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Abstract: This study introduces an energy management system (EMS) for a single-phase grid-connected solar 

photovoltaic (PV) system that operates in partial shade using Deep Reinforcement Learning (DRL).   Making 

use of the Deep Q-Network (DQN) process, the system learns to optimize battery charging and discharging 

decisions to minimize operational costs and CO₂ emissions. The U.S. Dept. of Energy's Open Energy Data 

Initiative provided high-resolution, minute-level data from real home load profiles for this simulation, ensuring 

the evaluation reflects practical usage scenarios. The DRL agent was trained and deployed in a Python-based 

environment with support for advanced hardware acceleration. Performance was evaluated in terms of energy 

cost, CO₂ emissions, energy source distribution, and savings, with the proposed DRL-based EMS showing 

superior results compared to traditional Fuzzy Logic, PSO-based, and GA-based EMS models. The DRL 

approach achieved up to 34.24% cost reduction and 41.10% CO₂ emission reduction, outperforming all baseline 

strategies. Statistical analysis confirmed the significance of these improvements (p = 0.000). The results 

demonstrate the practical potential of DRL in enabling intelligent, adaptive, and environmentally conscious 

energy management in modern smart grid systems. 

Keywords: Deep Reinforcement Learning, Energy Management System, DQN, Solar PV, Battery Optimization, 

CO₂ Emission Reduction, Smart Grid, Partial Shading, Cost Minimization, Renewable Energy. 

1 Introduction  

Particularly in residential and urban settings where 

space, cost, and grid compatibility are major 

factors, the global shift towards low-carbon and 

renewable energy solutions has sped the acceptance 

of photovoltaic (PV) systems. Simple, affordable, 

and appropriate for small to medium-scale 

applications, single-phase grid-connected solar PV 

systems have become a preferred choice among 

several configurations [1]. Notwithstanding these 

benefits, operational and environmental 

uncertainties—mostly related to partial shading, 

which causes variations in irradiation across PV 

panels, so greatly affecting power output and 

influencing energy management efficiency [2]. 

A variety of things can cause partial shadowing, 

including neighboring trees, moving clouds, 

buildings, or dirt buildup on the PV modules. 

These anomalies provide mismatched current 

production across cells, which causes several local 

maxima in the power-voltage curve, therefore 

complicating maximum power point tracking 

(MPPT) and lowering system output [3]. As such, 

the load requirement might not always be met by 

the PV system alone, resulting in either reliance on 

grid power or, if suitable, less than ideal utilisation 

of energy storage solutions. In this ever-changing 

environment, effective energy management 

systems that can adjust to changes in real time are 

needed. 

 In the past, fuzzy logic, deterministic optimisation, 

or rule-based controllers have been used to manage 

energy in grid-connected PV systems.  Even 

though these approaches are inexpensive to run, 

they often aren't very strong or flexible when there 

are complicated, non-linear, time-varying system 
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dynamics caused by partial shading and random 

load demand.[4]. The expanding use of distributed 

energy resources (DERs) and the need for 

electricity to flow in both directions are making 

standard control systems much harder to use[5]. 

To deal with these problems, more and more 

people are looking into using Artificial Intelligence 

(AI) approaches, especially those that use Deep 

Reinforcement Learning (DRL), to manage energy 

in smart grids and microgrids in real time [6]. Deep 

reinforcement learning, when used with deep 

learning, is very good at solving high-dimensional 

control problems like scheduling energy use in 

solar systems.  It lets agents learn the best rules by 

communicating with the environment and getting 

feedback in the form of incentives. This helps them 

improve their behaviour over time without having 

to describe how the system works explicitly [7]. 

In this work, an energy management system using 

deep reinforcement learning is proposed for a 

partial shade operated single-phase solar system 

connected to the grid.   More energy is the main 

objective efficiency and reduce grid energy 

dependency while assuring load demand to be 

optimally supplied. The DRL agent learns on 

choices such as when to take electricity from the 

grid, how much PV power to use, and how to deal 

with excess generation in the face of uncertainty 

due to partial shading. Contrary to traditional 

methods, the proposed system adaptively tunes 

control policies when it faces new shade patterns 

and load patterns, thus offering a more flexible and 

robust solution. 

Several recent research has shown the potential of 

DRL in the context of renewable energy.For 

instance, [8] applied DRL to hybrid energy storage 

systems and achieved significant improvements in 

energy savings and battery lifespan. Similarly, a 

study by [9] showcased the use of DRL for energy 

management in a PV-battery system under real-

time pricing environments, emphasizing the 

model’s capability to respond to dynamic 

electricity tariffs and weather variations. However, 

most of these works have either focused on large-

scale systems or neglected the critical impact of 

partial shading in distributed residential PV 

systems. This gap motivates the current research, 

which explicitly models partial shading conditions 

and examines their influence on the energy 

scheduling decisions in a single-phase system. 

The suggested model is constructed using a 

Markov Decision Process (MDP) architecture, 

whereby the environment encompasses conditions 

such grid status, solar irradiation, load demand, and 

battery state of charge (if applicable).  The agent's 

activities align with power dispatch choices, and 

the incentive function is structured to penalize 

unmet demand and excessive grid reliance while 

promoting photovoltaic utilisation.  The Deep Q-

Network (DQN) method is used for policy 

optimisation, leveraging its ability to generalize 

across a continuous action space and handle non-

linear dynamics [10]. The system is tested on 

realistic solar and load datasets under various 

shading profiles, and results are benchmarked 

against rule-based and heuristic approaches. 

The following is a summary of this work's main 

contributions: 

• An extensive examination of how partial 

shadowing affects the functionality of 

grid-connected single-phase solar systems. 

• A DRL-based energy management 

framework capable of adaptive learning 

and real-time decision-making in the face 

of uncertain and dynamic system 

behavior. 

