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Abstract: Air quality is becoming a global issue in present days and the monitoring of the air quality is also becoming an 

important subject for prediction and awareness about air pollutants. In this study an investigation of air quality forecasting 

has been done with the help of deep learning methods as isolation forest and autoencoders. Data has been collected as 

sequential data from Korean government meteorological websites from 2018 to 2022 and a spatiotemporal anomaly-aware 

forecasting is done with graphical attention network combined with LSTM in the encoder part. The study is an integration of 

spatial correlations among multiple stations of South Korea and the temporal trend and prediction of the pollutants and 

handling the missing data or outliers in the pollutant reading. Moreover, the incorporation of novel anomaly-aware loss 

penalizes the outliers more cautiously leads to a stable reading. Experimental results and prediction plots confirm that the 

proposed model achieves more stable and accurate forecasts. This research highlights the effectiveness of graph-based 

learning and anomaly-aware strategies in environmental time-series prediction tasks. 

Keywords: Air Quality Forecasting, Graph Attention Networks, Anomaly-Aware Learning, Spatiotemporal Prediction, 

LSTM. 

1. Introduction 

This section is constructed with the motivation of the 

research, the contribution of this work and the organization 

of the manuscript. 

1.1 Motivation 

Due to the usage of fossil fuels, industry smoke, 

deforestation, and many other reason air pollution 

constitutes a global challenge and it is becoming a serious 

threat t0 the public health, ecological system, and change in 

climate stability. In particular, the pollutants whose 

diameter is less than PM 2.5 micrometres (PM 2.5) has been 

recognized as a critical pollutant as it goes deeper inside the 

pulmonary system easily and creates complications in 

cardiovascular and pulmonary system. Thus, early warning 

of PM 2.5 concentration may facilitate deciding the 

environmental policies leading to the minimization of 

human exposure to these pollutants. In this context research 

were done to predict the air quality in different statistical 

and machine learning processes. Majorly the Autoregressive 

Integrated Moving Average (ARIMA) model is used as 

statistical learning and support vector machines or random 

forests were used as machine learning models for prediction 

of the air quality time by time. Although these 

methodologies can effectively capture fundamental 

temporal dynamics, they frequently encounter limitations 

when addressing the intricate spatial interactions that 

characterize environmental phenomena. In recent times, the 

deep learning models like LSTM, Gated recurrent Unit 

(GRU) have reached a new milestone in terms of effective 

forecasting of sequential data and also outperform the 

previous robust statistical models. Conversely, Graph 

Neural Networks (GNNs), and more specifically Graph 

Attention Networks (GATs), have arisen as formidable 

instruments for extracting insights from graph-structured 

data, thereby allowing models to assess the significance of 

adjacent nodes based on their relevance. 

1.2 Contribution  

The novelty of the study is constituted as architectural and 

methodological contributions in the following way: 

▪ This paper introduces the new hybrid architecture which is 

a combination of GAT and LSTM for spatio-temporal 

forecasting of AQI. The GAT element unveils the strategical 

spatial relationship among the AQI of different monitoring 

stations with the help of K-nearest neighbourhood graphs 

with pollution similarity. Subsequently, LSTM explores the 
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temporal trend of pollutant concentrations and effectively 

captures the long-term dependencies.  

▪ In addition, a methodological novelty in terms of 

incorporation of anomaly-aware loss has been introduced in 

this study. This function effectively works on the resilience 

against the noisy data. The proposed loss function expertly 

adjusts the penalty for major deviations, thereby 

dramatically enhancing the model’s generalization 

capabilities even when faced with challenging anomalous 

data points. 

As a whole, this research presents a novel framework that 

leverages graph-based spatial encoding, sequential temporal 

modelling, and anomaly-resilient training to achieve 

superior air quality forecasting performance. This approach 

not only advances the state-of -the-art models for 

forecasting, but also advocates practical benefits for the real 

world in smart-city infrastructure development.  

