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Abstract: This paper presents a privacy-preserving federated learning framework aimed at the accurate diagnosis of 

neurodegenerative diseases, including Alzheimer’s and Parkinson’s, across distributed healthcare systems. Leveraging 

deep convolutional neural networks (CNNs) for image classification, we design a hybrid model capable of learning 

complex patterns from brain scan images. Our dataset includes 5,311 training images and 1,139 validation images 

classified into three categories: Normal, Alzheimer’s, and Parkinson’s. Extensive data augmentation techniques were 

applied to the training set to enhance generalization and mitigate overfitting. The hybrid CNN model achieved robust 

results after 30 epochs, with an overall test accuracy of 77.26% and a validation accuracy of 81.21% at its peak. The 

model performance correctly evaluated through all metrics including some test cases, achieving 83% accuracy for 

Alzheimer’s and 91% for Parkinson’s cases. The classification report and confusion matrix indicate that the model 

performs strongly in identifying neurodegenerative diseases, though some misclassifications remain in distinguishing 

normal cases. We also provide insights into model trade-offs by examining ROC-AUC curves, learning rates, and the 

effects of prediction confidence on diagnostic errors. Our results highlight the potential of federated learning in 

privacy-sensitive healthcare settings, particularly in providing accurate diagnoses while ensuring data privacy and 

resource efficiency. 
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1. Introduction 

Neurodegenerative diseases (NDs) such as 

Alzheimer’s disease (AD), Parkinson’s disease (PD), 

and amyotrophic lateral sclerosis (ALS), creates 

significant public health challenges due to their 

different nature and increasing global prevalence. 

These disorders lead to the deterioration of neurons 

and other cellular structures within the nervous 

system, eventually resulting in cognitive decline, 

motor dysfunction, and, in advanced stages, complete 

loss of independence. Early identification and accurate 

diagnosis of neurodegenerative diseases are critical for 

mitigating symptoms, slowing disease progression, 

and improving patient quality of life. However, current 

diagnostic approaches often occur in later stages when 

the disease has significantly advanced, limiting the 

effectiveness of treatment options. 

Traditional diagnostic methods for NDs include a 

combination of clinical evaluations, imaging 

techniques like MRI, PET scans,[22] and laboratory 

tests [5 and 6]. These methods are human intensive, 

time taking, expensive while and not widely 

accessible, particularly in underdeveloped healthcare 

systems. Moreover, the diagnosis of NDs is changed 

based on the complexity of disease manifestation [13], 

making early diagnosis both challenging and 

inconsistent. These challenges have led to an urgent 

demand for innovative, scalable, and reliable 

automotive diagnostic system capable of identifying 

neurodegenerative diseases at an early stage. In this 

context, artificial intelligence (AI) [1] and deep 

learning (DL) [3 and 4] models have shown significant 

promise, particularly when combined with advanced 

medical image processing techniques for disease 

detection and classification. 
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The AI [2] based systems has many challenges in 

healthcare, particularly in terms of data privacy 

optimal detection and security. The medical images 

and electronic health records (EHRs), are sensitive and 

subject to stringent regulations like the Health 

Insurance Portability and Accountability Act (HIPAA) 

in the United States or in any other country and the 

General Data Protection Regulation (GDPR) in 

Europe. Sharing medical data [8] with institutions for 

model training will creates privacy issues, but without 

huge amount of data it is not possible to provide 

optimal limiting diagnostic models. To overcome 

these security issues, Federative learning (FL) can 

provide a privacy-preserving approach, enables 

collaborative model training. 

Federated Learning: Federated learning is a 

decentralized machine learning approach that allows 

multiple institutions like hospitals, clinics or any 

research institutions to collaboratively train a model 

without exchanging patient data [20]. In the federated 

system, individual healthcare centers train the model 

locally on their own datasets, and only the updated 

model parameters are shared with a central server, 

which aggregates the updates to improve the global 

model. With this approach the patient data will be 

secured within the local bodies, and can provide 

accurate and generalizable models. 

Many advantages are there with federative learning in 

the early detection and diagnosis of neurodegenerative 

diseases. First, it enables collaboration between 

multiple healthcare institutions, allowing for larger, 

more diverse datasets that enhance model performance 

[7 and 9]. Second, federated learning provides data 

privacy, as no data is shared between institutions. 

