

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 982

EffiLLM: A Comprehensive Framework for Benchmarking and

Optimizing Large Language Models in Resource-Constrained

Environments

Fardeen NB1*, Sameer NB2

Submitted: 1/11/2023 Revised: 23/12/2023 Accepted: 6/2/2024

Abstract

The deployment of Large Language Models (LLMs) in resource-constrained environments remains challenging due to

their substantial computational and memory requirements. While numerous benchmarking tools exist, they

predominantly focus on high-end hardware configurations, leaving a significant gap in understanding LLM

performance characteristics under resource limitations. This paper introduces EffiLLM, a comprehensive benchmarking

framework specifically designed to evaluate and optimize LLM inference efficiency across varied hardware

configurations and quantization techniques. Through extensive experimentation with models ranging from 125M to 13B

parameters across diverse computational settings, we quantify the impact of batch sizes, sequence lengths, and

quantization methods on throughput, latency, and memory utilization. Our findings reveal that INT8 quantization offers

a near-optimal balance, reducing memory requirements by approximately 50% while maintaining 90-95% of baseline

performance. Furthermore, we identify non-linear scaling patterns in throughput as batch sizes increase, with

diminishing returns beyond certain thresholds dependent on model size and available resources. The framework’s

visualization capabilities enable nuanced analysis of efficiency trade-offs, facilitating informed deployment decisions.

EffiLLM provides researchers and practitioners with an essential tool for optimizing LLM performance in environments

with limited computational resources, potentially broadening the accessibility of these powerful models.

Keywords: large language models, inference optimization, benchmarking, resource-constrained environments,

quantization, efficiency analysis

Introduction

Large Language Models (LLMs) have demonstrated

remarkable capabilities across diverse natural language

processing tasks, from text generation to reasoning and

problem-solving . These capabilities stem from their

unprecedented scale, with state-of-the-art models

containing hundreds of billions of parameters .

However, this scale presents significant challenges for

deployment, particularly in resource-constrained

environments such as edge devices, consumer

hardware, or environments where computational

resources must be shared among multiple applications.

The substantial gap between the computational

requirements of cutting-edge LLMs and the available

resources in many practical deployment scenarios

necessitates a systematic approach to optimizing

inference efficiency. Recent advances in model

compression, quantization, and inference optimization

have shown promise in bridging this gap . However,

the impact of these optimization techniques varies

significantly across different models, hardware

configurations, and usage patterns, making it

challenging to determine optimal deployment

strategies without extensive experimentation.

Existing benchmarking frameworks for LLMs, such as

LLM Harness and HELM , primarily focus on

evaluating model quality and performance on high-end

hardware. These frameworks typically measure metrics

such as accuracy, perplexity, and inference time on

powerful GPUs, providing valuable insights for

scenarios where computational resources are abundant.

However, they offer limited guidance for scenarios

where resources are constrained, and efficiency is a

primary concern. This research gap motivates the

development of EffiLLM, a comprehensive

benchmarking framework specifically designed to

evaluate and optimize LLM inference efficiency across

diverse hardware configurations and optimization

techniques. EffiLLM focuses on three critical

dimensions of efficiency:

1. Throughput: The number of tokens processed per

second, a key indicator of overall system performance.

2. Latency: The time required to generate the first

token, which is crucial for interactive applications.

3. Memory Usage: The RAM and VRAM

requirements during inference, which often represent

the primary constraint in resource-limited

environments.

1*FX Pattern Pro LLC, research@fxpatternpro.com

2Equal contribution

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 983

By systematically measuring these metrics across

different models, batch sizes, sequence lengths, and

quantization techniques, EffiLLM provides a

comprehensive understanding of LLM performance

characteristics under various resource constraints. This

understanding enables informed decisions about model

selection, optimization techniques, and deployment

strategies for specific hardware configurations and

usage patterns.

The primary contributions of this paper are as follows:

1. We introduce EffiLLM, a flexible and extensible

benchmarking framework for evaluating LLM

inference efficiency across diverse hardware

configurations and optimization techniques.

2. We present a comprehensive analysis of the impact

of batch sizes, sequence lengths, and quantization

methods on LLM throughput, latency, and memory

utilization.

3. We quantify the efficiency trade-offs associated

with different optimization techniques, providing

practical guidance for deploying LLMs in resource-

constrained environments.

4. We identify and analyze non-linear scaling patterns

in LLM performance, revealing insights into optimal

batch sizes and sequence lengths for different models

and hardware configurations.

5. We develop novel visualization techniques for

analyzing and communicating complex efficiency

trade-offs, facilitating more informed deployment

decisions.

The remainder of this paper is structured as follows:

Section 2 reviews related work in LLM benchmarking,

inference optimization, and deployment in resource-

constrained environments. Section 3 describes the

EffiLLM framework, including its architecture,

metrics, and methodology. Section 4 outlines our

experimental setup, including the models, hardware

configurations, and evaluation methodology. Section 5

presents and analyzes our findings, focusing on the

impact of various factors on LLM efficiency. Section 6

discusses the implications of our findings for practical

deployment scenarios and identifies directions for

future research. Finally, Section 7 concludes the paper

and summarizes our contributions.

Literature Review

Large Language Model Development and Scaling

The field of natural language processing has been

revolutionized by the development of increasingly

large language models. The emergence of transformer-

based architectures has enabled the scaling of models

to unprecedented sizes. GPT-3 with 175 billion

parameters demonstrated that scaling models can lead

to emergent capabilities not seen in smaller models.

Subsequently, models such as PaLM , LLaMA , and

GPT-4 have further pushed the boundaries of model

scale and capability.

The scaling laws for language models have been

extensively studied , establishing mathematical

relationships between model size, training dataset size,

and performance. These studies suggest that model

performance continues to improve with scale, albeit

with diminishing returns. However, these scaling laws

primarily focus on model quality rather than inference

efficiency, leaving a gap in our understanding of how

model scale affects deployment considerations.