Fig. 1 depicts the pictorial illustration of the research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The graphical presentation of the proposed study. 

2. Related Litearture 

This section contains the past literature and the gap of them 

fulfilled by our study. 

2.1  Spatiotemporal Modeling in Air Quality Forecasting 

machine learning and data-driven approaches increasingly 

leveraged for environmental monitoring and informed 

decision-making. [1] explored the effects of air pollution by 

modeling regions prone to asthma using machine learning 

frameworks, emphasizing the need to integrate 

environmental variables into health impact assessments. 

However, their focus remained largely on localized health 

modeling rather than broad predictive applications. 

Similarly, [2]  developed predictive frameworks for air 

quality assessment in smart cities using traditional machine 

learning techniques. While their work demonstrated the 

feasibility of machine learning for Air Quality Index (AQI) 

prediction, it primarily centered on urban contexts and did 

not fully capture the complex spatial interconnections 

between monitoring stations. [3] applied machine learning 

to analyze the spatiotemporal distribution of PM 2.5 in 

northern Taiwan, revealing significant temporal and spatial 

variations in pollution. Nevertheless, their models relied on 

static feature engineering and lacked mechanisms to handle 

anomalies or data irregularities. [4] enhanced 

spatiotemporal PM 2.5 risk mapping using three different 

machine learning algorithms, offering a comparative 

perspective on spatial risk forecasting. Yet, their approach 

largely disregarded anomalies in sensor data, treating them 

as pre-processing challenges rather than addressing them 

within the learning process itself. [5] conducted a 

comprehensive comparative analysis of multiple machine 

learning algorithms across various air quality datasets. 

Despite the breadth of their evaluation, their study did not 
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explicitly model spatial dependencies among stations nor 

propose frameworks that integrate graph structures with 

temporal sequence learning. Finally, [6] introduced an 

advanced methodology for developing and evaluating 

spatiotemporal air pollution exposure models in Greater 

London, underscoring the value of model integration. 

However, their work focused primarily on ensemble 

techniques and did not explicitly incorporate graph neural 

networks or anomaly-resilient strategies within the learning 

architecture. 

Literature Gap and Proposed Solution: A critical review 

of the existing literature reveals two major gaps in current 

air quality forecasting research: 

▪ Insufficient integration of spatial dependencies:} Most 

models treat monitoring stations independently or capture 

spatial correlations statically, rather than dynamically 

learning inter-station influences through methods like 

Graph Attention Networks (GAT). 

▪ Lack of anomaly resilience:} Previous studies often ignore 

sensor inaccuracies, missing data, and extreme pollutant 

fluctuations, addressing them only at the pre-processing 

stage rather than embedding robustness directly into model 

training. 

To address these gaps, this study proposes a novel 

GAT+LSTM hybrid model that simultaneously captures 

spatial and temporal dependencies. It introduces an 

innovative Anomaly-Aware Loss function designed to 

enhance robustness against data irregularities, establishing 

a fully end-to-end trainable framework. This approach 

yields significant improvements in predictive accuracy 

compared to conventional methodologies. 

2.2 Robust Learning Techniques for Environmental 

Data with Anomalies 

The increasing focus on predictive maintenance, anomaly 

detection, and environmental monitoring via machine 

learning frameworks has resulted in a wide array of 

scholarly contributions. [7] proposed a bifurcated machine 

learning approach for predictive maintenance and anomaly 

detection specifically within environmental sensor systems. 

Their research highlighted the critical importance of robust 

anomaly detection but primarily concentrated on 

maintenance diagnostics rather than forecasting air quality.  

[8] introduced a real-time risk evaluation and preventive 

safety management framework tailored for industrial 

settings, employing multimodal data in conjunction with 

sophisticated deep reinforcement learning techniques. 

