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Abstract. This paper presents a novel hybrid deep learning framework for network intrusion detection that 

addresses the limitations of existing systems in detecting both known and novel attacks. The proposed architecture 

integrates six sequential modules: data preprocessing, adaptive feature selection, Multi-Scale Temporal 

Convolutional Network (MS-TCN), Bidirectional LSTM with attention mechanism, ensemble anomaly detector, and 

uncertainty-aware classifier. The framework employs parallel 1D convolution layers with varying kernel sizes (3, 5, 

7) to capture temporal patterns of different complexities, while BiLSTM processes sequential dependencies 

bidirectionally. An ensemble of three anomaly detectors (Isolation Forest, DBSCAN, One-Class SVM) handles 

zero-day attacks through majority voting. Experimental results demonstrate superior performance with 91% 

accuracy, 0.9783 ROC-AUC, and 0.9895 average precision. The adaptive feature selection reduces dimensionality 

by 50% while maintaining discriminative power. The model effectively balances precision (0.99 for attacks) and 

recall (0.81 for attacks), showing robust generalization without overfitting across ten training epochs. 

 

Keywords. Network Intrusion Detection, Hybrid Deep Learning, Multi-Scale Temporal Convolutional Network, 

Bidirectional LSTM, Ensemble Anomaly Detection. 

 

1. Introduction 

In the era of hyperconnectivity and massive digital 

transformation, network infrastructures have become 

the lifeline of every sector, including finance, 

healthcare, transportation, and government. As 

organizations increasingly rely on interconnected 

devices, cloud services, and intelligent systems, the 

attack surface for malicious actors has grown 

exponentially. Cyberattacks such as Distributed 

Denial of Service (DDoS), ransomware, phishing, 

and zero-day exploits are not only increasing in 

frequency but also evolving in sophistication. This 

alarming trend necessitates the development of more 

intelligent, adaptive, and robust Network Intrusion 

Detection Systems (NIDS) that can identify and 

neutralize potential threats in real-time. 

Traditional intrusion detection systems, often based 

on rule sets or classical machine learning algorithms, 

struggle to cope with the dynamic nature of modern 

cyber threats. These systems typically rely on 

handcrafted features and static patterns, rendering 

them ineffective against unknown or polymorphic 

attacks. Furthermore, they often generate high false 

positive rates and are unable to provide insights into 

the confidence of their predictions, a critical 

requirement in high-stakes environments. 

Consequently, researchers and practitioners have 

increasingly turned toward deep learning to address 

the limitations of conventional approaches. 
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Deep learning models have shown great promise in 

the field of intrusion detection due to their ability to 

learn hierarchical representations directly from raw 

or minimally processed data. Architectures such as 

Convolutional Neural Networks (CNNs), Recurrent 

Neural Networks (RNNs), and Transformers have 

demonstrated remarkable success in capturing spatial, 

temporal, and contextual patterns in network traffic 

data. However, standalone models often fall short 

when tasked with detecting nuanced attack behaviors 

that may manifest across multiple temporal or spatial 

resolutions. 

In response to these challenges, we propose a Novel 

Hybrid Deep Learning Framework [5, 6] that 

integrates the strengths of multiple deep learning 

paradigms, anomaly detection algorithms, and 

interpretability techniques to deliver a 

comprehensive, accurate, and robust intrusion 

detection solution. The proposed architecture is 

designed to overcome five fundamental limitations of 

existing methods: 

1. Most current models either use simple 

LSTM or 1D CNNs [7 and 8] to capture 

sequential dependencies. These fail to 

effectively capture multi-scale temporal 

patterns in network traffic. Our framework 

addresses this by introducing Multi-Scale 

Temporal Convolutional Networks (MS-

TCNs), which apply multiple convolutional 

filters of varying lengths in parallel, 

allowing the system to simultaneously learn 

both short-term and long-term temporal 

dependencies. 

