in quantized format

Bits in original format
] 

For INT8 quantization of FP16 models, this yields a 

theoretical reduction of 50%, while INT4 quantization 

yields a 75% reduction. In practice, the observed 

reductions are slightly less due to overhead and the fact 

that not all model components are quantized. 

Memory-Throughput Trade-offs 

The relationship between memory usage and 

throughput provides insights into the efficiency of 

different models and configurations. Figure 12 presents 

this relationship. 

 

 
Memory-Throughput trade-offs for different models and quantization methods on A10 GPU. Batch size fixed at 4. 

 

The figure reveals interesting patterns in memory 

efficiency. Some smaller models achieve high 

throughput with modest memory requirements, while 

others consume significant memory without 

proportional performance benefits. Quantization 

generally improves memory efficiency, but the degree 

of improvement varies across models. 

To quantify these trade-offs, we define a memory 

efficiency metric: 

Memory Efficiency =
Throughput (tokens/second)

Memory Usage (GB)
 



 
International Journal of Intelligent Systems and Applications in Engineering                          IJISAE, 2024, 12(17s), 982–999 |  995 

[Memory Efficiency =
Throughput (tokens/second)

Memory Usage (GB)
] 

This metric allows direct comparison of how 

effectively different models utilize memory resources. 

Higher values indicate better efficiency. 

Quantization Impact Analysis 

Performance Impact of Quantization 

Quantization reduces memory requirements but can 

also affect model performance. Figure 13 illustrates the 

impact of different quantization methods on 

throughput. 

 

 
Impact of quantization on throughput for different models on RTX 4090. Batch size fixed at 4, sequence length at 128. 

 

The performance impact varies significantly across 

models and quantization methods. INT8 quantization 

typically results in minimal performance degradation 

(0-5%), while INT4 quantization can reduce 

throughput by 10-30%, depending on the model 

architecture and implementation. 

The quantization efficiency can be calculated as: 

Quantization Efficiency

=
Throughput with quantization

Throughput without quantization
 

[Quantization Efficiency =
Throughput with quantization

Throughput without quantization
] 

Higher values indicate better preservation of 

performance after quantization. 

Quantization Trade-offs 

To comprehensively evaluate quantization methods, 

we analyze the trade-offs between memory reduction, 

performance impact, and accuracy preservation. Figure 

14 presents a radar chart visualization of these trade-

offs. 

 
Radar chart of quantization trade-offs for different methods applied to Llama-2-7B. 
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The radar chart reveals that INT8 quantization offers a 

particularly favorable balance of trade-offs for many 

use cases, providing substantial memory savings with 

minimal impact on performance and accuracy. INT4 

quantization provides greater memory savings but at a 

more significant cost to performance and potentially 

accuracy. 

GPTQ quantization demonstrates an interesting middle 

ground, with memory savings approaching those of 

INT4 while maintaining performance closer to INT8. 

However, it requires a more complex quantization 

process and may not be supported on all hardware 

platforms. 

 

Per-Instance Efficiency Analysis 

For multi-instance scenarios (e.g., serving multiple users concurrently), the per-instance efficiency is a critical metric. 

Figure 15 presents this analysis. 

 
Per-instance throughput by batch size for different models on A100 GPU. Sequence length fixed at 256. 

 

Interestingly, per-instance throughput initially 

increases with batch size for most models, reaching a 

peak at a model-specific optimal batch size before 

declining. This pattern suggests that for multi-user 

scenarios, selecting the appropriate batch size can 

significantly improve overall system efficiency. 

The optimal batch size 𝑏opt can be determined by 

maximizing the per-instance throughput: 

𝑏opt = arg max𝑏
𝑇(𝑏)

𝑏
 

[𝑏opt = arg max𝑏
𝑇(𝑏)

𝑏
] 

Where 𝑇(𝑏) is the throughput at batch size 𝑏. Our 

experiments indicate that 𝑏opt typically ranges from 4 

to 16, depending on the model size and hardware 

configuration. 

Hardware Efficiency Analysis 

Different hardware platforms exhibit varying 

efficiency for LLM inference. Figure 16 presents a 

comparison of efficiency across hardware 

configurations. 

 

 
Efficiency comparison (tokens/second/dollar) across hardware configurations for OPT-1.3B. Higher values indicate 

better efficiency. 

To quantify cost-efficiency, we calculate a cost-efficiency metric: 

Cost Efficiency =
Throughput (tokens/second)

Hardware Cost (dollars)
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[Cost Efficiency =
Throughput (tokens/second)

Hardware Cost (dollars)
] 

This metric reveals that consumer GPUs like the RTX 

4090 often offer the highest cost-efficiency for LLM 

inference, outperforming more expensive data center 

hardware in terms of throughput per dollar. However, 

data center GPUs like the A100 generally offer better 

scaling to larger batch sizes and models, making them 

more suitable for high-volume deployment scenarios. 

Discussion 

Optimal Configurations for Resource-Constrained 

Environments 

Our comprehensive benchmarking results enable us to 

provide specific recommendations for deploying LLMs 

in resource-constrained environments. Table 

[tab:recommendations] summarizes these 

recommendations for different resource constraints. 

These recommendations represent balanced 

configurations that optimize for throughput while 

maintaining reasonable latency. For specific use cases 

with different priorities (e.g., minimizing latency at the 

expense of throughput), adjustments may be necessary. 

 

Quantization Method Selection 

Our analysis of quantization methods suggests the 

following guidelines for method selection: 

• INT8 Quantization: Recommended as the default 

choice for most deployment scenarios, offering a good 

balance of memory savings and performance 

preservation. 

• INT4 Quantization: Suitable for severely 

memory-constrained environments where some 

performance degradation is acceptable. 