While their methodology proved effective for applications 

requiring high safety standards, it remained confined to the 

domain of industrial safety and did not generalize to 

spatiotemporal environmental pollution forecasting. [9] 

investigated unsupervised learning methodologies for 

anomaly detection within solar power generation, providing 

comparative analyses of various unsupervised techniques. 

While their findings are pertinent to environmental datasets, 

they predominantly centered on energy systems, leaving 

atmospheric or pollutant data largely unexplored. [10] 

established an evaluative framework for deep learning-

based anomaly detection in the context of structural health 

monitoring. Their investigation systematically assessed 

various anomaly detection frameworks but was primarily 

directed towards infrastructure monitoring, diverging from 

the domain of air quality assessment.  [11] illustrated the 

application of fully connected deep neural networks for 

predicting seabed depth through the analysis of multi-scale 

gravity anomalies. Their achievements in geospatial 

anomaly-based prediction substantiate the applicability of 

deep learning within environmental systems, although their 

focus remained predominantly geological. [12] tackled the 

issue of water quality management utilizing predictive 

insights derived from machine learning methodologies. 

While their research is closely aligned with environmental 

monitoring, it specifically addressed water pollution, 

suggesting potential for broader application but 

necessitating adaptation for parameters related to air quality. 

[13] conducted a reliability assessment of 

PM\textsubscript{2.5} concentration monitoring data in 

China, revealing inconsistencies, anomalies, and calibration 

difficulties prevalent in extensive air quality datasets. Their 

work underscored the imperative for anomaly-resilient 

models within the sphere of air pollution forecasting. [14] 

formulated a probabilistic framework for the identification 

of anomalies in urban air quality datasets. Their 

probabilistic modeling facilitated anomaly detection; 

however, it did not integrate anomaly information into 

predictive modeling architectures such as deep learning 

networks. [15] investigated cross-modal contrastive 

learning to develop robust visual representations capable of 

adapting to dynamic environmental conditions. Despite the 

emphasis on visual data, their research highlighted the 

significance of robustness amidst dynamic alterations—a 

concept of substantial value in the context of noisy 

environmental datasets, including air quality monitoring. 

Literature Gap and Proposed Solution: Despite 

substantial progress in the fields of anomaly detection, 

predictive maintenance, and environmental data analysis, 

notable methodological shortcomings remain inadequately 

addressed. A considerable fraction of the current literature 

demonstrates significant domain specificity, primarily 

focusing on sectors such as solar energy, water quality, 

industrial monitoring, or structural health, while exhibiting 

a lack of adaptation of frameworks explicitly tailored for 

spatiotemporal air quality forecasting. Moreover, although 

techniques for anomaly detection have advanced 

considerably, there exists a dearth of studies that have 

successfully integrated anomaly awareness into the 

foundational architecture of predictive deep learning 
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models. Furthermore, the constructs of robustness and 

forecasting are often regarded as distinct objectives, rather 

than being synthesized into a cohesive learning framework 

that effectively addresses both spatial and temporal 

complexities in the presence of data irregularities. 

In addressing the discerned deficiencies, the current 

investigation advocates for a hybrid GAT+LSTM 

framework that proficiently assimilates spatial 

dependencies among diverse monitoring stations while 

concurrently elucidating the temporal progression of 

pollutant concentrations. An innovative Anomaly-Aware 

Loss function is proposed to augment resilience against 

sensor inaccuracies, absent data points, and significant 

outliers. By simultaneously tackling robustness and 

spatiotemporal forecasting within a comprehensive end-to-

end trainable architecture, the suggested model establishes 

a scalable and implementable framework for real-time air 

quality prediction, thereby bridging a significant void in 

contemporary environmental forecasting methodologies. 

3. Methodology 

This section includes the dataset preparation, methods, and 

metrics  used in the research. 