2. Recurrent models often suffer from 

vanishing gradients and limited attention to 

distant dependencies. To tackle this, we 

incorporate a Bidirectional LSTM 

(BiLSTM) architecture enhanced with a 

Multi-Head Attention Mechanism, enabling 

the model to focus on critical time steps 

within network flows that are highly 

indicative of an attack. 

3. Raw network traffic data can contain a vast 

number of features, many of which are 

irrelevant or redundant. To improve learning 

efficiency and reduce overfitting, we 

integrate an Adaptive Feature Selection 

Mechanism that combines mutual 

information metrics with statistical tests, 

followed by correlation-based pruning to 

select the most discriminative and non-

redundant features. 

4. Deep learning models are typically trained 

in a supervised fashion and hence are not 

always effective at identifying unknown or 

adversarial attack types. To address this, we 

employ an Ensemble Anomaly Detection 

Module, which includes Isolation Forest, 

One-Class SVM, and DBSCAN [10 and 11]. 

The ensemble scores help to flag rare, 

suspicious samples even when they are not 

present in the training set. 

5. Conventional models provide point 

predictions without estimating confidence, 

which can be dangerous in security-critical 

environments. We introduce Monte Carlo 

Dropout-based Uncertainty Quantification to 

estimate the predictive uncertainty, making 

the model more trustworthy and capable of 

identifying uncertain or adversarial inputs 

[20]. 

The proposed framework synergistically integrates 

these components to form a robust, explainable, and 

adaptive NIDS [22]. The architecture begins with 

adaptive feature selection to preprocess input data. 

This is followed by parallel multi-scale convolutional 

branches for extracting temporal features at different 

scales. The output is then passed through stacked 

BiLSTM layers augmented with self-attention to 

capture contextual dependencies. Finally, two parallel 

branches – one for dense classification and another 

for uncertainty estimation – are merged to make the 

final prediction. 

To evaluate the effectiveness of the proposed 

approach, we conduct comprehensive experiments on 

benchmark NIDS datasets. We assess the model 

using standard metrics such as accuracy, precision, 

recall, F1-score, and area under the ROC curve 

(AUC), and we also evaluate adversarial robustness 

and predictive uncertainty. Additionally, we perform 

feature importance analysis and visualize the learned 

feature space using techniques such as t-SNE and 

attention maps. 

Our experimental results demonstrate that the 

proposed model outperforms state-of-the-art baseline 

methods across all evaluation metrics. The model 
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exhibits strong generalization capability to detect 

both known and unknown attack types, thanks to the 

integration of supervised and unsupervised learning 

strategies. Furthermore, the uncertainty estimation 

mechanism enables effective identification of 

ambiguous or potentially adversarial inputs, allowing 

for better human-in-the-loop security response. 

The main contributions of this paper are summarized 

as follows: 

• Hybrid Architecture: We design a novel 

deep learning framework that combines 

multi-scale temporal convolutions, 

bidirectional LSTM, and attention 

mechanisms for superior intrusion detection 

performance. 

• Adaptive Feature Selection: A hybrid 

mutual information and statistical approach 

is proposed to select the most informative 

features while eliminating redundant ones, 

thus reducing complexity and enhancing 

model generalization. 

• Ensemble Anomaly Detection: We 

incorporate multiple unsupervised anomaly 

detectors to identify rare or novel attack 

patterns, improving the model’s ability to 

detect zero-day intrusions. 

• Uncertainty Quantification: Monte Carlo 

Dropout is utilized to quantify predictive 

uncertainty, improving the trustworthiness 

and interpretability of the model in critical 

security environments. 

• Comprehensive Evaluation: We conduct 

extensive experiments on standard datasets 

and demonstrate the superiority of our 

method over existing approaches through 

various analyses, including adversarial 

robustness, feature importance, and 

visualization. 

2. Related work 

Extensive research has been conducted on intrusion 

detection using machine learning and deep learning 

approaches. Classical machine learning models like 

decision trees, SVM, and k-NN have been widely 

used; however, they depend heavily on manual 

feature engineering and perform poorly on large, 

dynamic network datasets. CNNs have been applied 

for spatial feature extraction from packet sequences, 

but they lack the capability to model sequential 

dependencies. RNNs and LSTMs, on the other hand, 

can handle temporal patterns but are limited in their 

scalability and sensitivity to input length variations. 