LLM Benchmarking and Evaluation

Evaluation frameworks for LLMs have evolved to

assess these models’ capabilities across diverse tasks.

GLUE and SuperGLUE established early benchmarks

for language understanding. More recently,

frameworks such as HELM , EleutherAI’s LM

Evaluation Harness , and BIG-bench have been

developed to evaluate increasingly capable LLMs.

However, these benchmarking frameworks primarily

focus on evaluating model quality rather than

efficiency. The Stanford CRFM benchmark includes

some efficiency metrics but does not provide a

comprehensive analysis of factors affecting

deployment efficiency. Similarly, the MLPerf

Inference benchmark includes language models but

does not focus specifically on the unique challenges of

LLM deployment in resource-constrained

environments.

Quantization and Compression Techniques for

LLMs

Various techniques have been developed to reduce the

computational and memory requirements of LLMs.

Quantization has emerged as a particularly effective

approach, with methods such as GPTQ , ZeroQuant ,

and LLM.int8() enabling significant reductions in

memory usage with minimal impact on model quality.

The mathematical foundation of quantization involves

mapping floating-point values to integers within a

specified range. For a floating-point tensor 𝑋 with

elements 𝑥, the quantization process can be

represented as:

𝑄(𝑥) = round (
𝑥 − min(𝑋)

max(𝑋) − min(𝑋)
⋅ (2𝑏 − 1))

Where 𝑏 represents the bit width of the quantized

representation, and round is a function that maps to the

nearest integer. This process allows the model weights

to be stored using fewer bits, reducing memory

requirements.

[𝑄(𝑥) = round (
𝑥−min(𝑋)

max(𝑋)−min(𝑋)
⋅ (2𝑏 − 1))]

Other compression techniques include pruning , which

removes less important weights, and knowledge

distillation , which transfers knowledge from a larger

model to a smaller one. However, the relative

effectiveness of these techniques for different

deployment scenarios remains an open question.

Inference Optimization for Transformer Models

Inference optimization techniques for transformer

models have been extensively studied. Approaches

such as attention caching and continuous batching

have been shown to significantly improve throughput.

Hardware-specific optimizations, such as those

implemented in NVIDIA’s FasterTransformer and

DeepSpeed , further enhance efficiency on supported

platforms.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 984

The FlashAttention algorithm has demonstrated

substantial improvements in memory efficiency and

throughput by optimizing the attention computation.

This algorithm reformulates the attention calculation to

minimize memory movement, a critical bottleneck in

transformer inference.

Gap in Current Research

Despite these advances, there remains a significant gap

in understanding how various optimization techniques

interact with different hardware configurations, model

architectures, and usage patterns. Most existing

research focuses on isolated optimizations without

providing a comprehensive framework for evaluating

their combined impact in diverse deployment

scenarios.

Furthermore, there is limited guidance on choosing

optimal configurations (e.g., batch size, sequence

length, quantization method) for specific resource

constraints. This gap particularly affects practitioners

attempting to deploy LLMs in resource-constrained

environments, where efficiency is a primary concern.

Our work addresses this gap by introducing EffiLLM,

a comprehensive benchmarking framework that

enables systematic evaluation of LLM inference

efficiency across diverse scenarios. By providing

detailed insights into the factors affecting throughput,

latency, and memory usage, we aim to facilitate more

informed decisions about LLM deployment in

resource-constrained environments.

Methodology

EffiLLM Framework Architecture

The EffiLLM framework is designed to provide a

comprehensive and extensible platform for

benchmarking LLM inference efficiency. The

architecture consists of four primary components, as

illustrated in Figure 1:

EffiLLM System Architecture showing the framework’s core components and their interactions.

Core Benchmarking Module

The Core Benchmarking Module orchestrates the

overall benchmarking process, loading models,

applying optimizations, and coordinating the

measurement of key metrics. This module implements

a flexible configuration system that allows users to

specify which models, hardware configurations, batch

sizes, sequence lengths, and optimization techniques to

evaluate.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 985

EffiLLM Benchmarking Process Flow.

The benchmarking workflow follows a systematic

approach to ensure reliable and reproducible

measurements:

1. Configuration Initialization: The framework

initializes the benchmark configuration, including

model selection, hardware settings, and test

parameters.

2. Model Loading: The selected model is loaded with

the specified optimizations (e.g., quantization).

3. Warmup Phase: The model performs several

inference runs to ensure that any just-in-time

compilation, caching, or other initialization processes

are completed before measurement.

4. Measurement Phase: The framework

systematically measures throughput, latency, and

memory usage across different configurations.

5. Results Aggregation: Measurements are

aggregated, analyzed, and prepared for reporting.

Quantization Support

The Quantization Support module provides interfaces

to various quantization methods, including:

• Post-training Quantization: Converts model

weights to lower precision formats (e.g., INT8, INT4)

after training, without requiring additional data.

• Quantization-Aware Training: Simulates

quantization during fine-tuning to improve model

robustness to quantization.

• Dynamic Quantization: Applies different

quantization strategies to different parts of the model

based on sensitivity analysis.

The quantization process follows the mathematical

formulation described in Equation [eq:quantization],

with specific implementations adapted for different

quantization methods and frameworks.

Impact of Quantization on Performance and Memory Usage.

Metrics Collection

The Metrics Collection module is responsible for

measuring and recording performance metrics during

benchmark execution. The module is designed to

minimize its own impact on the measurements while

providing high-resolution timing information. Key

metrics include:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 986

• Throughput: Measured in tokens per second,

calculated as:

Throughput =
Total tokens generated

Generation time

 [Throughput =
Total tokens generated

Generation time
]

• Latency: Time to first token (TTFT), representing

the delay between sending a prompt and receiving the

first generated token.