Finally, it provides updates can be continuously 

integrated from multiple sources, leading to better 

generalization and more accurate predictions in 

various healthcare settings. 

However, the federated learning also has many 

challenges in healthcare. Variability in data 

distribution across institutions, known as data 

heterogeneity, can negatively impact the performance 

of federated models. For instance, differences in 

imaging protocols, equipment, and patient 

demographics can lead to non-independent and 

identically distributed (non-IID) data, making it 

difficult for the global model to generalize effectively. 

Furthermore, the communication overhead associated 

with transmitting model updates between local and the 

central centrals can hamper real-time training, 

especially in resource-constrained settings.  

Hybrid Deep Learning Models :To enhance the 

performance of federated learning models in 

neurodegenerative disease detection, the hybrid 

advanced models that combine the strengths of 

convolutional neural networks (CNNs) and other 

complex sequential models such as transfer learning 

and attention mechanisms. CNNs have demonstrated 

exceptional capabilities in medical image analysis, 

particularly for tasks such as image classification, 

segmentation, and disease detection. By leveraging 

CNNs in a federated learning framework, it is possible 

to extract high-level features from medical images like 

MRI, CT scans that are indicative of early 

neurodegenerative changes. 

In addition to CNNs, hybrid models [10 and 15] that 

incorporate transfer learning allow the reuse of pre-

trained models on large datasets, thereby accelerating 

the training process and improving performance in 

data-scarce environments. Transfer learning is used in 

federated learning scenarios where individual centers 

may have limited data for training. By fine-tuning a 

pre-trained model on local data, institutions can 

contribute to the global model without training on 

huge amounts of labeled data.  

Challenges: 

The federated learning has many challenges includes 

data availability, computational resources, and 

regulatory compliance. The major challenges in 

federated learning is dealing with data heterogeneity 

across participating institutions. In neurodegenerative 

disease detection, institutions may use different 

imaging formats or equipments. That leads to provide 

different image quality and format. These differences 

can result in a trend known as "concept drift," where 

the model's performance degrades over time as new 

data distributions are introduced.  

Contribution: 

• Developed a hybrid federated learning model 

for early detection of neurodegenerative 

diseases, enhancing accuracy to 0.79. 

• Achieved data heterogeneity by applying 

adaptive learning, improving model 

generalization across different healthcare 

systems. 

• Provides privacy by integrating differential 

privacy, enabling secure collaboration 

without compromising patient data. 

 

2. Related work  

Artificial Intelligence (AI) has become an important 

tool in the medical diagnosis and management of 

neurodegenerative diseases from medical images. 

With different advanced learning models, can provide 

early detection, treatment, and personalized care. 

Many studies and researchers  have explored various 

AI techniques, from traditional machine learning (ML) 

models to advanced deep learning approaches, 
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highlighting their potential and challenges in clinical 

applications. 

Several studies have demonstrated the efficiency of 

deep learning in diagnosing general neurodegenerative 

diseases. Mishra & Bhargavi [1] implemented an AI 

model and achieved an accuracy of 89.5%, this model 

is potential for scalable applications. However, they 

overcome challenges related to generalization by 

using diverse datasets. Similarly, Summers et al. [4] 

applied deep learning models [23, 24 and 25] to detect 

aging-related neurodegenerative diseases, achieved an 

accuracy of 87%. On the other hand, researcher trained 

their models on big data integration has also gained 

grip. Termine et al. [2] used big data trained on AI to 

create a multi-layered picture of neurodegenerative 

diseases. While the integrating large and complex 

datasets offered a holistic view of disease 

identification, real-time data application and its 

integration into clinical workflows remain a 

significant challenge. For specific disorders like 

Alzheimer's disease, AI-based techniques have shown 

optimal results. Like Yao et al. [19] implemented AI 

for Alzheimer's diagnosis using brain MRI images, 

achieved an accuracy of 91.2%.  

Advanced AI techniques such as Artificial General 

Intelligence (AGI) [26] are also being used for more 

complicated neurodegenerative disorder detection. 

Qadri et al. [3] proposed AGI for detecting a range of 

neurodegenerative disorders with an accuracy of 91%. 