Hamdi, N. (2025) in [1] Implemented Federated 

learning methods with ML approaches, for intrusion 

detection over suspicious activities. In this federative 

learning method is centrally used and taken strength 

from the supporting models and this model provides 

optimal results. In [2] they implemented a CNN + 

LSTM hybrid model, to optimize the parameters 

using wolf optimization and swarm optimization. 

This model detects intrusions and data injection 

attacks. In the area of industrial this network will 

cover, and the model provides optimal results. And 

[3] used multiple data sets like NSL-KDD and 

UNWS-NB15, and trained this data on the simple 

ML models like KNN and SVM. And wolf 

optimization method to change the weights. But this 

simple ML model will not capture spatial features 

and sequential features. So it will not identify the 

dynamic attacks.  

Several studies have employed automated techniques 

to increase the transparency of AI-based IDS in [10], 

achieving a predictive performance of 92.5% using 

the KDD dataset. In a similar vein, [11] a SVM 

model focused on general intrusion detection 

achieved a remarkable detection rate of 97% with the 

same dataset. Furthermore, [12] the use of random 

forest for IoT applications demonstrated a 

commendable accuracy of 95.8% on the NSL-KDD 

dataset. 

Decision trees have been another popular 

methodology like [13] for general IDS, with a 

detection accuracy of 94.3% reported using the 

prescribed dataset. A noteworthy contribution to the 

field is the implementation of random forest 

algorithms, [14] which achieved a detection and 

predictive performance of 97.2% using the UNSW-

NB15 dataset. Another study employing KNN [15] 

for software-defined networks indicated a detection 

rate of 88% without specifying the dataset used. 

In the mobile IoT context, a SVM [16] approach 

achieved 93% accuracy using a larger dataset tailored 

for mobile applications. Additionally, the naive 

Bayes classifier [17] has been utilized for computer 

networks, achieving a significant accuracy of 95% 

using the KDD Cup 1999 dataset. Random forest 
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models [18] have consistently demonstrated strong 

performance, with accuracy of 95.5% on the UNSW-

NB15 dataset. 

The CNN [18] has emerged as a powerful approach 

for intelligent IDS, achieved 98% accuracy on the 

KDD dataset. ANN [19] has also been employed in 

this context, with reported accuracy levels of 90.5%. 

Moreover, SVM [20] techniques aimed at anomaly 

and misuse detection achieved 91.7% accuracy using 

the same dataset. 

Logistic regression a simple linear classifier [21] has 

been another approach within the realm of general 

IDS, achieving a detection accuracy of 92.3% with 

the KDD dataset. Hybrid models combining CNN 

[22] and random forest techniques have shown 

promise, achieving an accuracy of 96% on the 

UNSW-NB15 dataset. ANN has been utilized in 

intelligent IDS [23], achieving accuracy levels of 

90%. In contrast, hybrid intelligent systems have 

demonstrated a detection accuracy of 93% on the 

KDD Cup 1999 dataset. 

3. Methodology 

The proposed hybrid deep learning framework is 

designed to address the limitations of existing 

intrusion detection systems by combining multiple 

advanced techniques in a unified architecture. The 

framework is structured into six sequential modules, 

each playing a crucial role in enhancing the detection 

of both known and novel intrusions. These modules 

include: (1) Data Preprocessing, (2) Adaptive Feature 

Selection, (3) Multi-Scale Temporal Convolutional 

Network (MS-TCN), (4) Bidirectional LSTM with 

Attention, (5) Ensemble Anomaly Detector, and (6) 

Uncertainty-Aware Classifier the layers to build this 

model is shown in table 1. This design enables the 

model to extract meaningful temporal patterns, 

reduce data noise and dimensionality, estimate 

predictive confidence, and robustly detect intrusions. 