• Memory Usage: RAM and VRAM consumption

during model loading and inference, including peak

memory usage.

For batch processing scenarios, we also calculate the

per-instance throughput:

Per-instance Throughput

=
Total tokens generated

Batch size × Generation time

[Per-instance Throughput =
Total tokens generated

Batch size×Generation time
]

EffiLLM Metrics Collection Flow.

Reporting and Visualization

The Reporting and Visualization module transforms raw benchmark data into actionable insights through

comprehensive reports and visualizations. This module implements various visualization techniques to highlight

different aspects of LLM performance, including:

• Comparative bar charts for cross-model performance analysis

• Line plots for analyzing scaling behavior with batch size and sequence length

• Heatmaps for visualizing the joint impact of multiple parameters

• Scatter plots for efficiency analysis (e.g., throughput vs. memory usage)

The module also generates tabular data summarizing key metrics and provides statistical analysis to identify significant

patterns and relationships.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 987

EffiLLM Benchmarking Process Flow.

Benchmarking Methodology

Our benchmarking methodology aims to provide a

comprehensive and fair comparison of different

models, hardware configurations, and optimization

techniques. To achieve this, we implement several

methodological principles:

Controlled Environment

All benchmarks are conducted in a controlled

environment to minimize external factors that could

influence results. This includes:

• Dedicated hardware with no other significant

processes running

• Consistent power settings to prevent thermal

throttling

• Controlled room temperature to ensure stable

hardware performance

Warmup Procedures

Modern hardware and software systems often exhibit

varying performance characteristics during initial

execution due to caching, just-in-time compilation, and

other optimization processes. To account for this, our

methodology includes a systematic warmup procedure:

1. Load the model and perform multiple inference

passes with representative inputs

2. Discard measurements from these initial passes

3. Begin actual measurements only after performance

stabilizes

The number of warmup iterations is determined

adaptively based on observed performance variation,

with a minimum of three iterations.

Statistical Rigor

To ensure reliable results, each configuration is tested

multiple times, and statistical aggregates are reported.

Our approach includes:

• Minimum of five measurement iterations per

configuration

• Reporting of mean, median, standard deviation, and

95% confidence intervals

• Identification and handling of outliers, with

measurement repetition when necessary

The statistical significance of observed differences is

assessed using appropriate statistical tests, with a

threshold of 𝑝 < 0.05 for significance.

Representative Workloads

LLM performance can vary significantly depending on

the nature of the input and generation task. To provide

representative results, our benchmarking methodology

includes diverse workloads:

• Short-form question answering (e.g., factual

queries)

• Long-form text generation (e.g., creative writing,

code generation)

• Chat-style interaction with multiple turns

• Domain-specific tasks (e.g., legal text analysis,

scientific reasoning)

For each workload, we use a consistent set of prompts

across all tested configurations to ensure fair

comparison.

Metrics and Analysis

Throughput Measurement

Throughput is measured by timing the generation of a

specified number of tokens for a given prompt. The

measurement process can be formalized as:

𝑇 =
𝑛 × 𝑏

𝑡𝑔 − 𝑡𝑠

[𝑇 =
𝑛×𝑏

𝑡𝑔−𝑡𝑠
]

Where:

• 𝑇 is the throughput in tokens per second

• 𝑛 is the number of tokens generated per sequence

• 𝑏 is the batch size

• 𝑡𝑠 is the start time of generation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 988

• 𝑡𝑔 is the completion time of generation

To account for potential variability, we perform

multiple measurements and report statistical

aggregates.

Latency Analysis

Latency is measured as the time to first token (TTFT),

representing the delay between sending a prompt and

receiving the first generated token. This metric is

crucial for interactive applications where

responsiveness is important.

For a comprehensive analysis, we also measure the

distribution of inter-token latencies, defined as the time

between consecutive token generations. This

distribution can reveal potential issues with attention

mechanisms or memory management that might not be

apparent from aggregate throughput measurements.

Memory Profiling

Memory usage is profiled at multiple stages of the

benchmark process:

1. Baseline memory usage before model loading

2. Memory impact of model loading

3. Peak memory usage during inference

4. Steady-state memory usage during extended

generation

5. Memory release after model unloading

Both system RAM and GPU VRAM (where

applicable) are monitored. Memory efficiency is

calculated as the ratio of throughput to memory usage:

Memory Efficiency =
Throughput (tokens/s)

Memory Usage (GB)

[Memory Efficiency =
Throughput (tokens/s)

Memory Usage (GB)
]

This metric provides a concise measure of how

effectively a model utilizes available memory

resources.

Scaling Analysis

To understand how performance scales with system

resources and model configuration, we analyze the

relationship between throughput (𝑇), batch size (𝑏),

and sequence length (𝑠). Ideally, throughput would

scale linearly with batch size, but in practice, we

observe non-linear scaling that can be approximated

by:

𝑇(𝑏, 𝑠) ≈ 𝛼 ⋅ 𝑏𝛽(𝑠)
[𝑇(𝑏, 𝑠) ≈ 𝛼 ⋅ 𝑏𝛽(𝑠)]
Where:

• 𝛼 is a model-specific constant

• 𝛽(𝑠) is the scaling exponent, which is a function of

sequence length 𝑠

We determine 𝛽(𝑠) empirically for different models

and hardware configurations, providing insights into

the efficiency of parallelism utilization.

Experimental Setup

Models and Implementations

To ensure a comprehensive evaluation, we selected a

diverse range of models spanning different sizes,

architectures, and design philosophies. Table 1

summarizes the models included in our benchmark.