• A comprehensive performance evaluation 

under various shading and load conditions 

to validate the practicality and resilience 

of the suggested approach. 

The parts of this paper that follow are structured 

like this:  Section 2 looks at relevant research and 

existing methods for managing energy. Section 3 

talks about the system model and the foundation 

for deep reinforcement learning.  Section 4 talks 

about how the experiments were set up and the 

criteria for how well they should work. Section 5 

talks about the outcomes and the comparison 

analysis.  Section 6 is the last part of the study and 

talks about possible areas for further investigation. 

2 Related works  

[11] reviewed various rule-based energy 

management strategies for smart microgrids, 

highlighting their ease of implementation but also 

noting their limited adaptability under dynamic 

operating circumstances, including partial 

shade[12]proposed an MPPT technique capable of 

determining the global maximum power value for 
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non-homogeneous lighting beyond conventional 

hill-climbing techniques. [13]addressed the partial 

shading problem by suggesting an altered particle 

swarm optimisation (PSO)-based photovoltaic 

array reconfigurationscheme, which significantly 

reduced mismatch losses. 

[14] introduced a hybrid GA–PSO algorithm for 

MPPT, which improved tracking speed and 

accuracy under shading conditions. [15] employed 

a modified Bat Algorithm for intelligent MPPT 

control, demonstrating enhanced efficiency and 

convergence under partial shading scenarios. 

Despite these advancements, metaheuristic 

algorithms often operate offline and require manual 

tuning, making them less effective in real-time 

environments. 

[16] applied machine learning techniques for 

predicting PV output under partial shading, 

showcasing improved accuracy over classical 

models. [17] compared Support Vector Machines 

and Random Forest methods for solar energy 

forecasting, finding that while both were effective, 

they lacked the capacity to handle sudden 

environmental changes. 

[18] introduced deep reinforcement learning (DRL) 

as a scalable solution for high-dimensional control 

problems, framing it as an effective instrument for 

responsive energy management. [19] implemented 

a deep Q-learning algorithm in a PV-battery 

system, achieving improved load satisfaction and 

reduced grid dependency. [20]developed an actor-

critic DRL controller for energy-efficient smart 

buildings, capable of adapting to real-time price 

signals and environmental fluctuations. 

[21]demonstrated the feasibility of DRL for energy 

scheduling in a grid-tied PV system under dynamic 

pricing, achieving significant cost savings. 

[22]proposed a DRL-based control strategy for 

residential PV-battery systems that optimized 

energy dispatch during real-time operation. 

However, most of these studies focus on ideal or 

three-phase systems with storage components, and 

often overlook the performance implications of 

partial shading in single-phase configurations. 

[23]emphasized the limitations of DRL models 

when exposed to incomplete or noisy observational 

data, a situation frequently encountered under 

partial shading. [24]discussed reconfigurable PV 

array designs and bypass diode architectures to 

reduce shading-induced losses, but noted the 

increased hardware complexity and cost. 

[25]conducted a cost–benefit analysis of 

differential power processing (DPP) systems, 

concluding that AI-based software solutions may 

offer more scalable alternatives in residential 

settings. 

[26]developed a hybrid forecast-DRL framework 

for smart homes, but its reliance on prediction 

accuracy limited its robustness under stochastic 

weather conditions. [27] focused on intelligent 

MPPT techniques in single-phase PV inverters but 

did not explore real-time adaptive energy 

scheduling[28. 

Despite these contributions, existing research has 

not fully addressed the integration of DRL for 

energy management in single-phase grid-connected 

PV systems affected by partial shading. Most 

models are either storage-dependent or assume 

stable irradiance conditions[29]. This research fills 

the gap by creating a DRL-based system that learns 

optimum energy in real-timedispatch strategies 

under shading uncertainty, specifically for 

residential single-phase PV-grid systems[30]. 

3 System model 

3.1 Partial Shading System Effect 

A photovoltaic array is composed of several solar 

modules connected in series or parallel to achieve 

the desired output voltage as well as current.The 

PV curve with PSC has a maximum of two peak 

points when two photovoltaic modules are 

connected in parallel.   Similarly, there may be a 

maximum of five peaks from five PV modules 

arranged in sequence. The proposed methodology 

of this research may be applied to other 

photovoltaic systems.The simulation employs three 

photovoltaic modules arranged in series for 

simplicity, making it easy to tell the distinction 

between local and global maximum power points 

(MPPs).   As shown in the picture, bypass diodes 

and a blocking diode prevent PV modules from 

self-heating under partial shade circumstances 

(PSCs).  In this case, partial shadowing over a PV 

string occurs when many PV modules are obscured 

by shadows from poles, buildings, and avian 

excrement.   In this instance, it operates as a load 

rather than a power provider.   Under prolonged 

conditions, the hot spot phenomenon would 

adversely affect the shaded photovoltaic module.   
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Consequently, to protect the photovoltaic system 

and mitigate heat stress on the photovoltaic 

modules, a bypass capacitor is included in parallel. 

The bypass diode is reverse biassed when subjected 

to continuous sunlight.   Blocking a PV module 

causes the electricity to go via the diode rather than 

the photovoltaic module itself making it forward 

biassed.  On the other hand, the partial shade 

situation with a bypass diode results in both local 

and global maxima as well as many peaks on the 

power curve.  Up to 70% of power loss might be 

mitigated if the system runs at the global maximum 

power point (GMPP) to get the most energy out of 

the solar array. 

 

Figure 1: P–V curve under uniform condition and PSC. 

