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Abstract: When discussing a finite undirected graph, 𝐺(𝑉, 𝐸) and a subset that is not empty 𝜎 ⊆ 𝑉, the graph 

created by switching of 𝐺 by 𝜎 is expressed as 𝐺𝜎(𝑉, 𝐸′). This particular graph is derived from 𝐺 by all non-

edges between 𝜎 and 𝑉 − 𝜎 are added together and cutting off every edge between 𝜎 and its counterpart, 𝑉 − 𝜎. 

For 𝜎 = {𝑣}, we record 𝐺𝑣, and this transformation is alternatively known as vertex switching. However, this is 

what we call |𝜎|-vertex switching. If |𝜎| = 2, it is presented as 2 -vertex switching. In a two-cyclic graph, there 

are precisely two cycles. More than one component makes up a disconnected graph. There are no isolated 

components in a connected graph. We describe two-vertex self switching of two-cyclic graphs in this paper. 

Keywords: Switching, Connected two cyclic graphs, Disconnected two cyclic graphs, 2 -vertex self switching, 2-

vertex Switching. 

Subject Classification: 05C40, 05C07 05C40. 

1 Introduction 

If 𝑉(𝐺) = 𝑝 is present in any graph 𝑅(𝑉, 𝐸), then 

𝑅′(𝑉, 𝐸′) is the graph that is created from 𝑅 by 

pulling out every edges between 𝜎 and its 

counterpart, 𝑉 − 𝜎, and also every non-edges 

between 𝜎 and 𝑉 − 𝜎 are added together as edges, in 

which 𝜎 ⊆ 𝑉. Switching was interpreted by Seidel 

[1, 6], alternatively mentioned as |𝜎|-vertex 

switching. In the scenario where |𝜎| = 2, it is named 

as 2 -vertex switching. The branches and joints in 

graphs were first conceptualised by Vilfred V et 

al.,[8]. In 𝐺, a joint at 𝜎 is a subgraph 𝐵 of 𝐺 which 

contains 𝐺[𝜎] if 𝐵 − 𝜎 is maximal and connected. 

We call it a 𝑐-joint if 𝐵 is connected, and a 𝑑-joint 

otherwise. 𝐵 = 𝐺[𝜎] + (𝐵 − 𝜎) indicates that 𝐵 is a 

total joint. A graph is referred to as unicylic if it has 

precisely one cycle. In [3], the notion of 2-vertex 

switchings of unicyclic graphs was examined. Two-

cyclic graphs are those that have precisely two 

cycles. In [4], The idea of self-vertex switchings of 

two-cyclic graphs was examined. 

Alternative triangular snake graphs were explored in 

[7]. 𝐴(𝑇𝑛) is an alternate triangular snake which is 

constructed from a path 𝑚1, 𝑚2, … , 𝑚𝑛 by 

connecting each 𝑚𝑖 (alternatingly)with a new vertex 

𝑘𝑖, which is then joined to 𝑚𝑖 and 𝑚𝑖+1 through 𝑘𝑖. 

That is, 𝐶3 replaces each alternate edge of a path. 

The alternative triangular snake graph with 𝑛 = 4 is 

given in figure 1.1 
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This study offers a comprehensive description of 

two-cyclic graphs that possess a 2 -vertex self 

switching. Our study also includes graphs that 

feature 𝑐-joints and 𝑑-joints of 2 - vertex switching. 

Throughout this paper, we used by 𝑑𝐺(𝑢) the degree 

of the vertex 𝑢 in the graph 𝐺. 

We now present the following theorems, which 

serve as foundational results for the next section. 