Models included in the benchmarking evaluation

Model Parameters Architecture Context Window Source

OPT-125M 125M Decoder-only 2,048 Meta AI

OPT-350M 350M Decoder-only 2,048 Meta AI

OPT-1.3B 1.3B Decoder-only 2,048 Meta AI

OPT-2.7B 2.7B Decoder-only 2,048 Meta AI

OPT-6.7B 6.7B Decoder-only 2,048 Meta AI

Pythia-70M 70M Decoder-only 2,048 EleutherAI

Pythia-160M 160M Decoder-only 2,048 EleutherAI

Pythia-410M 410M Decoder-only 2,048 EleutherAI

Pythia-1B 1B Decoder-only 2,048 EleutherAI

Pythia-2.8B 2.8B Decoder-only 2,048 EleutherAI

Pythia-6.9B 6.9B Decoder-only 2,048 EleutherAI

Pythia-12B 12B Decoder-only 2,048 EleutherAI

BLOOM-560M 560M Decoder-only 2,048 BigScience

BLOOM-1.1B 1.1B Decoder-only 2,048 BigScience

BLOOM-3B 3B Decoder-only 2,048 BigScience

BLOOM-7.1B 7.1B Decoder-only 2,048 BigScience

Llama-2-7B 7B Decoder-only 4,096 Meta AI

Llama-2-13B 13B Decoder-only 4,096 Meta AI

Mistral-7B 7B Decoder-only 8,192 Mistral AI

All models were implemented using the Hugging Face

Transformers library , which provides a consistent

interface for model loading, inference, and

optimization. For quantization, we utilized the

following implementations:

• INT8 Quantization: Implemented using the

bitsandbytes library , which provides efficient Int8

quantization with minimal accuracy loss through

vector-wise quantization.

• INT4 Quantization: Implemented using

bitsandbytes’ recent 4-bit quantization support.

• GPTQ: Implemented using the AutoGPTQ library

, which provides state-of-the-art post-training

quantization specifically designed for transformer

models.

Hardware Configurations

To evaluate model performance across a spectrum of

deployment scenarios, we conducted benchmarks on a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 989

diverse set of hardware configurations, summarized in

Table [tab:hardware].

These configurations represent a broad spectrum of

deployment scenarios, from high-end servers in data

centers to edge devices with limited resources. By

testing across this range, we can provide insights

applicable to diverse real-world use cases.

Benchmark Parameters

For each model and hardware configuration, we

systematically varied the following parameters to

assess their impact on performance:

• Batch Size: [1,2,4,8,16,32,64] (subject to memory

constraints)

• Sequence Length:

[128,256,512,1024,2048,4096,8192] (subject to

model support)

• Precision/Quantization:

o Full Precision (FP32)

o Half Precision (FP16)

o INT8 Quantization (bitsandbytes)

o INT4 Quantization (bitsandbytes)

o GPTQ Quantization (where available)

Not all combinations were feasible for all models and

hardware configurations due to memory constraints. In

such cases, we reported the maximum batch size and

sequence length achievable for each configuration.

Evaluation Methodology

Each benchmark configuration was evaluated using the

following methodology:

1. Warmup Phase: 3 inference runs to stabilize

performance

2. Measurement Phase: 10 inference runs, with

metrics recorded for each run

3. Analysis: Calculation of mean, median, standard

deviation, and 95% confidence intervals for all metrics

For throughput measurement, we generated 256 tokens

for each prompt, ensuring that the model reached a

steady state of generation. Latency was measured

separately, focusing specifically on the time to first

token after providing a prompt.

Memory usage was measured at multiple points during

the benchmark process, including before model

loading, after model loading, during inference, and

after model unloading. Both system RAM and GPU

VRAM (where applicable) were monitored.

Benchmark Workloads

To ensure representative results across different use

cases, we developed a suite of benchmark workloads

covering various types of language tasks:

• Short-form QA: 50 factual questions requiring

concise answers

• Summarization: 20 news articles and scientific

abstracts to be summarized

• Creative Writing: 20 prompts for creative text

generation

• Code Generation: 30 prompts for generating code

in various programming languages

• Chat Simulation: 25 multi-turn conversations

simulating interactive use

These workloads were designed to represent the

diversity of real-world applications while enabling

consistent measurement across different models and

configurations.

Results and Analysis

Throughput Analysis

Impact of Model Size on Throughput

Our experiments reveal a clear relationship between

model size and throughput, with smaller models

generally achieving higher token generation rates.

Figure 2 illustrates this relationship across different

hardware configurations.

Throughput (tokens/second) vs. Model Size across different hardware configurations. Batch size fixed at 1, sequence

length at 128 tokens.

The relationship between model size and throughput can be approximated by a power-law relationship:

Throughput ≈ 𝛾 ⋅ (Model Size)−𝛿

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 990

[Throughput ≈ 𝛾 ⋅ (Model Size)−𝛿]

Where 𝛾 is a hardware-dependent constant and 𝛿

represents the scaling exponent. Through regression

analysis of our experimental data, we found that 𝛿

typically ranges from 0.4 to 0.6, depending on the

hardware configuration and other parameters.

Batch Size Scaling

Increasing batch size generally improves throughput,

but the scaling is not linear and varies significantly

across models and hardware configurations. Figure 3

shows throughput scaling with batch size for several

representative models.

Throughput scaling with batch size for different models on RTX 4090. Sequence length fixed at 128 tokens.

The observed scaling behavior can be characterized by a scaling efficiency metric 𝜂𝑏, defined as:

𝜂𝑏 =
𝑇(𝑏)

𝑏 ⋅ 𝑇(1)

[𝜂𝑏 =
𝑇(𝑏)

𝑏⋅𝑇(1)
]

Where 𝑇(𝑏) is the throughput at batch size 𝑏, and 𝑇(1) is the throughput at batch size 1. A value of 𝜂𝑏 = 1 indicates

perfect linear scaling, while 𝜂𝑏 < 1 indicates sublinear scaling.