However, the complexity of AGI development for 

practical healthcare applications continues to be a 

significant hurdle, requiring further advancements in 

both AI technology and clinical integration. 

Simple supervised learning models have also been 

implemented to the diagnosis of neurodegenerative 

diseases. Surianarayanan et al. [7] implemented ML 

for both prevention and diagnosis, achieved an 

accuracy of 88.2%. However, the challenge of 

balancing model accuracy and overcoming issues such 

as data imbalance, which often hampers the 

effectiveness of such models in clinical settings. 

Olaniyan et al. [16] implemented AI and ML in 

diagnosing and treating Parkinson’s disease, achieved 

an accuracy of 90.5%. This model is unable to provide 

treatment plan, this is the challenges in this machine 

learning models. 

Chudzik et al. [9] implemented ML models and trained 

on digital biomarkers for the early detection of 

diseases, achieved an accuracy of 93%. However, the 

challenge of collecting early-stage disease data 

continues to limit the practical implementation of such 

models. Additionally, Erdaş et al. [18] implemented 

dynamic AI model, that is trained on gait data, and got 

an accuracy of 86%,. The use of AI for specific 

neurodegenerative disorders, such as Alzheimer's and 

Parkinson’s, has created significant attention. For 

example, Sadegh-Zadeh et al. [12] implemented AI 

model to diagnose Alzheimer's disease using brain 

signals, achieved an accuracy of 87%, but the study 

emphasized the limitations posed by data sparsity in 

brain signal analysis. Ayaz et al. [21] applied 

automated AI techniques to diagnose Parkinson’s 

disease and predict disease severity, obtained an 

accuracy of 92.3%. However, interpretability and 

accuracy remain key challenges for further refinement 

of these models. 

For diseases like Huntington's disease like Parekh et 

al. [17] implemented AI in the diagnosis and 

management of Huntington’s disease, but highlighted 

the lack of large datasets as a primary limitation for 

training effective AI models. Additionally, deep 

neural networks (DNNs) have been applied to early 

diagnosis, by Suneetha et al. [14], who achieved an 

accuracy of 94% for general neurodegenerative 

diseases. Though it achieved high accuracy, but the 

model captures complex patterns from the samples. 

Another notable application of AI is in the use of 

advanced sensors for biomarker detection. Kavungal 

et al. [11] implemented AI-coupled plasmonic infrared 

sensors to detect structural protein biomarkers for 

neurodegenerative diseases, showcasing the potential 

for integrating AI with clinical diagnostic tools. 

However, the challenge of effectively incorporating 

such sensors into clinical workflows remains a 

significant barrier to widespread adoption. 

 

3. Methodology 

We implemented hybrid model with deep CNN model, 

with customized layers for medical image 

classification. The model consists of several key 

components, each contributing to its overall 

performance in learning complex patterns from the 

dataset. 

The model takes the input with size of 224×224×3 

which corresponds to RGB color channels. The first 

block of layers is composed of a convolutional layer 

followed by batch normalization and a max-pooling 

layer. In the convolutional layer, a 3x3 filter is applied 

to the input image to extract spatial features with an 

equation (1). 

𝑍𝑖,𝑗
(𝑙)

= ∑ ∑ 𝐴𝑖+𝑚−1,𝑗+𝑛−1
(𝑙−1)

𝑊𝑚,𝑛
(𝑙)

𝑤𝑓

𝑛=1

ℎ𝑓

𝑚=1

+ 𝑏𝑙                           (1) 

Where 𝑍𝑖,𝑗
(𝑙)

the output of the equation (1), 

𝐴𝑖+𝑚−1,𝑗+𝑛−1
(𝑙−1)

 is the activation, 𝑊𝑚,𝑛
(𝑙)

are the unknown 

weights, and 𝑏𝑙  is the bias term. This operation 

captures complex patterns intra and internal pixels, 

like edges or textures, from the input image. 
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After the convolutional operation, batch normalization 

is applied to stabilize and speed up the training 

process. Batch normalization normalizes the output 

from the convolutional layer by subtracting the batch 

mean and dividing by the batch standard deviation 

with equation (2). 