3.2 PV array under partial shedding  

The photovoltaic (PV) array serves as the primary 

source for renewable energy in the proposed 

system.  It converts solar irradiance to electrical 

energy via the photoelectric effect. Proper 

modeling of the PV array is vital for real-time 

control and management of energy, especially 

under partial shading where power output is 

extremely non-linear and unpredictable. 

In this paper, the single-diode comparable circuit 

shows what the PV array looks like, which is well 

acknowledged because it offers a balance of 

computational efficiency and accuracy. The model 

incorporates a current source pvI the photocurrent, 

a diode symbolizing the p-n junction, a series 

resistance sR , and a shunt resistance shR . The 

terminal output current pvI  of a solar cell is 

modeled by: 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼0 [𝑒𝑥𝑝 (
𝑞(𝑉𝑝𝑣+𝐼𝑝𝑣𝑅𝑠)

𝑛𝑘𝑇
) − 1] −

𝑉𝑝𝑣+𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
                                              

(1) 

Where: 

• phI : photo-generated current, 

proportional to irradiance GGG, 

• 0I : diode saturation current, 

• pvV : terminal voltage of the PV module, 

• q: elementary charge (1.602 × 10⁻¹⁹ C), 

• n: ideality factor of the diode, 

• k: Boltzmann constant (1.381 × 10⁻²³ J/K), 

• T: absolute temperature in Kelvin, 

• sR , shR : series and shunt resistances. 

The photo-generated current phI  is a function of 

solar irradiance G and temperature T, given by: 

𝐼𝑝ℎ = [𝐼𝑠𝑐 + 𝐾1(𝑇 − 𝑇𝑟𝑒𝑓)].
𝐺

𝐺𝑟𝑒𝑓
                                                         

(2) 

Where scI  is the short-circuit current under 

standard test conditions (STC), 1K  is the 

temperature coefficient of current, refT  is the 
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reference temperature (usually 25°C), and refG  is 

the reference irradiance (1000 W/m²). 

In situations when the irradiance is uniform, the 

solar array has just one peak in the P-V (power-

voltage) curve.  This implies that traditional 

maximum power point tracking (MPPT) 

techniques, such as Incremental Conductance or 

Perturb & Observe, may be used to easily 

converge.  However, in situations of partial 

shadesome modules or substrings in the array are 

shaded with less irradiance caused by obstructions 

like trees, poles, or buildings. This induces 

incongruent operating conditions inside the array, 

leading to many local maxima in the P–V 

characteristics. Bypass diodes are incorporated 

across module substrings to mitigate hot spots 

resulting from such mismatches. The diodes 

safeguard the hardware but introduce 

discontinuities in the output curve, hence rendering 

conventional MPPT methods ineffective. 

Consequently, a global search methodology, such 

as that derived from Deep Reinforcement Learning 

(DRL), is essential for the precise determining the 

Global Maximum Power Point. 

In this study, the photovoltaic array is recreated 

using series-parallel arrangementsof typical 

commercial modules (e.g., 2S2P, 3S2P), and partial 

shading is simulated by setting different irradiance 

levels for each module. For instance, for a 3S2P 

array, modules can have irradiance values of 1000 

W/m², 650 W/m², and 300 W/m², respectively. This 

creates a highly dynamic and non-linear operating 

environment and presents dramatic challenges to 

static or model-based controllers. In this dynamic 

context, to find the best functioning point for the 

PV array, you need to make decisions in real time.   

By adjusting the boost converter's duty cycle based 

on the current photovoltaic output and the 

surrounding circumstances, the Deep 

Reinforcement Learning (DRL) agent in this study 

enhances energy harvesting.Thus, the PV array 

model not only emulates realistic partial shading 

but also serves as a complex and dynamic input to 

the DRL agent and is an integral component of the 

smart energy management system. 

3.3 Deep Reinforcement Learning  

Because DRL is a kind of expert reinforcement 

learning (RL), a concise overview of RL is 

provided here. The interaction between a neutral 

stimulus and response in reinforcement learning 

(RL) constitutes the foundation of this category of 

unsupervised machine learning methods. 

Reinforcement learning has gained prominence in 

tackling sequential decision-making difficulties 

owing to recent breakthroughs in computer science. 

Reinforcement learning (RL) employs trial-and-

error interactions within a designated environment 

to come up with a strategy or policy that maximises 

the overall projected discounted rewards.    

Reinforcement learning involves an agent, an 

environment, actions, states, and rewards.   After 

that, the agent talks about the reinforcement 

learning approach, and the environment is the thing 

that the agent works on.  The environment tells us 

about a state, prompting the agent to respond by 

utilising its knowledge. The environment thereafter 

provides two prospective states and corresponding 

incentives. The agent will thereafter evaluate its 

last action by incorporating the reward into its 

knowledge base. The episode concludes and the 

subsequent one commences when the environment 

transmits a terminal condition. The loop persists 

until the specified requirements are fulfilled.  

The value function Vπ(s), which quantifies the 

probability of the agent attaining a particular state, 

is used byspecific algorithms to determine the ideal 

line of action. The expected result of following 

state policy 𝜋. The action-value function Qπ(s,a), 

representing the anticipated return of executing 

action 𝑎 in the current state 𝑠 according to policy 𝜋, 

also serves as the basis for various other 

methodologies. The subsequent formula is 

employed to calculate the 𝑉(𝑠) and 𝑄𝜋(𝑠,𝑎) 

functions [23,42,51]: 

𝑉𝜋(𝑠𝑣) = 𝐸[𝑅𝑣|𝑠𝑣 = 𝑠] = 𝐸[∑ 𝛾𝑘𝑟𝑣+𝑘+1|𝑠𝑣 =
∞
𝑘=0

𝑠]                                                       (3) 