Our results show that scaling efficiency generally

decreases with increasing batch size, with the rate of

decrease varying by model and hardware. Larger

models tend to exhibit better scaling efficiency, likely

due to their higher arithmetic intensity, which allows

better utilization of parallel computing resources.

Sequence Length Impact

Sequence length has a significant impact on

throughput, with longer sequences generally resulting

in lower throughput. Figure 4 illustrates this

relationship.

Impact of sequence length on throughput for different models on A100 GPU. Batch size fixed at 4.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 991

The relationship between sequence length and

throughput follows an approximate power-law

relationship similar to that of model size:

Throughput ≈ 𝜆 ⋅ (Sequence Length)−𝜇

[Throughput ≈ 𝜆 ⋅ (Sequence Length)−𝜇]

Where 𝜆 is a model and hardware-dependent constant,

and 𝜇 represents the scaling exponent. For most

models and configurations, 𝜇 ranges from 0.2 to 0.5,

with larger models generally having higher values of 𝜇.

Joint Impact of Batch Size and Sequence Length

The combined effect of batch size and sequence length

on throughput is complex and exhibits interesting

interactions. Figure 5 presents a heatmap visualization

of this relationship for a representative model.

Heatmap of throughput as a function of batch size and sequence length for PYTHIA-1.4B on A100 GPU.

We observe that for shorter sequence lengths,

increasing batch size provides substantial throughput

improvements. However, for longer sequences, the

benefits of increased batch size diminish rapidly. This

interaction can be attributed to memory bandwidth

limitations and the quadratic complexity of attention

operations with respect to sequence length.

Latency Analysis

Model Size Impact on Latency

Larger models generally exhibit higher latency (time to

first token), as illustrated in Figure 6.

Latency (time to first token in ms) vs. Model Size across different hardware configurations. Batch size fixed at 1.

The relationship between model size and latency follows an approximately linear relationship for most hardware

configurations:

Latency ≈ 𝛼 + 𝛽 ⋅ (Model Size)
[Latency ≈ 𝛼 + 𝛽 ⋅ (Model Size)]

Where 𝛼 represents a constant overhead, and 𝛽 represents the sensitivity of latency to model size. The values of 𝛼 and

𝛽 vary significantly across hardware configurations, with higher-end GPUs showing much lower values of 𝛽.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 992

Batch Size Impact on Latency

Unlike throughput, which generally benefits from increased batch size, latency is negatively impacted by larger batch

sizes, as shown in Figure 7.

Impact of batch size on latency for different models on RTX 3080.

The relationship can be approximated by:

Latency(𝑏) ≈ Latency(1) ⋅ 𝑏𝜙

[Latency(𝑏) ≈ Latency(1) ⋅ 𝑏𝜙]

Where 𝜙 represents the scaling exponent, typically

ranging from 0.2 to 0.5. This sublinear scaling

indicates that while latency does increase with batch

size, the per-instance processing time actually

decreases, consistent with the throughput

improvements observed with larger batch sizes.

Sequence Length Effect on Latency

Sequence length also affects latency, with longer input

sequences generally resulting in higher latency, as

shown in Figure 8.

Impact of sequence length on latency for different models on T4 GPU. Batch size fixed at 1.

The relationship can be approximated by:

Latency ≈ 𝜅 + 𝜈 ⋅ (Sequence Length)𝜔

[Latency ≈ 𝜅 + 𝜈 ⋅ (Sequence Length)𝜔]

Where 𝜅 represents a constant overhead, 𝜈 is a model-dependent coefficient, and 𝜔 is typically between 0.5 and 1.0.

The higher values of 𝜔 compared to the batch size exponent 𝜙 indicate that latency is more sensitive to sequence length

than to batch size.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 993

Latency Distribution Analysis

Beyond the mean latency, we analyzed the distribution of latencies across different runs and configurations. Figure 9

presents a heatmap visualization of latency as a function of batch size and sequence length.

Heatmap of latency as a function of batch size and sequence length for Mistral-7B on A100 GPU.

The heatmap reveals complex interactions between

batch size and sequence length, with certain

combinations resulting in disproportionately high

latencies. These "latency cliffs" often correspond to

memory hierarchy transitions (e.g., when the working

set exceeds GPU cache capacity), highlighting the

importance of careful configuration for latency-

sensitive applications.

Memory Usage Analysis

Model Size and Memory Requirements

Model size is the primary determinant of memory

usage, with an approximately linear relationship

between parameter count and memory footprint. Figure

10 illustrates this relationship.

Memory usage vs. Model Size for different precision formats. Batch size fixed at 1.

For full precision (FP32) models, the relationship can

be approximated by:

Memory (GB) ≈ 4 × Parameters (billions) + Overhead

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 994

[Memory (GB) ≈ 4 × Parameters (billions) +
Overhead]

Where the overhead represents constant memory

requirements for model architecture, optimization

states, and other invariant components. For half

precision (FP16) models, the coefficient reduces to

approximately 2, while for INT8 and INT4

quantization, the coefficients are approximately 1 and

0.5, respectively.

Impact of Quantization on Memory Usage

Quantization significantly reduces memory

requirements, as illustrated in Figure 11.

Memory usage by quantization method for different models. Batch size fixed at 1.

The memory reduction from quantization can be calculated as:

Memory Reduction = 1 −
Bits in quantized format

Bits in original format

[Memory Reduction = 1 −
Bits in quantized format

Bits in original format
]

For INT8 quantization of FP16 models, this yields a

theoretical reduction of 50%, while INT4 quantization

yields a 75% reduction. In practice, the observed

reductions are slightly less due to overhead and the fact

that not all model components are quantized.

Memory-Throughput Trade-offs

The relationship between memory usage and

throughput provides insights into the efficiency of

different models and configurations. Figure 12 presents

this relationship.

Memory-Throughput trade-offs for different models and quantization methods on A10 GPU. Batch size fixed at 4.