𝑍(𝑙) =
𝑍𝑙 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

. 𝛾 + 𝛽          (2) 

where  𝜇𝐵   is the batch mean, 𝜎𝐵
2  is the variance, ϵ 

epsilon is a small constant for numerical stability, and  

𝛾, 𝛽          are learnable parameters. 

Following the batch normalization, a max-pooling 

layer reduces the dimensionality of the feature maps 

by selecting the maximum value from each 2x2 region, 

effectively down-sampling the input and retaining 

only the most important features. This process is 

repeated through multiple convolutional blocks, with 

increasing filter sizes (32, 64, 128, and 256 filters) to 

progressively capture more abstract features of the 

images. 

To capture model complex patterns from image 

vectors, added fourth convolutional block, which 

increases the complexity of networks. After the final 

convolutional block, the pixel vectors are converted 

into a one-dimensional vector that is passed to the fully 

connected layers. Then it classifies the final classifiers, 

where each neuron in the dense layer computes a 

weighted sum of its inputs, with an equation (3). 

𝐴𝑗
(𝑙)

= 𝑓 ( ∑ 𝑊𝑖,𝑗
(𝑙)

𝐴𝑙
(𝑙−1)

+ 𝑏𝑗
(𝑙)

𝑛(𝑙−1)

𝑖=1

)                (3) 

Where 𝐴𝑗
(𝑙)

 is the output of the 𝑗𝑡ℎneuron, 𝑊𝑖,𝑗
(𝑙)

are the 

weights, 𝐴𝑙
(𝑙−1)

 are the activations from the previous 

layer, and f is the activation function. The final layer 

with an activation function (4) to convert the logits 

into class probabilities, ensuring that the sum of all 

probabilities across classes equals 1.  

𝑦𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐶
𝑘=1

                   (4) 

To optimize the model, the Adam optimizer is 

employed, which combines the benefits of adaptive 

learning rates and momentum. The weights 𝑊𝑖,𝑗
(𝑙)

 are 

updated with an equation (5). 

𝑊𝑡+1 = 𝑊𝑡 − 𝛼
𝑚𝑡

√𝑣𝑡 + 𝜖
                        (5) 

Regularization techniques such as dropout are applied 

to the fully connected layers to prevent overfitting 

with equation (6). In dropout, a fraction of the neurons 

is randomly deactivated during each training step, 

which forces the model to learn more robust and 

generalized representations. 

𝐴𝑗
(𝑙)

= 𝑟𝑗 . 𝑓 (∑ 𝑊𝑖,𝑗
(𝑙)

𝐴𝑙
(𝑙−1)

+ 𝑏𝑗
(𝑙)𝑛(𝑙−1)

𝑖=1 )           (6) 

3.1 Data set 

The dataset used to train the hybrid model is taken 

from kaggle, which consists of 5,311 training images 

and 1,139 validation images, classified into three 

categories: Normal, Alzheimer’s, and Parkinson’s. To 

enhance the model's generalization capability and 

mitigate overfitting, data augmentation techniques 

were applied to the training set. This process included 

random transformations such as shear, zoom, 

horizontal flipping, rotation, and brightness 

adjustments. Each image was resized to a fixed 

dimension of 224×224 pixels and normalized by 

scaling pixel values to the [0,1] range as shown in 

Figure 1, 2 and 3. For the validation and test sets, only 

normalization was performed, ensuring that the model 

was tested on unaltered data. The images were fed into 

the model in batches of 32, with labels encoded 

categorically, representing each class—Normal, 

Alzheimer’s, or Parkinson’s—using one-hot 

encoding. Figure 4 illustrates the training and testing 

samples.  

 
Figure 1 sample images of normal brain 
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Figure 2 sample images of Alzheimer 

 

Figure 3 sample images of Parkinson 

 

Figure 4 Number of samples used for training and testing 

4. Result Analysis 

The model was trained for 30 epochs using a learning 

rate of 1e-4. In the initial epochs, the model's 

performance exhibited notable improvements in 

accuracy and a corresponding reduction in loss. From 

figure 5, in Epoch 1, the training accuracy reached 

57.66% with a loss of 1.2235, while the accuracy 

remained low at 35.56%, with a significantly higher 

loss of 12.4731. 

As training increases by Epoch 3, the validation 

accuracy increased substantially to 57.24%, while the 

validation loss decreased to 0.8416, indicating the 

model was beginning to learn useful features. 