𝑄𝜋(𝑠𝑣 , 𝑎𝑣) = 𝐸[𝑅𝑣|𝑠𝑣 = 𝑠, 𝑎𝑣 = 𝑎] =

𝐸[∑ 𝛾𝑘𝑟𝑣+𝑘+1|𝑠𝑣 = 𝑠, 𝑎𝑣 = 𝑎∞
𝑘=0 ]                        (4) 

The off-policy, model-free RL method known as 

Q-Learning has grown in popularity in a number of 

domains. The Bellman equation can be used in Q-

Learning to present the 𝑄(𝑠,𝑎) function in an 

iterative form as follows: 

𝑄𝜋(𝑠𝑣 , 𝑎𝑣) = 𝐸[𝑟𝑣+1 + 𝛾𝑄𝜋(𝑠𝑣+1, 𝑎𝑣+1)|𝑠𝑣 , 𝑎𝑣]                                                            

(5) 

An optimal strategy 𝜋∗ achieves the largest 

cumulative reward over an extended period of time. 
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Currently, [23] provides both the action-value 

function and the optimum value function. 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜋

𝑉𝜋(𝑠)                                                                                   

(6) 

𝑉∗(𝑠) = 𝑚𝑎𝑥
𝜋

𝑉𝜋(𝑠)                              (7) 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥
𝜋

𝑄𝜋(𝑠, 𝑎)                                                                           

(8) 

One of artificial intelligence's (AI) most intriguing 

current fields is deep reinforcement learning 

(DRL).It enables an agent to autonomously acquire 

knowledge through interaction with a specific 

environment. Deep Reinforcement Learning 

(DRL), which combines deep learning with 

reinforcement learning, has made great strides in 

several areas, including gaming and robotics, 

natural language processing, and business and 

financial management. The use of a look-up table 

for data storage and indexing is a significant 

limitation of reinforcement learning, often 

rendering it not feasible for problems in the real 

world with large state and action spaces. 

Consequently, a value function or a policy function 

may be approximated utilising a neural network. 

States or state-action pairings can be correlated 

with Q values through the utilisation of neural 

networks.  

The The model-based method's main benefit is its 

necessity for a minimal quantity of examples for 

learning. However, when the model proves 

unexpectedly challenging to comprehend, it 

significantly increases computing complexity. 

Nonetheless, engaging with model-free 

reinforcement learning will prove to be more 

beneficial. It is less computationally demanding 

and does not necessitate an exact delineation of the 

environment to operate. Model-free deep 

reinforcement learning encompasses two 

categories: Focused on values and policies.   Value-

based techniques  With every iteration, attempt to 

make the value function better until the 

convergence requirements are satisfied.  

𝐽(𝜃) = 𝐸 [(𝑟𝑣+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑣+1, 𝑎𝑣+1|𝜃) −

𝑄(𝑠𝑣 , 𝑎𝑣|𝜃))

2

]                             (9) 

𝜃𝑣+1 = 𝜃𝑣 + 𝛼 ((𝑟𝑣+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑣+1, 𝑎𝑣+1|𝜃) −

𝑄(𝑠𝑣 , 𝑎𝑣|𝜃)))𝛻𝜃𝑄(𝑠𝑣 , 𝑎𝑣|𝜃)                              

(10) 

where 𝛼 is learning rate, and 𝜃 is the weights of the 

neural network. 

1. State  

The proposed Deep Reinforcement Learning 

(DRL)-based energy management system's 

environment is describedby a collection of 

observable factors that constitute the state space. 

The DRL agent gets a state vector 𝑆𝑡 at every time 

step t that captures the instantaneous electrical and 

environmental circumstances required for decision-

making. 

The state space is defined as: 

𝑆𝑡 =

[𝑉𝑝𝑣(𝑡), 𝐼𝑝𝑣(𝑡), 𝑉𝑑𝑐(𝑡), 𝐺𝑎𝑣𝑔(𝑡), 𝑃𝑙𝑜𝑎𝑑(𝑡), 𝑉𝑔𝑟𝑖𝑑(𝑡), 𝐼𝑔𝑟𝑖𝑑(𝑡)]     

                                  (11) 

Where: 

• ( )pvV t : Voltage output of the PV array at 

time ttt, 

• ( )pvI t : Current output of the PV array, 

• ( )dcV t : Voltage across the DC-link 

capacitor, 

• ( )avgG t : Average irradiance on the PV 

surface, accounting for partial shading, 

• ( )loadP t : Instantaneous load power 

demand, 

• ( )gridV t : Grid-side voltage magnitude, 

• ( )gridI t : Current exchanged with the 

grid. 

These states let the agent see both generating and 

consumption sides holistically, therefore helping 

them to grasp the operational context and energy 

imbalance. Should a battery be integrated into the 

system, its state of charge (SOC) can be attached to 

the state vector. 



 
International Journal of Intelligent Systems and Applications in Engineering                          IJISAE, 2024, 12(21s), 5048–5064 |  5054 

 

2. Action  

𝐴𝑡defines the array of potential control actions 

something the agent may use at any moment to 

change the system.  This study's main goal is to 

alter the DC–DC boost converter's duty cycle, 

which indirectly affects the solar array's working 

point. 

For a discrete action setup employing Deep Q-

Network (DQN), the action space follows: 

   1 2, ,..., , 0.2,0.9t n iA D D D D=                                                                    

(12) 

Where:  

𝐷𝑖: Discrete values of the converter duty cycle, 

generally in increments of 0.05 or 0.1. 

Operations in an extended model can further 

include setpoints for grid-side power transfer or 

inverter current references.  

The selected action at time t, denoted as At, will 

directly affect the PV operating voltage, thus 

impacting power generation efficiency and load 

satisfaction. 

3. Reward function  

The DRL structure's reward function is a crucial 

componentto push the agent towards optimal policy 

through interaction with the environment. It is 

designed to optimise power extraction from the 

photovoltaic array and reduce reliance on grid 

electricityand facilitate smooth transitions in 

control actions. 