The figure reveals interesting patterns in memory

efficiency. Some smaller models achieve high

throughput with modest memory requirements, while

others consume significant memory without

proportional performance benefits. Quantization

generally improves memory efficiency, but the degree

of improvement varies across models.

To quantify these trade-offs, we define a memory

efficiency metric:

Memory Efficiency =
Throughput (tokens/second)

Memory Usage (GB)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 995

[Memory Efficiency =
Throughput (tokens/second)

Memory Usage (GB)
]

This metric allows direct comparison of how

effectively different models utilize memory resources.

Higher values indicate better efficiency.

Quantization Impact Analysis

Performance Impact of Quantization

Quantization reduces memory requirements but can

also affect model performance. Figure 13 illustrates the

impact of different quantization methods on

throughput.

Impact of quantization on throughput for different models on RTX 4090. Batch size fixed at 4, sequence length at 128.

The performance impact varies significantly across

models and quantization methods. INT8 quantization

typically results in minimal performance degradation

(0-5%), while INT4 quantization can reduce

throughput by 10-30%, depending on the model

architecture and implementation.

The quantization efficiency can be calculated as:

Quantization Efficiency

=
Throughput with quantization

Throughput without quantization

[Quantization Efficiency =
Throughput with quantization

Throughput without quantization
]

Higher values indicate better preservation of

performance after quantization.

Quantization Trade-offs

To comprehensively evaluate quantization methods,

we analyze the trade-offs between memory reduction,

performance impact, and accuracy preservation. Figure

14 presents a radar chart visualization of these trade-

offs.

Radar chart of quantization trade-offs for different methods applied to Llama-2-7B.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 996

The radar chart reveals that INT8 quantization offers a

particularly favorable balance of trade-offs for many

use cases, providing substantial memory savings with

minimal impact on performance and accuracy. INT4

quantization provides greater memory savings but at a

more significant cost to performance and potentially

accuracy.

GPTQ quantization demonstrates an interesting middle

ground, with memory savings approaching those of

INT4 while maintaining performance closer to INT8.

However, it requires a more complex quantization

process and may not be supported on all hardware

platforms.

Per-Instance Efficiency Analysis

For multi-instance scenarios (e.g., serving multiple users concurrently), the per-instance efficiency is a critical metric.

Figure 15 presents this analysis.

Per-instance throughput by batch size for different models on A100 GPU. Sequence length fixed at 256.

Interestingly, per-instance throughput initially

increases with batch size for most models, reaching a

peak at a model-specific optimal batch size before

declining. This pattern suggests that for multi-user

scenarios, selecting the appropriate batch size can

significantly improve overall system efficiency.

The optimal batch size 𝑏opt can be determined by

maximizing the per-instance throughput:

𝑏opt = arg max𝑏
𝑇(𝑏)

𝑏

[𝑏opt = arg max𝑏
𝑇(𝑏)

𝑏
]

Where 𝑇(𝑏) is the throughput at batch size 𝑏. Our

experiments indicate that 𝑏opt typically ranges from 4

to 16, depending on the model size and hardware

configuration.

Hardware Efficiency Analysis

Different hardware platforms exhibit varying

efficiency for LLM inference. Figure 16 presents a

comparison of efficiency across hardware

configurations.

Efficiency comparison (tokens/second/dollar) across hardware configurations for OPT-1.3B. Higher values indicate

better efficiency.

To quantify cost-efficiency, we calculate a cost-efficiency metric:

Cost Efficiency =
Throughput (tokens/second)

Hardware Cost (dollars)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 997

[Cost Efficiency =
Throughput (tokens/second)

Hardware Cost (dollars)
]

This metric reveals that consumer GPUs like the RTX

4090 often offer the highest cost-efficiency for LLM

inference, outperforming more expensive data center

hardware in terms of throughput per dollar. However,

data center GPUs like the A100 generally offer better

scaling to larger batch sizes and models, making them

more suitable for high-volume deployment scenarios.

Discussion

Optimal Configurations for Resource-Constrained

Environments

Our comprehensive benchmarking results enable us to

provide specific recommendations for deploying LLMs

in resource-constrained environments. Table

[tab:recommendations] summarizes these

recommendations for different resource constraints.

These recommendations represent balanced

configurations that optimize for throughput while

maintaining reasonable latency. For specific use cases

with different priorities (e.g., minimizing latency at the

expense of throughput), adjustments may be necessary.

Quantization Method Selection

Our analysis of quantization methods suggests the

following guidelines for method selection:

• INT8 Quantization: Recommended as the default

choice for most deployment scenarios, offering a good

balance of memory savings and performance

preservation.

• INT4 Quantization: Suitable for severely

memory-constrained environments where some

performance degradation is acceptable.

• GPTQ: Recommended for offline deployment

scenarios where the one-time cost of the quantization

process is justified by improved runtime performance

compared to INT4.

• FP16: Recommended for high-end hardware where

memory is less constrained and maximum performance

is desired.

The appropriate quantization method also depends on

the specific model architecture, with some models

(particularly those with attention mechanisms

optimized for efficient computation) showing greater

robustness to aggressive quantization.

Batch Size and Sequence Length Optimization

Our results highlight the importance of carefully

selecting batch size and sequence length configurations

to optimize performance. Based on our findings, we

recommend the following approaches:

1. For throughput-sensitive applications: Maximize

batch size within memory constraints, typically

ranging from 4 to 32 depending on the model and

hardware.

2. For latency-sensitive applications: Use batch size

1 and implement request queueing at the application

level rather than batching at the model level.

3. For multi-user serving: Determine the optimal

batch size by measuring per-instance throughput,

typically ranging from 4 to 16.

4. For sequence length: Limit to the minimum

required for the application, using techniques such as

sliding window attention or efficient context

management for long documents.