3.1. Dataset Description 

The dataset employed in this study encompasses daily air 

quality measurements derived from a diverse array of 

monitoring stations across South Korea over a period 

spanning five years (2018–2022). The documented 

pollutants include 𝑃𝑀2.5, 𝑃𝑀10, 𝑆𝑂2, 𝑁𝑂2, CO, and𝑂3. The 

data preprocessing phase was characterized by the removal 

of anomalous values, such as negative concentration 

readings, the management of absent entries through 

interpolation when feasible, and the application of MinMax 

normalization to standardize features within the interval of 

0 to 1. A sliding window approach was utilized to structure 

the time-series data into sequences that are suitable for 

model input. The histogram visualization illustrated in 

Figure 2. delineates the consequences of enforcing 

thresholds particular to various pollutants (for example, 

𝑃𝑀2.5 at 35 𝜇g/𝑚3 and 𝑃𝑀10 at 150 𝜇g/𝑚3). Subsequent to 

the data cleaning process, the distributions of pollutants 

revealed a significantly more compact configuration, 

thereby eliminating extreme outliers that could potentially 

undermine the integrity of model learning. The histograms 

depicted in green correspond to the cleansed data, thereby 

assuring a more precise representation of pollutant 

dynamics. This preprocessing methodology substantially 

enhances the stability, robustness, and generalization 

proficiency of the deep learning models formulated from the 

dataset. 

 

 

3.2.  Methods Used for Prediction 

The proposed framework integrates GAT and  LSTM 

networks to simultaneously capture spatial and temporal 

dynamics: 

▪ GAT: A k-nearest neighbour graph was constructed by 

calculating pollutant profile similarity among stations. GAT 

was used to dynamically assign importance weights to 

neighbouring stations, learning spatial correlations that 

influence local pollutant behaviour. 

▪ LSTM: Temporal sequences of pollutant concentrations 

were modelled using LSTM networks to capture sequential 

dependencies and historical trends crucial for accurate 

forecasting. 

▪ Anomaly-Aware Loss Function: Instead of the 

conventional MSE loss, an anomaly-aware loss was 

implemented to mitigate the influence of outlier data points 

and enhance model robustness to real-world sensor noise. 

The hybrid GAT+LSTM model was developed through an 

end-to-end training process aimed at forecasting future 

PM2.5 concentrations by utilizing spatiotemporal 

characteristics. To effectively capture the spatial 

relationships among monitoring stations, a graph was 

constructed in which each node corresponds to a monitoring 

station, and edges are established to connect  

Fig. 2. Comparison of pollutant distributions before and 

after applying threshold-based cleaning. 

stations exhibiting analogous pollutant profiles. A k-nearest 

neighbor (k-NN) methodology was employed to define 

edges based on similarities in pollutant concentration levels. 

The resultant station connectivity graph, illustrated in Fig. 

3, serves as the foundational input structure for the Graph 

Attention Network (GAT), thereby facilitating the model's 

capacity to dynamically learn and leverage inter-station 

spatial influences throughout the prediction process. 

3.3 GAT+LSTM model 

Graph G=(V,E) represents the interconnection among the 

pollutant monitoring stations where V contains the stations 
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and E contains the edges connecting the similar pollutant 

featured stations. The graph attention operation is given as 

              𝐞𝐢𝐣 =

𝐋𝐞𝐚𝐤𝐲𝐑𝐞𝐥𝐮(𝐚𝐓[𝐖𝐡𝐢||𝐖𝐡𝐣])                                (𝟏)        

Attention coefficients are normalized using softmax: 

         𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑒𝑖𝑗) =
exp(𝑒𝑖𝑗)

∑ exp(𝑒𝑖𝑘)𝑘∈𝑁𝑖
 
                  (2)                             

The updated node feature is computed as: 

                        hi
′ = σ(∑ αijWhjJ∈Ni

)                                      (3)        

where σ is a non-linear activation function.The enriched 

spatial features are concatenated with temporal sequences 

𝑥𝑡 and passed into the LSTM:  

                         [xt ||ht
′] →  LSTM                                           (4) 

Finally, the prediction is made through a fully connected 

layer         𝑦̂𝑡  = 𝑾𝒐𝒖𝒕ℎ𝑡 +  𝑏𝑜𝑢𝑡                                     (𝟓) 

Fig. 3. Station connectivity graph constructed based on pollutant profile similarity using k-nearest neighbors (k-NN). 