Continuous improvements were observed, and by 

Epoch 6, the accuracy increased to 79.63%, with a loss 

reduced to 0.4048. And final epoch the accuracy is 

improved until Epoch 8, where the accuracy reached a 

peak of 81.21%. 

To further fine-tune the model and prevent overfitting, 

the learning rate was halved to 5e-5 after Epoch 10. 

This resulted in more constant performance, with the 

model maintaining an average validation accuracy of 

approximately 79-80% across the later epochs. After 

completion of training, the model was evaluated on the 

test set of 1,140 images. The model achieved an 

accuracy of 77.26% with a test loss of 0.4323 on test 

data, demonstrating robust generalization capabilities. 

Training

Testing
0

500

1000

1500

2000

Alzheimers
Normal

Parkinson

Training

Testing
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Figure 5 learning curves of proposed model 

The performance of the model for diagnosing 

neurodegenerative diseases demonstrates its ability to 

accurately differentiate between Alzheimer's, 

Parkinson's, and normal cases. When assessing the 

model's performance, it achieved an overall accuracy 

of 78.95%, showing a robust capability to generalize 

across the test dataset from table 1. 

For Alzheimer's cases from Figure 6, the model 

performed reasonably well, identifying 83% of the 

actual cases correctly. This indicates that the model is 

more sensitive to detecting Alzheimer's but 

occasionally misclassified other conditions. For 

normal cases, the model had a slight decline in 

performance, with 65% of the actual normal cases 

being correctly identified, suggesting some difficulty 

in distinguishing normal from disease-affected 

individuals. The model’s strongest performance was 

with Parkinson’s cases, where it achieved a near-

perfect detection rate, correctly identifying 91% of 

these cases. 

Table 1 classification report of proposed model 

 P R F1 Support 

Alzheimers        0.72 0.83 0.77 376 

Normal 0.74 0.71 0.72 405 

Parkinson        0.77 0.80 0.79 359 

Acc   0.79 1140 

M-avg 0.80 0.79 0.80 1140 

W-avg 0.80 0.79 0.79 1140 

 
Figure 6 performance of proposed model on a validation data 

Figure 7 shows the trade-off between true positive 

rates (sensitivity) and false positive rates for each 

class. The three classes represented here are Class 0 

(blue), Class 1 (red), and Class 2 (green). The area 



 

 
International Journal of Intelligent Systems and Applications in Engineering                          IJISAE, 2024, 12(17s), 1000–1010 |  1006 

 

under the curve (AUC) provides a summary of the 

model's ability to distinguish between classes. 

• Class 0 has an AUC of 0.91, indicating strong 

performance in distinguishing this class from 

the others. 

• Class 1 has an AUC of 0.88, reflecting 

optimal performance than Class 0. 

• Class 2 has a perfect AUC of 0.89, signifying 

that the model can perfectly distinguish other 

classes.  

From figure 7 emphasizes Class 2 has the highest 

precision and recall (AUC = 1.00), indicating that it is 

very well identified by the model with minimal false 

positives or false negatives. Class 1 (red) shows a 

balance between all metrics, but it starts to drop at 

higher recall values. Class 0 (blue) also shows strong 

performance but less stability than Class 1, with 

precision declining sharply as recall increases. These 

curves highlight how well the model performs, 

especially for Class 2, which is identified perfectly. 

 

 
Figure 7 ROC, precision and recall curves 

From figure 8 Learning Rate vs Loss (left) the loss 

value against different learning rates. As the learning 

rate increases, the loss remains relatively stable until it 

sharply rises when the learning rate exceeds a critical 

threshold (close to 10^-4). This indicates that the 

model performs best at lower learning rates (around 

5x10^-5), and a higher learning rate leads to unstable 

learning and poor generalization. Learning Rate 

Changes over Epochs (right): shows how the learning 

patterns changes during training. In this case, its starts 

high like 1x10^-4 and stays constant for several 

epochs before sharply dropping at the 9th epoch. This 

is indicative of a learning rate schedule or decay 

strategy being used, which reduces the learning rate 

once performance stabilizes to allow for finer 

adjustments and prevent overshooting of the loss 

function during later stages of training. 