The optimal configuration often involves trade-offs

between throughput, latency, and memory usage,

necessitating a holistic approach that considers the

specific requirements of the target application.

Hardware Selection Considerations

Our hardware efficiency analysis reveals several

insights for hardware selection:

• Consumer GPUs (e.g., RTX 4090): Offer

excellent cost-efficiency for smaller models and batch

sizes, making them ideal for individual developers and

small-scale deployments.

• Data Center GPUs (e.g., A100, A10): Provide

better scaling to larger models and batch sizes, making

them suitable for multi-user serving environments with

high throughput requirements.

• CPU-Only Deployments: Viable for smaller

models with appropriate quantization, but generally

offer significantly lower throughput compared to GPU

deployments. Multi-socket servers with high core

counts can partially mitigate this performance gap.

For deployment scenarios with varying load patterns, a

heterogeneous approach that combines different

hardware types may provide the best overall efficiency.

Limitations and Future Work

While our benchmarking framework and analysis

provide comprehensive insights into LLM inference

efficiency, several limitations and opportunities for

future work remain:

• Model Quality Assessment: Our current analysis

focuses on performance metrics without systematically

evaluating the impact of optimizations on model

quality. Future work should integrate quality metrics to

provide a more complete understanding of

optimization trade-offs.

• Emerging Hardware Support: As new hardware

accelerators (e.g., neuromorphic chips, specialized

LLM accelerators) emerge, the framework should be

extended to support and evaluate these platforms.

• Dynamic Workload Adaptation: Current

recommendations assume static workload

characteristics. Future research should explore

dynamic adaptation of batch size, precision, and other

parameters based on real-time workload patterns.

• Distributed Inference: While our framework

supports multi-GPU inference within a single node, it

does not yet address distributed inference across

multiple nodes. Extending the framework to evaluate

distributed configurations represents an important

direction for future work.

• Energy Efficiency: Our current analysis focuses

primarily on computational efficiency rather than

energy efficiency. Incorporating power consumption

measurements would provide valuable insights for

environmentally sensitive deployments.

These limitations present opportunities for future

research to build upon the foundation established by

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 998

EffiLLM and further advance our understanding of

efficient LLM deployment.

Conclusion

In this paper, we introduced EffiLLM, a

comprehensive benchmarking framework for

evaluating and optimizing LLM inference efficiency

across diverse hardware configurations and

optimization techniques. Through extensive

experimentation with models ranging from 125M to

13B parameters, we provided a detailed analysis of the

factors affecting LLM throughput, latency, and

memory utilization in resource-constrained

environments.

Our analysis revealed several key insights:

1. Quantization Impact: INT8 quantization offers a

near-optimal balance for many deployment scenarios,

reducing memory requirements by approximately 50%

while maintaining 90-95% of baseline performance.

INT4 quantization provides further memory savings

but at a more significant cost to performance.

2. Batch Size Scaling: Throughput scales sublinearly

with batch size, with scaling efficiency decreasing as

batch size increases. The optimal batch size for

maximizing per-instance throughput typically ranges

from 4 to 16, depending on the model and hardware

configuration.

3. Sequence Length Impact: Longer sequence

lengths significantly reduce throughput and increase

latency, with the impact following an approximate

power-law relationship. This highlights the importance

of efficient context management for long-document

processing.

4. Hardware Efficiency: Consumer GPUs like the

RTX 4090 often offer the highest cost-efficiency for

LLM inference, while data center GPUs like the A100

provide better scaling to larger batch sizes and models.

Based on these insights, we provided specific

recommendations for deploying LLMs in various

resource-constrained environments, offering

practitioners a guide for selecting appropriate models,

quantization methods, and runtime configurations.

The EffiLLM framework and the insights derived from

it contribute to the broader goal of democratizing

access to LLM technology by enabling more efficient

deployment in resource-constrained environments. By

reducing the computational and memory requirements

for LLM inference, we help bridge the gap between the

impressive capabilities of state-of-the-art models and

the practical constraints of real-world deployment

scenarios.

Future work should extend this analysis to encompass

model quality impacts, emerging hardware platforms,

dynamic workload adaptation, distributed inference,

and energy efficiency considerations. These extensions

will further enhance our understanding of the complex

trade-offs involved in efficient LLM deployment and

contribute to the development of more accessible and

sustainable AI systems.

Reference

[1] Brown, T., Mann, B., Ryder, N., Subbiah, M.,
Kaplan, J. D., Dhariwal, P., ... & Amodei, D.

(2020). Language models are few-shot learners.

Advances in Neural Information Processing

Systems, 33, 1877-1901.

[2] Chowdhery, A., Narang, S., Devlin, J., Bosma,

M., Mishra, G., Roberts, A., ... & Fiedel, N.

(2022). PaLM: Scaling language modeling with

pathways. arXiv preprint arXiv:2204.02311.

[3] Touvron, H., Lavril, T., Izacard, G., Martinet, X.,

Lachaux, M. A., Lacroix, T., ... & Lample, G.

(2023). Llama: Open and efficient foundation

language models. arXiv preprint

arXiv:2302.13971.

[4] OpenAI. (2023). GPT-4 Technical Report. arXiv

preprint arXiv:2303.08774.

[5] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,

J., Jones, L., Gomez, A. N., ... & Polosukhin, I.

(2017). Attention is all you need. Advances in

Neural Information Processing Systems, 30.

[6] Kaplan, J., McCandlish, S., Henighan, T., Brown,

T. B., Chess, B., Child, R., ... & Amodei, D.

(2020). Scaling laws for neural language models.

arXiv preprint arXiv:2001.08361.

[7] Hoffmann, J., Borgeaud, S., Mensch, A.,

Buchatskaya, E., Cai, T., Rutherford, E., ... &

Sifre, L. (2022). Training compute-optimal large

language models. arXiv preprint

arXiv:2203.15556.