Nodes represent air quality monitoring stations, and edges capture spatial relationships used in the Graph Attention 

Network (GAT). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Diagram of GAT+LSTM model 

The model is deeply illustrated in the Fig. 4. 
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4. Result and Analysis 

This section comprises the outcomes of the application of 

the model and the analysis of the outcome in alignment with 

the research.  

4.1. Training Performance and Loss Convergence 

Fig. 5. illustrates the trajectory of the training loss (Mean 

Squared Error, MSE) over 15 epochs. A clear monotonic 

decrease is observed, starting from approximately 0.485 and 

steadily dropping to around 0.375. This consistent decline 

without major fluctuations indicates that the GAT+LSTM 

model successfully captured the underlying spatiotemporal 

dynamics of air pollutants. Such behavior suggests a well-

tuned learning rate and an architecture appropriately 

designed for the complexity of the forecasting task. 

Moreover, the effectiveness of the data cleaning and 

preprocessing steps is reflected in the smooth convergence. 

A stable loss curve indicates that the model generalizes well 

during training, avoiding issues like overfitting or gradient 

explosion. This stability ensures that the learned 

representations are robust and not overly influenced by 

noise or anomalies in the input data. 

4.2 Spatiotemporal Prediction Performance 

 Fig. 6. shows the comparison between true future PM2.5 

values and model predictions across a six-step forecasting 

horizon. The true future values remain consistently high, 

hovering around the 0.9 to 1.0 normalized range, suggesting 

a persistent high pollution episode. However, the model's 

predicted values underestimate the actual concentration, 

fluctuating between 0.0 and 0.15 normalized range. This 

underestimation highlights a critical limitation: while the 

 

Fig. 5.  Training loss curve (MSE) over epochs for 

GAT+LSTM model. 

model captures temporal patterns and directionality, it 

struggles to replicate the amplitude of pollutant surges. This 

could be attributed to a training dataset biased toward 

moderate pollution levels, leading the model to be 

conservative in forecasting extreme pollution episodes. 

Another possibility is that a relatively limited number of 

training epochs constrained the model’s ability to fully 

adapt to rare high-pollution patterns. Nevertheless, the 

temporal trend fidelity---even under magnitude 

underestimation---suggests that the model has effectively 

internalized sequential dependencies, validating the design 

choice of integrating graph attention with LSTM 

mechanisms. 

4.3 Impact of Anomaly-Aware Loss 

Fig. 7.  demonstrates a comparative visualization between 

standard MSE loss and the proposed anomaly-aware loss 

across the training samples. It is evident that the anomaly-

aware loss maintains consistently lower values compared to 

       

Fig. 6.  Comparison of true future PM2.5 sequence and 

GAT+LSTM predicted sequence across six future time 

steps. 
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the standard MSE loss. The primary reason for this behavior 

lies in the design philosophy of the anomaly-aware loss: it 

selectively reduces the penalty associated with extremely 

large errors---typically caused by anomalous, noisy, or 

missing sensor data. By penalizing extreme deviations more 

cautiously, the anomaly-aware loss prevents the model from 

overfitting to outliers, allowing it to prioritize learning the 

dominant patterns in the data. The normal MSE loss, in 

contrast, heavily exaggerates the influence of large 

prediction errors, often destabilizing model learning. The 

reduction in variance seen in the anomaly-aware curve 

suggests a smoother, more uniform optimization trajectory, 

leading to  

Fig. 7. Comparison between Normal MSE loss and Anomaly-Aware loss over training samples. 

enhanced model resilience. In environmental forecasting 

applications, where faulty sensor readings and sudden 

unpredictable events are commonplace, employing an 

anomaly-resilient loss is crucial. The anomaly-aware loss 

thus represents an essential advancement for real-world 

deployable forecasting systems. To complement the 

qualitative observations, we computed the Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE) 

between the predicted and true future PM2.5 sequences.  