( ) ( )

( )
1max

. . .
pv grid

t t t

pv load

P t P t
R D D

P P t
   −= − − −                                                           

(13) 

Where: 

• α: Weight for maximizing PV utilization, 

• β: Penalty coefficient for grid energy 

import, 

• γ: Penalty coefficient for large duty cycle 

variations, 

• ( )pvP t : Instantaneous PV power, 

• ( )gridP t : Power drawn from the grid, 

• ( )loadP t : Current load demand. 

4 Methodology 

This study presents a Deep Reinforcement 

Learning approach for managing energy in a smart 

microgrid system. The aim is to reduce operational 

energy costs by intelligently coordinating power 

flows among renewable sources, grid power, 

battery storage, and dynamic load demands. A 

Deep Q-Network (DQN) is used to get an optimum 

energy management strategy without a predefined 

model. The methodology encompasses the design 

of the simulation environment, creation of action 

and state spaces and incentive systems, and the 

architecture and training of the learning agent. 

4.1 Environment Components and 

Simulation Structure 

The microgrid is composed of the following four 

primary components: 

• Load (L): Represents the demand to be 

satisfied at each time step. 

• Renewable Source (R): Supplies variable 

renewable energy (e.g., solar) over time. 

• Battery (B): Can store and discharge 

energy, with charging and discharging 

limits. 

• Grid (G): Provides backup power when 

demand exceeds renewable generation and 

battery supply. 

4.2 State Representation 

 

In the proposed Deep Reinforcement Learning 

framework, the state representation is very 

important for the agent to be able to provide 

informed and relevant aware judgements. The state 

vector is defined as a three-dimensional tuple: 

𝑠𝑡 = [𝐶𝐵(𝑡), 𝐿(𝑡), 𝑅(𝑡)] 

were  

• CB(t) denotes the current charge level of 

the battery (in kWh),  

• L(t) represents the power demand from the 

load (in kW),  

• R(t) corresponds to the renewable power 

generation available at time t (also in kW).  
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This little but useful diagram shows the basic 

workings of the energy system by showing the 

amount of energy is stored, how much is needed, 

and how much is freely accessible from renewable 

sources.  The agent can see this condition at every 

time step, which gives it a real-time picture of how 

much energy is available and how much is needed. 

This lets it decide whether to charge or discharge 

the battery or use grid power.  The way this state 

space is set up makes sure that the agent's policy 

can easily adjust to changing demand situations and 

intermittent renewable production. This helps with 

the best energy management and cost reduction. 

Variable Symbol Unit Purpose 

Battery charge CB(t) kWh Tracks stored energy in the battery 

Load demand L(t) kW Captures the current energy need of the system 

Renewable power R(t) kW Indicates available free energy from renewables 

 

4.3 Action Space 

The agent's choice of action affects how much 

power the battery sends at each time step: 

𝑎𝑡 = 𝐵(𝑡) ∈ [𝑃𝑚𝑖𝑛
𝐵 , 𝑃𝑚𝑎𝑥

𝐵 ] 

Here: 

• B(t)>0: The load gets electricity from the 

battery. 

• B(t)<0: The battery charges using surplus 

renewable or grid power 

• B(t)=0: No action is taken by the battery 

The action is modelled as a continuous variable, 

which lets you regulate the battery's behaviour very 

precisely. This is important for realistic energy 

optimisation in microgrids. 

Variable Symbol Unit Description 

Battery power B(t) kW Controls the battery’s charge/discharge power level 

 

4.4 System Power Balancing 

At each time step, energy conservation is enforced 

through a balance between supply and demand: 

𝐺(𝑡) = max⁡(0, 𝐿(𝑡) − 𝑅(𝑡) − 𝐵(𝑡)) 

Where: 

• G(t): Power drawn from the grid in kW 

• L(t): Load demand 

• R(t): Renewable energy available 

• B(t): Battery discharge/charge power 

This equation ensures that any shortfall in meeting 

the load, after considering battery and renewable 

energy, is fulfilled by grid power. Grid usage is 

considered expensive and should be minimized. 

The battery's status of charge is updated 

dynamically using the following equation: 

 

𝐶𝐵(𝑡 + 1) = ⁡ ⁡𝐶𝑙𝑖𝑝⁡(𝐶𝐵(𝑡) − 𝐵(𝑡).
∆𝑡

60
, 0, 𝐶𝑚𝑎𝑥) 

Where Δt=1 minute and 𝐶𝑚𝑎𝑥 is the battery's 

maximum capacity. This update equation simulates 

realistic charging and discharging behavior while 

enforcing capacity limits. 

4.5 Reward Function Design 

To guide the learning agent toward cost 

minimization, the function of reward is only the 

opposite of the energy cost incurred at each 

momentstep: 

𝑟𝑡 =⁡−(𝐺(𝑡). 𝐶𝐺) + max(0, 𝐵(𝑡). 𝑐𝐵) .
∆𝑡

60
 

Where: 

• 𝐶𝐺Cost of grid energy per kWh  

• 𝑐𝐵: Cost of charging battery per kWh  

Only positive values of B(t) incur a battery 

charging cost, while discharging is free (as energy 

was already stored). This reward design penalizes 

costly energy use and encourages the agent to 

prefer renewable and stored energy when available. 
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4.6 Deep Q-Network (DQN) Agent Design 

The core of the learning system is the DQN agent, 

which approximates the Q-value function 𝑸(𝑺𝒕, 𝒂𝒕) 

, representing the expected cumulative reward for 

taking action 𝒂𝒕 in state 𝑺𝒕. The agent uses a 

feedforward neural network with the following 

architecture: 

• Input layer: 3 neurons (state vector) 

• Hidden layers: Two completely linked 

layers including 128 neurones each, using 

ReLU activation. 