The intrusion detection process begins with thorough 

data preprocessing. Network traffic data, particularly 

in large-scale environments, often contains noise, 

missing values, and inconsistencies. These issues 

must be addressed to ensure the model receives clean, 

structured inputs. First, categorical features are 

encoded using one-hot encoding or label encoding 

techniques, depending on the feature type and 

expected model compatibility. Numerical features are 

then normalized using min-max scaling or z-score 

standardization to bring them onto a uniform scale. 

This step is essential to ensure that features with 

larger ranges do not disproportionately influence the 

model during training. Outliers are also handled 

through statistical filtering or robust scaling methods. 

After preprocessing, the dataset is split into training, 

validation, and testing sets to facilitate proper 

evaluation of model performance. 

After preprocessing, the high-dimensional feature 

space is refined through adaptive feature selection. 

This step is critical in network intrusion detection due 

to the large number of features in modern datasets 

(such as CIC-IDS2017 or UNSW-NB15), many of 

which may be irrelevant or redundant. To perform 

effective dimensionality reduction while preserving 

the most informative features, a hybrid selection 

approach is employed. Following this ranking 

process, features with low scores are discarded. 

However, feature redundancy still remains a concern. 

Therefore, Pearson correlation coefficients are 

computed between all pairs of remaining features. 

Highly correlated features (e.g., correlation > 0.9) are 

considered redundant, and one of each pair is 

removed. This dual-phase process ensures that the 

final feature subset is both informative and non-

redundant, effectively reducing computational 

complexity and improving model generalization. 

 

Table 1 model parameters 

Model parameters values 

Batch Normalization 8 

Bidirectional 2 

Concatenate 3 

Conv1D 6 

GlobalMaxPooling1D 1 

Multi Head Attention 2 
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The refined input is then fed into the Multi-Scale 

Temporal Convolutional Network (MS-TCN) block, 

which is responsible for extracting temporal features 

from the network traffic data. Unlike traditional 

CNNs that use fixed-size kernels, MS-TCN employs 

parallel 1D convolution layers with varying kernel 

sizes—typically 3, 5, and 7. This multi-scale 

approach allows the model to detect temporal 

patterns of different lengths and complexities, 

effectively capturing both short-term spikes and long-

term dependencies in network behavior. 

Each convolutional path is followed by batch 

normalization and ReLU activation to ensure faster 

convergence and reduce internal covariate shift. 

Residual connections are used to prevent gradient 

vanishing in deeper layers, allowing the model to 

train more effectively. The outputs from the multiple 

convolution branches are then concatenated to form 

a comprehensive multi-scale temporal feature 

representation, which is subsequently passed on to 

the next module for sequential modeling. 

To model temporal dependencies and sequential 

patterns in both forward and backward directions, the 

concatenated output from the MS-TCN block is 

passed through a BiLSTM layer. The BiLSTM 

captures patterns such as repetitive or abnormal 

network behavior that evolve over time. By 

processing the sequence in both directions, the model 

is able to learn from both past and future contexts 

within a window, offering more accurate pattern 

recognition. 

Following the BiLSTM, a multi-head attention 

mechanism is applied. This component enables the 

model to assign dynamic importance weights to 

different time steps within the sequence. In the 

context of network intrusion detection, certain time 

intervals or packet behaviors are more indicative of 

an attack than others. The attention mechanism 

automatically emphasizes these critical regions, 

improving both detection accuracy and 

interpretability.  

While the main branch of the model proceeds to 

classification, a parallel path focuses on detecting 

unknown or novel intrusions using unsupervised 

learning. This is crucial because real-world networks 

often face zero-day attacks or obfuscated threats that 

do not resemble known patterns. To handle this, the 

model incorporates an ensemble of three anomaly 

detectors: Isolation Forest, DBSCAN (Density-Based 

Spatial Clustering of Applications with Noise), and 

One-Class SVM. 

Each of these detectors independently evaluates the 

selected features for anomalous behavior. Isolation 

Forest isolates anomalies by random feature splits; 

DBSCAN identifies outliers in low-density regions; 

and One-Class SVM builds a hyperplane to separate 

normal instances from potential anomalies. The 

outputs from these three detectors are combined 

using a majority voting scheme, generating a final 

binary anomaly label. 