From Table 1. MAE value of 0.1243 and RMSE value of 

0.1847 suggest that although prediction errors exist, they are 

relatively moderate considering the scale normalization 

applied during preprocessing. A lower MAE compared to 

RMSE implies that while most errors are small, occasional 

larger deviations exist---further reinforcing the benefit of 

integrating anomaly-aware strategies. 

 

 

 

 

Table 1. Evaluation of metrics for prediction of  𝑃𝑀2.5 

 

5. Conclusions 

This study presents an advanced, anomaly-aware 

framework for spatiotemporal forecasting of PM2.5 

concentrations, using a hybrid deep learning model that  

blends Graph Attention Networks (GAT) with Long 

Short-Term Memory (LSTM) networks. To ensure the 

quality of the input data, the researchers carefully cleaned 

the dataset, removed anomalies based on defined thresholds, 

and imputed missing values. The model is not only designed 

in spatial direction, but also it has an impact on temporal 

side. GAT is made to capture the inter-station pollution 

similarity whereas LSTM is combined for the prediction of 

𝑃𝑀2.5 simultaneously. Over the epochs of the experiment 

Metric Value 

Mean Absolute Error (MAE) 0.1243 

Root Mean Squared Error (RMSE) 0.1847 
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RMSE was decreased gradually indicating the evolving 

trends of  𝑃𝑀2.5 over the time. Due to the relatively much 

lower rate of MAE and RMSE, model achieved the training 

of natural variability of the pollutants in real world air 

quality data. In addition another customized anomaly-aware 

loss  was incorporated for minimization of the impact of the 

outliers. This mechanism helped create a smoother 

optimization process and reduced the risk of overfitting to 

noisy or incomplete sensor data. 

Although the results are promising, the analysis points 

to several opportunities for further enhancement. 

Incorporating meteorological variables—such as 

temperature, humidity, and wind speed—could expand the 

feature set and offer richer contextual information for more 

accurate forecasts. Additionally, addressing the imbalance 

caused by rare but severe pollution events through data 

augmentation or reweighting techniques could improve the 

model’s ability to predict high PM2.5 concentrations more 

reliably. Overall, this study demonstrates that combining 

spatiotemporal deep learning models with anomaly-resilient 

strategies can greatly improve the reliability and practical 

value of air quality forecasting systems. The proposed 

approach offers a scalable solution that is well-suited for 

real-world deployment in smart city environmental 

monitoring initiatives. Looking ahead, future work will 

focus on extending the framework to predict multiple 

pollutants simultaneously and developing adaptive graph 

structures that can dynamically evolve with changing 

environmental conditions. 

In conclusion, the findings validate the effectiveness of 

hybrid GAT–LSTM models combined with anomaly-aware 

loss functions in building robust, high-accuracy forecasting 

pipelines for environmental data science. This research not 

only tackles key challenges in spatiotemporal air quality 

prediction but also paves the way for innovative 

advancements in sustainable urban management and the 

protection of public health. 

5.1. Appendix 

Nomenclatures 

𝑒𝑖𝑗 Edge between nodes i and j 

𝑎𝑇  Attention vector transposed 

|| Symbol for ‘or’ 

ℎ𝑖 Feature vector for node i 

W Weight matrix for calculating the attention score 

s Nonlinear activation function 

b Bias of the forward network 

 

 

5.2. Acknowledgment 

The authors gratefully acknowledge the Korea 

Meteorological Administration (KMA) Weather Data 

Service for providing the meteorological data that made this 

research possible. The insights and findings presented in this 

work would not have been achievable without their valuable 

open-access data resources. Author contributions 

Juyoung Chang: Conceptualization, Investigation, 

Methodology, Software, Field study Abhijit Debnath: Data 

curation, Supervision, Writing-Original draft preparation, 

Software, Validation.  