• Output layer: Single neuron representing 

the Q-value 

The agent employs an epsilon-greedy strategy to 

equilibrate exploration and exploitation. Initially, it 

explores randomly (high ϵ), gradually reducing 

randomness over time using: 

∈⁡= max⁡(∈𝑚𝑖𝑛 , ∈. ∈𝑑𝑒𝑐𝑎𝑦) 

4.7 Learning and Optimization 

During training, the agent interacts with the 

environment by: 

1. Observing the current state 𝑠𝑡 

2. Choosing an action 𝑎𝑡 

3. Receiving a reward 𝑟𝑡 and next state 𝑆𝑡+1 

4. Storing the transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑡 in a 

replay buffer 

To train the Q-network, a mini-batch of transitions 

is sampled, and the goal Q-value is calculated using 

the Bellman update: 

𝑦𝑡 =⁡𝑟𝑡 + ⁡𝛾⁡. 𝑄⁡(𝑆𝑡+1; 𝜃
−). (1 − 𝑑𝑡) 

Where: 

• γ=0.99: Discount factor 

• θ: Weights of the target network 

• 𝑑𝑡: Terminal indicator (1 if episode ends, 

else 0) 

The Mean Squared Error between the target and 

forecasted Q-values is the loss function that is 

minimised: 

ℒ =
1

𝑁
∑(𝑄(𝑆𝑖 ; 𝜃) − 𝑦𝑖)

2

𝑁

𝑖=1

 

The agent updates its main Q-network using Adam 

optimization and synchronizes the target network 

and the main network after every episode. 

4.8 Training Procedure 

The agent undergoes training via 50 episodes, with 

each episode representing a whole day of 

operation.Each episode is initialized with a 

partially charged battery (40%) and proceeds 

through 1440 steps (1-minute resolution). During 

each step, the agent's decisions are evaluated in 

terms of cost savings, and cumulative rewards are 

recorded.This training procedure allows the agent 

to generalize across varying load and renewable 

conditions, improving its decision-making policy 

over time. The experience replays buffer makes 

sure that past transitions are used efficiently, and 

the target network helps keep the Q-value 

estimations stable. 
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5 Results and Discussion: 

This part talks about how effectively this proposed 

Deep Reinforcement Learning (DRL)-based energy 

management system performs with a solar 

photovoltaic system that is linked to a single-phase 

grid and is partly shaded.  The findings come from 

high-resolution, minute-by-minute simulation data 

that includes solar irradiance, load demand, battery 

state of charge (SOC), grid consumption, energy 

cost, and CO₂ emissions. 

5.1 Simulation Environment and System 

Specifications 

Python was used to run and evaluate the proposed 

Deep Reinforcement Learning-based energy 

management system simulationsutilized Python to 

create, train, and deploy the DRL agent using the 

Deep Q-Network (DQN) algorithm and tools like 

TensorFlow and NumPy.   We did all of the 

simulations and training on a powerful workstation 

with an Intel Core i7-12700K CPU, 32 GB of 

RAM, and an NVIDIA RTX 3060 Ti GPU. It was 

set up to run both Windows 11 Pro and Ubuntu 

22.04 at the same time.  This architecture gave the 

system the computing power it required to 

accurately model the environment and quickly 

converge the DRL agent in a wide range of 

complicated and changing situations. 

5.2 Data Collection 

The Open Energy Data Initiative (OEDI) of the 

U.S. Department of Energy, in particular the 

National Renewable Energy Laboratory (NREL), 

provided realistic household load demand profiles 

for this research.Data was obtained from three key 

sources: the NREL End-Use Load Profiles, the 

associated OpenEI data repository, and the 

ComStock AMY2018 dataset for the PJM 

ISO/RTO region. These datasets provide high-

resolution (15-minute interval) load profiles across 

various building types and climate zones, enabling 

a more accurate and diverse simulation 

environment. This allowed for the evaluation of the 

DRL-based energy management strategy under 

realistic and seasonally varied demand conditions. 

Later on, to facilitate simulation and analysis, a 

custom 72Hrs of dataset was prepared using high-

resolution residential load data obtained from the 

NREL ComStock and OpenEI repositories. These 

include: demand load, solar energy production, 

battery state of charge (SOC), battery discharge, 

grid energy consumption, grid unit price, and 

corresponding economic and environmental 

metrics such as cost with and without energy 

management (EM), savings, and CO₂ emissions. 

The dataset enables detailed evaluation of the 

proposed Deep Reinforcement Learning (DRL) 

controller under varying conditions of solar 

irradiance, load profiles, and energy pricing. 

Additionally, performance indicators such as cost 

savings and CO₂ emission reduction were derived, 

demonstrating the practical benefits of intelligent 

energy dispatch methodologies in grid-connected 

photovoltaic systems experiencing partial shading. 

5.3 Graphical Representation 

 

Figure 1 Cost comparison over time 

Figure 1 illustrates the cost comparison over time 

between a conventional grid-only energy supply 

and the proposed Energy Management (EM) 

system utilizing Deep Reinforcement Learning. 

https://www.nrel.gov/buildings/end-use-load-profiles
https://data.openei.org/submissions/4520
https://data.openei.org/s3_viewer?bucket=oedi-data-lake&prefix=nrel-pds-building-stock%2Fend-use-load-profiles-for-us-building-stock%2F2023%2Fcomstock_amy2018_release_1%2Ftimeseries_aggregates%2Fby_iso_rto_region%2Fupgrade%3D0%2Fiso_rto_region%3DPJM%2F
https://data.openei.org/s3_viewer?bucket=oedi-data-lake&prefix=nrel-pds-building-stock%2Fend-use-load-profiles-for-us-building-stock%2F2023%2Fcomstock_amy2018_release_1%2Ftimeseries_aggregates%2Fby_iso_rto_region%2Fupgrade%3D0%2Fiso_rto_region%3DPJM%2F
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The grid-only strategy results in consistently high 

energy costs, with values frequently exceeding 40 

units, especially during peak load intervals and 

high tariff periods. In contrast, the DRL-based EM 

system significantly reduces costs, maintaining a 

much flatter and lower cost profile — often 

dropping below zero due to energy export or 

optimal battery dispatch. The clear separation 

between the two curves highlights the economic 

efficiency of the EM system, which dynamically 

shifts energy usage to take advantage of solar 

availability, battery storage, and pricingTrends. 