• GPTQ: Recommended for offline deployment 

scenarios where the one-time cost of the quantization 

process is justified by improved runtime performance 

compared to INT4. 

• FP16: Recommended for high-end hardware where 

memory is less constrained and maximum performance 

is desired. 

The appropriate quantization method also depends on 

the specific model architecture, with some models 

(particularly those with attention mechanisms 

optimized for efficient computation) showing greater 

robustness to aggressive quantization. 

 

Batch Size and Sequence Length Optimization 

Our results highlight the importance of carefully 

selecting batch size and sequence length configurations 

to optimize performance. Based on our findings, we 

recommend the following approaches: 

1. For throughput-sensitive applications: Maximize 

batch size within memory constraints, typically 

ranging from 4 to 32 depending on the model and 

hardware. 

2. For latency-sensitive applications: Use batch size 

1 and implement request queueing at the application 

level rather than batching at the model level. 

3. For multi-user serving: Determine the optimal 

batch size by measuring per-instance throughput, 

typically ranging from 4 to 16. 

4. For sequence length: Limit to the minimum 

required for the application, using techniques such as 

sliding window attention or efficient context 

management for long documents. 

The optimal configuration often involves trade-offs 

between throughput, latency, and memory usage, 

necessitating a holistic approach that considers the 

specific requirements of the target application. 

Hardware Selection Considerations 

Our hardware efficiency analysis reveals several 

insights for hardware selection: 

• Consumer GPUs (e.g., RTX 4090): Offer 

excellent cost-efficiency for smaller models and batch 

sizes, making them ideal for individual developers and 

small-scale deployments. 

• Data Center GPUs (e.g., A100, A10): Provide 

better scaling to larger models and batch sizes, making 

them suitable for multi-user serving environments with 

high throughput requirements. 

• CPU-Only Deployments: Viable for smaller 

models with appropriate quantization, but generally 

offer significantly lower throughput compared to GPU 

deployments. Multi-socket servers with high core 

counts can partially mitigate this performance gap. 

For deployment scenarios with varying load patterns, a 

heterogeneous approach that combines different 

hardware types may provide the best overall efficiency. 

Limitations and Future Work 

While our benchmarking framework and analysis 

provide comprehensive insights into LLM inference 

efficiency, several limitations and opportunities for 

future work remain: 

• Model Quality Assessment: Our current analysis 

focuses on performance metrics without systematically 

evaluating the impact of optimizations on model 

quality. Future work should integrate quality metrics to 

provide a more complete understanding of 

optimization trade-offs. 

• Emerging Hardware Support: As new hardware 

accelerators (e.g., neuromorphic chips, specialized 

LLM accelerators) emerge, the framework should be 

extended to support and evaluate these platforms. 

• Dynamic Workload Adaptation: Current 

recommendations assume static workload 

characteristics. Future research should explore 

dynamic adaptation of batch size, precision, and other 

parameters based on real-time workload patterns. 

• Distributed Inference: While our framework 

supports multi-GPU inference within a single node, it 

does not yet address distributed inference across 

multiple nodes. Extending the framework to evaluate 

distributed configurations represents an important 

direction for future work. 

• Energy Efficiency: Our current analysis focuses 

primarily on computational efficiency rather than 

energy efficiency. Incorporating power consumption 

measurements would provide valuable insights for 

environmentally sensitive deployments. 

These limitations present opportunities for future 

research to build upon the foundation established by 
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EffiLLM and further advance our understanding of 

efficient LLM deployment. 

Conclusion 

In this paper, we introduced EffiLLM, a 

comprehensive benchmarking framework for 

evaluating and optimizing LLM inference efficiency 

across diverse hardware configurations and 

optimization techniques. Through extensive 

experimentation with models ranging from 125M to 

13B parameters, we provided a detailed analysis of the 

factors affecting LLM throughput, latency, and 

memory utilization in resource-constrained 

environments. 

Our analysis revealed several key insights: 

1. Quantization Impact: INT8 quantization offers a 

near-optimal balance for many deployment scenarios, 

reducing memory requirements by approximately 50% 

while maintaining 90-95% of baseline performance. 

INT4 quantization provides further memory savings 

but at a more significant cost to performance. 

2. Batch Size Scaling: Throughput scales sublinearly 

with batch size, with scaling efficiency decreasing as 

batch size increases. The optimal batch size for 

maximizing per-instance throughput typically ranges 

from 4 to 16, depending on the model and hardware 

configuration. 

3. Sequence Length Impact: Longer sequence 

lengths significantly reduce throughput and increase 

latency, with the impact following an approximate 

power-law relationship. This highlights the importance 

of efficient context management for long-document 

processing. 

4. Hardware Efficiency: Consumer GPUs like the 

RTX 4090 often offer the highest cost-efficiency for 

LLM inference, while data center GPUs like the A100 

provide better scaling to larger batch sizes and models. 

Based on these insights, we provided specific 

recommendations for deploying LLMs in various 

resource-constrained environments, offering 

practitioners a guide for selecting appropriate models, 

quantization methods, and runtime configurations. 

The EffiLLM framework and the insights derived from 

it contribute to the broader goal of democratizing 

access to LLM technology by enabling more efficient 

deployment in resource-constrained environments. By 

reducing the computational and memory requirements 

for LLM inference, we help bridge the gap between the 

impressive capabilities of state-of-the-art models and 

the practical constraints of real-world deployment 

scenarios. 

Future work should extend this analysis to encompass 

model quality impacts, emerging hardware platforms, 

dynamic workload adaptation, distributed inference, 

and energy efficiency considerations. These extensions 

will further enhance our understanding of the complex 

trade-offs involved in efficient LLM deployment and 

contribute to the development of more accessible and 

sustainable AI systems. 
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