 

4. Result analysis 

The training dynamics of the proposed hybrid 

intrusion detection model were carefully monitored 

and evaluated using learning curves for both loss and 

accuracy across ten epochs. Figure 1 illustrates these 

performance metrics, providing valuable insights into 

the model’s convergence behavior, generalization 

capability, and the absence of overfitting during the 

training process. 

The left panel of Figure 1 shows the training and 

validation loss curves over the training epochs. At the 

initial epoch (epoch 0), both the training loss (~0.27) 

and validation loss (~0.245) are relatively high, 

indicating that the model is beginning to learn basic 

data representations. As training progresses, a 

monotonic decline in both losses is observed, 

reflecting improved learning and optimization. 

By epoch 3, the validation loss experiences minor 

fluctuations, likely due to the stochastic nature of 

gradient descent and the impact of techniques such as 

dropout and data shuffling. However, these 

fluctuations are not significant and quickly stabilize. 

From epoch 5 onward, both training and validation 

loss curves continue to decline in tandem, ultimately 

converging around 0.19, which indicates a strong fit 

without signs of overfitting or underfitting. 

The proximity of training and validation loss curves 

throughout the epochs suggests that the model is not 

overfitting, a common issue in deep learning 

architectures. This consistent behavior implies that 

the regularization techniques employed—such as 

batch normalization, dropout, and early stopping—

are effectively maintaining generalization. 
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The training accuracy improves steadily from 

approximately 85.7% in the initial epoch to over 

90.8% by the final epoch. Simultaneously, the 

validation accuracy shows a similar upward 

trajectory, starting at around 85.5% and peaking at 

91%. This close alignment between training and 

validation accuracy confirms that the model 

generalizes well to unseen data. 

Interestingly, the validation accuracy marginally 

exceeds the training accuracy at a few epochs (e.g., 

epochs 1, 4, and 6), which can occur due to random 

data splits or regularization effects like dropout being 

inactive during validation. These spikes are within an 

acceptable range and further underscore the 

robustness of the model. 

The final accuracy values approaching or exceeding 

91% indicate the model’s strong discriminative 

power, likely attributed to the synergy between the 

multi-scale TCN, BiLSTM-attention layers, and the 

adaptive feature selection process. Moreover, the 

stable convergence across both metrics demonstrates 

the effectiveness of the hybrid architecture in 

capturing complex patterns from network traffic data 

without succumbing to overfitting. 

 

 
Figure 1 learning curves of Hybrid model 

 

To further evaluate the efficacy of the proposed 

hybrid deep learning framework for network 

intrusion detection, the confusion matrix and per-

class performance metrics were analyzed to 

understand the model's ability to discriminate 

between benign (Normal) and malicious (Attack) 

traffic is illustrated in figure 2. The normalized 

confusion matrix provides a comprehensive 

overview of the model’s classification behavior, 

highlighting both its strengths and limitations. As 

depicted in the first image, the model correctly 

identified 98.05% of the normal traffic samples, with 

only 1.95% being misclassified as attacks. On the 

other hand, it correctly predicted 80.60% of the 

attack samples, while 19.40% were incorrectly 

labeled as normal. This asymmetry indicates that 

although the model demonstrates robust performance 

in identifying legitimate traffic, there is a moderate 

tendency to overlook a fraction of attack instances, 

likely due to their similarity to benign behavior or 

imbalanced training distribution. 

Complementing the confusion matrix, the 

performance metrics by class provide deeper insight 

into the model's precision, recall, and F1-score for 

both classes as shown in figure 3. For the "Attack" 

class, the model achieved a precision of 

approximately 0.99, indicating a very low false 

positive rate for attack detection. However, the recall 

for attack detection is about 0.81, which suggests 

that some true attack instances were missed during 
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prediction. The F1-score of around 0.89 balances 

these two aspects, showcasing strong performance 

but leaving room for improvement in recall. For the 

"Normal" class, the precision is slightly lower 

(~0.70), implying a relatively higher false positive 

rate, while the recall is significantly higher (~0.98), 

demonstrating the model’s capacity to identify 

normal traffic with high completeness. The F1-score 

of ~0.82 for the normal class confirms that the model 

performs consistently well across both classes, albeit 

with a slight preference toward conservative 

predictions for attacks to reduce false alarms. 