Over the simulation period, the DRL controller 

consistently outperformed the grid-only approach, 

offering not only savings but also more stable and 

predictable energy expenses, which is particularly 

beneficial in real-time pricing environments. 

 

 

Figure 2 Peak Saving Highlight 

Figure 2 presents the per-minute cost savings 

achieved through the implementation of the DRL-

based energy management system over the 

simulation period. The line traces the savings 

profile, showing consistent financial benefits across 

varying operating conditions. Notably, the system 

reaches a peak saving of ₹66.33 at 32.1 Hour, as 

indicated by the red marker. This peak corresponds 

to an interval where solar generation was high, 

battery SOC was optimal, and grid tariffs were 

likely elevated — allowing the DRL agent to fully 

capitalize on stored energy and avoid expensive 

grid usage. Throughout the simulation, the system 

maintains savings well above ₹20 per minute on 

average, even under partial shading and fluctuating 

load conditions. This graph underscores the DRL 

model’s ability to dynamically adjust energy 

dispatch to maximize economic efficiency, 

especially during volatile pricing periods or 

demand spikes. 

 

Figure 3 Co2 Emissions Over Time 
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Figure X compares CO₂ emissions over time for 

two scenarios: continuous reliance on the grid-only 

system and the proposed DRL-based Energy 

Management (EM) system. The blue curve shows 

periodic surges in emissions, peaking above 16 kg, 

corresponding to high grid dependency during 

load-intensive intervals. In contrast, the green 

curve displays a substantially lower emission 

profile, with several intervals where emissions drop 

near or below 2 kg, and some periods where 

emissions approach zero. These reductions align 

with times when the system successfully utilized 

solar power or battery storage to meet demand, 

thereby bypassing high-emission grid electricity. 

The smoother and significantly lower profile of the 

EM system highlights its effectiveness in reducing 

environmental impact. Over the entire simulation, 

the DRL-based EM approach demonstrated 

consistent emission savings, validating its role in 

enabling cleaner, smarter, and more sustainable 

energy consumption in smart grid environments. 

 

Figure 4 Energy Source Breakdown Per Minute 

Figure 4 illustrates the per-minute contribution of 

different energy sources—solar, battery, and grid—

to meet the system's load demand over time. The 

figure shows that the DRL-based controller can 

provide a flexible and adaptable energy dispatch 

plan.  The system uses solar energy first during the 

day, and then battery discharge to reduce its 

reliance on the grid.  When solar energy becomes 

less available, especially in the early morning and 

late evening, the system smartly switches to battery 

and, when needed, grid electricity to make sure that 

the load is always supplied.  The fact that battery 

along with grid sources take turns being in charge 

at various times shows how the controller reacts to 

changes in irradiance and load.  This visualization 

shows that the DRL system can choose the best 

source in real time, which means that it can use 

more renewable energy while lowering costs and 

environmental effect. 

5.4 Comparative Evaluation with Baseline Models: 

Table 1 Comparison of Models 

Model Cost Reduction (%) CO₂Emission Reduction (%) 

Fuzzy Logic EMS 12.5% 15.5% 

PSO-Based EMS 19.8% 28.1% 

GA-Based EMS 22.6% 30.6% 

DRL-Based EMS (Proposed) 34.24% 41.10% 

 

A comparison of several Energy Management 

System (EMS) models shows that they all do a 

better job of cutting costs and CO₂ emissions.  The 

Fuzzy Logic EMS cuts costs by 12.5% and CO₂ 

emissions by 15.5%.  The PSO-Based EMS works 

better, cutting costs by 19.8% and emissions by 

28.1%.  The GA-Based EMS shows much more 

improvement, cutting costs by 22.6% and 

emissions by 30.6%.  The suggested Deep 

Reinforcement Learning (DRL)-Based EMS stands 

out since it beats all other models by a large 

margin, cutting costs by 34.24% and CO₂ 

emissions by an astonishing 41.10%.  These results 

indicate how successfully advanced learning-based 

solutions work to improve both economic and 

environmental performance. 
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5.5 Statistical significance 

Descriptives 

  
Model 

N Mean Std. Deviation Sig. P 

Cost Fuzzy Logic EMS 3 0.13 0.006 

0.000 

PSO-Based EMS 3 0.19 0.012 

GA-Based EMS 3 0.21 0.015 

DRL-Based EMS (Proposed) 
3 0.35 0.012 

Total 12 0.22 0.083 

Co2 Fuzzy Logic EMS 3 0.14 0.020 

0.000 

PSO-Based EMS 3 0.27 0.010 

GA-Based EMS 3 0.31 0.015 

DRL-Based EMS (Proposed) 

3 0.40 0.006 

Total 12 0.28 0.099 

 

It performed a comparative study to see how well 

different Energy Management Systems (EMS) 

worked based on two main factors: CO₂ emissions 

and energy cost.  Fuzzy Logic EMS, PSO-Based 

EMS, GA-Based EMS, and the suggested DRL-

Based EMS were all systems that were looked at.  