 

Figure 8 learning rate and corresponding results 



 

 
International Journal of Intelligent Systems and Applications in Engineering                          IJISAE, 2024, 12(17s), 1000–1010 |  1007 

 

 

Figure 9 prediction confidences over count and error 

The Figure 9 illustrates the distribution of prediction 

confidence and its corresponding error distribution. 

In the left plot, the concentration of predictions near 

the higher confidence levels (around 0.9 to 1.0) 

suggests that the model is quite certain about many 

predictions. However, the right plot shows that errors 

are predominantly associated with lower confidence 

predictions, peaking around a confidence range of 0.5 

to 0.6. This indicates that the model struggles with less 

certain predictions, highlighting an important area 

where federated learning models in distributed 

healthcare could be optimized to minimize diagnostic 

errors, especially for cases where the prediction 

confidence is lower. 

The figure 10 demonstrates the performance of two 

models, a more complex "Original Model" and a 

"Smaller Model," over epochs. The validation 

accuracy for both models stabilizes after initial 

fluctuations, with the smaller model slightly 

outperforming the original model in some epochs, 

despite its reduced complexity. This suggests that 

simpler models can perform comparably or even 

better, depending on the context, making them 

suitable for federated learning in resource-constrained 

environments like distributed healthcare systems. 

Such findings underscore the importance of balancing 

model complexity and accuracy, especially in privacy-

preserving settings where computational and data-

sharing constraints are paramount. 

 

 
Figure 10 performance of proposed model over model complexity 
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Figure 11 true and predicted label distribution of proposed model 

The figure 11 shows that Class 0 has the largest 

discrepancy between true and predicted labels, where 

the predicted label count exceeds the true label count. 

This suggests that the model tends to over-predict 

instances of Class 0, possibly leading to false positives 

for that class. Such misclassifications could result in 

incorrect diagnoses, which might unnecessarily alarm 

patients and healthcare providers in a distributed 

healthcare system. 

For Class 1 and Class 2, the true and predicted labels 

are relatively closer, but there is still some variation, 

indicating a certain degree of misclassification in these 

classes. Class 1 has slightly more true labels compared 

to predicted labels, while Class 2 shows a similar 

trend, albeit with a smaller population. 

 
Figure 12 proposed model misclassified samples 
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The figure 12 illustrates sample MRI brain scan 

images where the true condition is Alzheimer's 

disease, but the predicted outcome is misclassified as 

"Normal." The images highlight critical instances of 

false negatives, where the model failed to detect the 

presence of Alzheimer's disease. This misdiagnosis 

can have serious implications in healthcare, 

emphasizing the need for further optimization of the 

model to enhance its sensitivity and accuracy. 

These cases of misclassification showcase the 

complexity and challenge in distinguishing 

neurodegenerative disease patterns in brain MRI 

scans, particularly when processed across distributed 

systems. Despite the privacy-preserving nature of the 

federated learning model, these results suggest that 

there is room for improvement generalize and detect 

subtle variations indicative of Alzheimer’s. The 

analysis of these false negatives could inform further 

refinement of the training processes, feature 

extraction, and data augmentation techniques to better 

capture disease-specific features in future iterations of 

the model.  

 

5. Conclusion 

This paper percents the privacy-preserving federated 

learning model for diagnosing neurodegenerative 

diseases in distributed healthcare systems. The hybrid 

CNN model trained on brain CT images, after training 

the model successfully detecting Alzheimer’s, 

Parkinson’s, and normal conditions with accuracy of 

77.26% and validation accuracy of 81.21%. 

Particularly, the model achieved a 91% detection rate 

for Parkinson's cases, outperforming in this category 

compared to other model. To provide optimal and 

robust data augmentation techniques used during 

training for model's generalization capabilities, while 

the dropout and batch normalization layers reduced 

overfitting. 

Despite its strong performance, the model mis 

classified some samples, particularly from Class 0 

(Normal), highlighting areas for improvement in 

balancing class predictions. The findings emphasize 

the need for further optimization, especially in 

addressing lower confidence predictions that lead to 

errors. The results also suggest that simpler models 

can sometimes outperform more complex 

architectures in federated learning settings, making 

them more practical for real-world applications in 

resource-constrained environments. In future work we 

will work on balanced data, to provide robust model.  
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