[8] Wang, A., Singh, A., Michael, J., Hill, F., Levy,

O., & Bowman, S. R. (2018). GLUE: A multi-task

benchmark and analysis platform for natural

language understanding. arXiv preprint

arXiv:1804.07461.

[9] Wang, A., Pruksachatkun, Y., Nangia, N., Singh,

A., Michael, J., Hill, F., ... & Bowman, S. R.

(2019). SuperGLUE: A stickier benchmark for

general-purpose language understanding systems.

Advances in Neural Information Processing

Systems, 32.

[10] Liang, P. P., Bommasani, R., Lee, T., Tsipras, D.,

Soylu, D., Yasunaga, M., ... & Jurafsky, D.

(2022). Holistic evaluation of language models.

arXiv preprint arXiv:2211.09110.

[11] Gao, L., Biderman, S., Black, S., Golding, L.,

Hoppe, T., Foster, C., ... & Leahy, C. (2021). The

Pile: An 800GB dataset of diverse text for

language modeling. arXiv preprint

arXiv:2101.00027.

[12] Sanz González, R, Luque Juárez, J, M.ª, Martino,

L, Liz Rivas, L, Delgado Morán, J, J, & Payá

Santos, C, A. (2024) Artificial Intelligence

Applications for Criminology and Police Sciences.

International Journal of Humanities and Social

Science. Vol. 14, No. 2, pp. 139-148.

https://doi.org/10.15640/jehd.v14n2a14

[13] Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A.

M., Abid, A., Fisch, A., ... & Zoph, B. (2022).

Beyond the imitation game: Quantifying and

extrapolating the capabilities of language models.

arXiv preprint arXiv:2206.04615.

[14] Bommasani, R., Hudson, D. A., Adeli, E., Altman,

R., Arora, S., von Arx, S., ... & Liang, P. (2021).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 982–999 | 999

On the opportunities and risks of foundation

models. arXiv preprint arXiv:2108.07258.

[15] Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,

Schmuelling, G., Wu, C. J., ... & Zhou, Y. (2020).

MLPerf inference benchmark. 2020 ACM/IEEE

47th Annual International Symposium on

Computer Architecture (ISCA), 446-459.

[16] Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh,

D. (2022). GPTQ: Accurate post-training

quantization for generative pre-trained

transformers. arXiv preprint arXiv:2210.17323.

[17] Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J.,

Tan, E., ... & Keutzer, K. (2022). ZeroQuant:

Efficient and affordable post-training quantization

for large-scale transformers. Advances in Neural

Information Processing Systems, 35, 18098-

18111.

[18] Dettmers, T., Lewis, M., Belkada, Y., &

Zettlemoyer, L. (2022). LLM. int8(): 8-bit matrix

multiplication for transformers at scale. arXiv

preprint arXiv:2208.07339.

[19] Ma, X., Fang, Z., Wu, J., Zhu, Z., Zhu, Q., Li, Z.,

... & Zhou, J. (2023). LLM-Pruner: On the

structural pruning of large language models. arXiv

preprint arXiv:2305.11627.

[20] Hinton, G., Vinyals, O., & Dean, J. (2015).

Distilling the knowledge in a neural network.

arXiv preprint arXiv:1503.02531.

[21] Pope, R., Douglas, F., Chowdhery, A., Brock, A.,

Botha, J., Pieterse, J., ... & Li, E. (2022).

Efficiently scaling transformer inference. arXiv

preprint arXiv:2211.05102.

[22] Yu, F., Xu, Y., Chen, Z., & Cheng, Y. (2022).

Orca: A distributed serving system for

transformer-based generative models. arXiv

preprint arXiv:2212.10435.

[23] NVIDIA. (2023). FasterTransformer. GitHub

repository.

https://github.com/NVIDIA/FasterTransformer

[24] Rasley, J., Rajbhandari, S., Ruwase, O., & He, Y.

(2020). DeepSpeed: System optimizations enable

training deep learning models with over 100

billion parameters. Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge

Discovery & Data Mining, 3505-3506.

[25] Dao, T., Fu, D. Y., Ermon, S., Rudra, A., & Ré, C.

(2022). FlashAttention: Fast and memory-efficient

exact attention with IO-awareness. Advances in

Neural Information Processing Systems, 35,

16344-16359.

[26] Wolf, T., Debut, L., Sanh, V., Chaumond, J.,

Delangue, C., Moi, A., ... & Rush, A. M. (2020).

Transformers: State-of-the-art natural language

processing. Proceedings of the 2020 Conference

on Empirical Methods in Natural Language

Processing: System Demonstrations, 38-45.

[27] Dettmers, T. (2022). 8-bit optimizers via block-

wise quantization. arXiv preprint

arXiv:2110.02861.

[28] Liu, X., Han, K., Li, L., Wu, Y., Yan, J., Zhang,

Y., & Zhou, J. (2022). Oxone: Accelerating the

scanning and quantization in transformer

networks. arXiv preprint arXiv:2202.01344.

[29] Dong, X., Mao, Y., Bhosale, S., Mukherjee, P.,

Chen, R., Li, Z., ... & Anubhai, R. (2022).

Parameter-efficient fine-tuning with PEFT.

GitHub repository.

https://github.com/huggingface/peft

[30] Li, H., Wang, M., Zhuang, B., Sun, P., Zhao, T.,

Liang, X., & Zhao, D. (2023). LLM-Adapters: An

adapter family for parameter-efficient fine-tuning

of large language models. arXiv preprint

arXiv:2304.01933.

[31] Kim, Y., Kim, H., Jung, S., Kwon, S., & Kim, H.

(2023). Memory-efficient fine-tuning of

compressed large language models via sub-4-bit

integer quantization. arXiv preprint

arXiv:2305.14314.