 

 

Figure 2 confusion matrix proposed hybrid model 
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Figure 3 class wise performance of hybrid model 

 

Figure 4 ROC-PR curves of hybrid model 

 

The figure 4 presents two critical evaluation metrics: 

the Receiver Operating Characteristic (ROC) curve 

and the Precision-Recall (PR) curve. These plots are 

vital in assessing the performance of the proposed 

hybrid intrusion detection framework. The ROC 

curve (left) illustrates the trade-off between the true 

positive rate (TPR) and the false positive rate (FPR) 

across various classification thresholds. A high Area 

Under the Curve (AUC) score of 0.9783 

demonstrates the model’s strong capability to 

distinguish between normal and anomalous network 

traffic. The curve maintains a steep ascent towards 

the top-left corner, indicating that the model can 

maintain a high TPR even at low FPRs—a desirable 

characteristic in intrusion detection where false 

alarms must be minimized. 

In parallel, the Precision-Recall curve (right) 

emphasizes the balance between precision and recall, 
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particularly valuable in imbalanced datasets where 

traditional accuracy may be misleading. The average 

precision (AP) score of 0.9895 signifies excellent 

performance, with the model maintaining high 

precision across a wide range of recall values. This 

indicates that the classifier not only captures most of 

the intrusions (high recall) but also ensures that most 

flagged instances are indeed true positives (high 

precision).  

The figure 5 consists of a feature selection 

summary pie chart (left) and a feature ranking bar 

chart (right), both of which visually depict the 

effectiveness of the proposed adaptive feature 

selection strategy. The pie chart reveals a balanced 

division, where 50% of the original features were 

retained, and 50% were removed during 

preprocessing so total selected features are 45. This 

outcome reflects a disciplined feature reduction 

process, leveraging mutual information, ANOVA F-

tests, and Pearson correlation filtering to eliminate 

redundant or irrelevant features. Reducing the 

dimensionality by half not only optimizes 

computational efficiency but also mitigates 

overfitting and enhances the model’s generalization 

capabilities. 

The bar chart on the right illustrates the top 20 

selected features, ranked according to their 

discriminative power. Each bar corresponds to a 

specific feature index, ordered by its importance 

score, with higher-ranked features exhibiting greater 

relevance to the classification task. The distribution 

of feature importance indicates that meaningful 

patterns are concentrated within a subset of features, 

justifying the necessity of an adaptive selection 

mechanism.  

 

 

 

Figure 6 features used in hybrid model 

 

5. Conclusion 

The proposed hybrid deep learning framework 

demonstrates significant advancement in network 

intrusion detection by effectively combining temporal 

pattern extraction, sequential modeling, and anomaly 

detection techniques. The Multi-Scale Temporal 
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Convolutional Network successfully captures both 

short-term spikes and long-term dependencies in 

network behavior, while the BiLSTM-attention 

mechanism enhances sequential pattern recognition 

through bidirectional processing and dynamic 

importance weighting. The ensemble anomaly 

detector addresses the critical challenge of zero-day 

attacks, achieving robust detection of novel intrusions 

through complementary unsupervised learning 

approaches. Experimental validation reveals 

exceptional performance with 91% accuracy and 

superior AUC scores, while the adaptive feature 

selection strategy optimizes computational efficiency 

by reducing dimensionality by 50%. The model's 

ability to maintain high precision (0.99) for attack 

detection while achieving reasonable recall (0.81) 

demonstrates practical applicability in real-world 

network security scenarios. Future work will focus on 

improving recall rates and extending the framework 

to handle emerging attack vectors in evolving 

network environments. 
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