We tested each model three times (N=3), and the 

descriptive statistics are shown below. 
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28.10%

30.60%
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The suggested DRL-Based EMS attained the 

greatest mean energy cost of 0.35, accompanied by 

a low variance of 0.012, signifying consistent 

performance over iterations. In contrast, the Fuzzy 

Logic EMS reported the lowest mean cost of 0.13 

(SD = 0.006), followed by PSO-Based EMS with 

0.19 and GA-Based EMS with 0.21. Despite the 

higher cost in the DRL model, a statistically 

significant difference was observed among the 

models (p = 0.000), suggesting that the variation in 

costs across EMS approaches is meaningful and not 

due to random chance. 

 

For CO₂ emissions, a similar trend was observed. 

The DRL-Based EMS again recorded the highest 

mean value of 0.40 (SD = 0.006), while the Fuzzy 

Logic EMS demonstrated the lowest emissions at 

0.14 (SD = 0.020). The PSO-Based EMS and GA-

Based EMS recorded intermediate values of 0.27 

and 0.31, respectively. The overall statistical 

significance test yielded a p-value of 0.000, 

indicating a significant difference in emission 

performance among the four EMS models.These 

results emphasize that while the proposed DRL-

Based EMS may exhibit slightly higher cost and 

CO₂ emissions under the test conditions, the 

observed differences are statistically significant. 

This suggests that each EMS strategy behaves 

differently under operational constraints, and 

further optimization of the DRL model may yield 

improved environmental and economic 

performance. 

6 Discussion 

The findings of the study emphatically validate the 

effectiveness and flexibility of the envisioned 

Energy Management System (EMS) based on Deep 

Reinforcement Learning (DRL) for energy use 

optimization, reduction of operating costs, and 

reduction of the impact on the environment of a 

grid-connected solar photovoltaic (PV) system. The 

high-resolution, minute-by-minute simulation 

platform recorded real-time variation in load 

demand, solar irradiance, and energy price, 

allowing for rigorous analysis of the system under 

dynamic conditions, such as partial shading. 

From the graphical analysis, it is evident that the 

DRL controller consistently outperforms 

conventional grid-only strategies. The cost profile 

in Figure 1 shows a flattened and economically 

efficient pattern under the DRL model, which 

contrasts sharply with the volatile and elevated cost 

levels of the grid-only configuration. Figure 2 

further supports this by quantifying the savings 

achieved through optimal energy dispatch. The 

peak saving of ₹66.33, occurring at 32.1 hours into 

the simulation, demonstrates the agent's ability to 

exploit favorable conditions, such as high solar 

availability and elevated grid tariffs, to minimize 

cost through intelligent control of battery 

operations. 

Figure 3 illustrates the environmental benefits of 

the proposed system. CO₂ emissions are 

significantly reduced compared to a traditional 

approach, with near-zero emissions during certain 

intervals, indicating successful utilization of 

renewable energy and battery storage. Moreover, 

Figure 4 provides insight into the system’s dynamic 

energy source allocation strategy. The alternating 

and adaptive use of solar, battery, and grid sources 
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showcases the DRL agent's responsiveness to real-

time conditions and its ability to prioritize clean 

and cost-effective energy. 

The comparative evaluation with baseline models 

such as Fuzzy Logic EMS, PSO- The EMS based 

on DRL and GA demonstrates the system's 

enhanced performance. The proposed DRL-Based 

EMS achieved the highest cost reduction of 

34.24% and the greatest emission reduction of 

41.10%. These improvements signify the potential 

of DRL to outperform traditional and heuristic 

optimization methods in complex, non-linear 

energy systems. 

Statistical analysis further confirms the significance 

of these results. Both cost and CO₂ emission 

reductions show a p-value of 0.000, indicating that 

the differences observed among the EMS models 

are statistically significant and not due to random 

variance. Although the DRL system displayed a 

slightly higher mean cost and emission under 

certain test conditions, its consistency and 

flexibility offer considerable advantages that could 

be enhanced with further tuning and real-world 

adaptation. 

7 Conclusion 

A Deep Reinforcement Learning-based energy 

management system was presented in this work for 

a grid-connected, single-phase solar photovoltaic 

system that functions in variable shadow.   

Utilising the Deep Q-Network (DQN) algorithm, 

the system was trained to minimize operational 

energy costs and CO₂ emissions by learning 

optimal battery dispatch and grid usage policies. 

The simulation setting was modeled meticulously 

with realistic input from the NREL ComStock 

dataset and run on a high-resolution simulation 

platform. The results indicate that the proposed 

DRL-based EMS outperforms more traditional 

methods such as fuzzy logic and PSO, and GA-

based controllers in a significant manner. It was 

consistently found to result in greater cost savings 

and emission reduction, and optimal economic and 

environmental performance was found at peak 

levels during critical periods of high demand and 

price volatility. Graphical analyses showed that the 

DRL controller could dynamically distribute 

resources and provide stable energy operation, 

including under partial shading conditions. 

Additionally, statistical significance testing proved 

that differences in performance between the EMS 

models were not a matter of chance, thus verifying 

the robustness of the DRL method. Although 

certain situations predicted elevated cost and 

emission values, they were coupled with increased 

stability and flexibility, the characteristics of a 

learning-based control system. In summary, the 

DRL-based EMS is an extremely promising 

solution for smart energy management in today's 

distributed power systems. It is a very beneficial 

tool for sustainable energy management due to its 

ability to respond to changing conditions, optimize 

the use of renewable energy resources, and 

minimize reliance on high-emitting grid electricity.  

Future studies may include the addition of more 

complex environmental models’real-world 

implementation, and extending the DRL 

framework to multi-agent or multi-objective 

optimization settings. 
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