Conflicts of interest 

The authors declare no conflicts of interest. 

References 

[1] S. V. Razavi-Termeh, A. Sadeghi-Niaraki, and S.-M. 

Choi, “Effects of air pollution in spatio-temporal modeling 

of asthma-prone areas using a machine learning model,” 

Environmental Research, vol. 200, 111344, 2021. 

[2] M. Gowri and M. D. Anandhasilambarasan, “Prediction 

of air pollution in smart cities using machine learning 

techniques,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. 

7, pp. 273–277, 2018. 

[3] F.-J. Chang, L.-C. Chang, C.-C. Kang, Y.-S. Wang, and 

A. Huang, “Explore spatio-temporal PM2.5 features in 

northern Taiwan using machine learning techniques,” Sci. 

Total Environ., vol. 736, 139656, 2020. 

[4] S. Z. Shogrkhodaei, S. V. Razavi-Termeh, and A. 

Fathnia, “Spatio-temporal modeling of PM2.5 risk mapping 

using three machine learning algorithms,” Environmental 

Pollution, vol. 289, 117859, 2021. 

[5] H. Sinha, “A comprehensive study on air quality 

detection using ML algorithms,” J. Emerging Technol. 

Innov. Res., vol. 11, no. 9, pp. b116–b122, 2024. 

[6] K. Dimakopoulou et al., “Development and evaluation 

of spatio-temporal air pollution exposure models and their 

combinations in the Greater London Area, UK,” Int. J. 

Environ. Res. Public Health, vol. 19, no. 9, 5401, 2022. 

[7] S. Potharaju et al., “A two-step machine learning 

approach for predictive maintenance and anomaly detection 

in environmental sensor systems,” MethodsX, 103181, 

2025. 

[8] H. Sim and H. Kim, “Establishment of a real-time risk 

assessment and preventive safety management system in 

industrial environments utilizing multimodal data and 

advanced deep reinforcement learning techniques,” Int. J. 

Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, 2025. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 369–377  |  377 

[9] M. H. Ovi and R. Rahman, “Unsupervised machine 

learning for anomaly detection in solar power generation: 

Comparative insight,” unpublished. 

[10] Y. Bel-Hadj, W. Weijtjens, and C. Devriendt, “An 

evaluation framework for deep learning based anomaly 

detection in structural health monitoring,” NDT.net, 2024. 

[11] J. Yuan et al., “Seabed depth prediction using multi-

scale gravity anomalies and fully connected deep neural 

networks: A novel approach applied to the South China 

Sea,” Remote Sens., vol. 17, no. 3, 412, 2025. 

[12] R. Swain, S. K. Mehta, and D. Mishra, “Enhancing 

water quality management: Predictive insights through 

machine learning algorithms,” in Mitigation and Adaptation 

Strategies Against Climate Change in Natural Systems, 

Springer, 2025, pp. 171–180. 

[13] H. Duan, W. Yue, and W. Li, “Reliability assessment 

of PM2.5 concentration monitoring data: A case study of 

China,” Atmosphere, 2024. 

[14] P. Khatri, K. S. Shakya, and P. Kumar, “A probabilistic 

framework for identifying anomalies in urban air quality 

data,” Environ. Sci. Pollut. Res., vol. 31, no. 49, pp. 59534–

59570, 2024. 

[15] X. Jia, C. Hu, and G. Jia, “Cross-modal contrastive 

learning for robust visual representation in dynamic 

environmental conditions,” Acad. J. Nat. Sci., vol. 2, no. 2, 

pp. 23–34, 2025. 

 