Theorem 1.1. [5] Let 𝐺 be a graph of order 𝑝 ≥ 3 

and let 𝜎 = {𝑢, 𝑣} be a subset of 𝑉(𝐺) such that uv 

∉ 𝐸(𝐺). Let 𝐵 be a 𝑑-joint at 𝜎 in 𝐺. Then 𝐵𝜎  is a 

𝑐-joint at 𝜎 in 𝐺𝜎  if and only if 𝐵 − 𝜎 is connected 

and either 𝑑𝐵(𝑢) = 0 and 0 ≤ 𝑑𝐵(𝑣) ≤ |𝑉(𝐵)| − 3 

or 𝑑𝐵(𝑣) = 0 and 0 ≤ 𝑑𝐵(𝑢) ≤ |𝑉(𝐵)| − 3. 

Theorem 1.2. [5] Let 𝐺 be a graph of order 𝑝 ≥ 3 

and let 𝜎 = {𝑢, 𝑣} be a subset of 𝑉(𝐺) such that uv 

∉ 𝐸(𝐺). Let 𝐵 be a d-joint at 𝜎 in 𝐺. Then 𝐵𝜎  is a d-

joint at 𝜎 in 𝐺𝜎  if and only if 𝐵 − 𝜎 is connected and 

{𝑑𝐵(𝑢), 𝑑𝐵(𝑣)} = {0, |𝑉(𝐵)| − 2}. 

Theorem 1.3. [5] Let 𝐺 be a graph of order 𝑝 ≥ 3 

and let 𝜎 = {𝑢, 𝑣} be a subset of 𝑉(𝐺) such that 

𝑢𝑣 ∈ 𝐸(𝐺). Then 𝐵 is a 𝑑-joint at 𝜎 in 𝐺 if and only 

if 𝐵𝜎  is a total joint at 𝜎 in 𝐺𝜎 . 

Corollary 1.4. [9] Let 𝐺 be a graph of order 𝑝 ≥ 3 

and let 𝜎 = {𝑢, 𝑣} be a subset of 𝑉(𝐺) such that 

𝑢𝑣 ∈ 𝐸(𝐺). If 𝐵 is a 𝑑-joint at 𝜎 in 𝐺, then 𝐺𝜎  

cannot be a 𝑑-joint. 

Theorem 1.5. [5] Let 𝐺 be a graph of order 𝑝 ≥ 3 

and let 𝜎 = {𝑢, 𝑣} be a subset of 𝑉(𝐺) such that 

𝑢𝑣 ∈ 𝐸(𝐺). Let 𝐵 be a 𝑐-joint at 𝜎 in 𝐺. Then 𝐵𝜎  is 

a 𝑑-joint at 𝜎 in 𝐺𝜎  if and only if 𝐵 − 𝜎 is connected 

and 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 1. 

Theorem 1.6. [2] Let 𝐺 be a graph of order 𝑝 ≥ 5 

and let 𝜎 = {𝑢, 𝑣} ⊆ 𝑉(𝐺) be such that uv ∉ 𝐸(𝐺). 

Let 𝑀 be the set of non-adjacent vertices of 𝑢 and 𝑁 

be the set of non-adjacent vertices of 𝑣 in 𝐺. Let 𝐺 

be a c-joint at 𝜎. Then 𝐺𝜎  is a c-joint and two-cyclic 

at 𝜎 if and only if |𝑉(𝐺)| ≥ 5 and one of the 

following holds: 

1. 𝐺 − 𝜎 is connected, acyclic, 𝑑𝐺(𝑢) =

𝑑𝐺(𝑣) = |𝑉(𝐺)| − 4 and the path formed 

by elements of 𝑀 and by elements of 𝑁 

have either at most one vertex in common 

for 𝑀 ∩ 𝑁 = 𝜑 or the vertex 𝑎 in common 

for 𝑀 ∩ 𝑁 = {𝑎}. 

2. 𝐺 − 𝜎 is connected, unicyclic, 

{𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} = {|𝑉(𝐺)| − 4, |𝑉(𝐺)| −

3} and for |𝑀 − {𝑣}| = 2 and |𝑁 − {𝑢}| =

1(|𝑀 − {𝑣}| = 1 and |𝑁 − {𝑢}| = 2) 

either the elements of 𝑀(𝑁) do not lie on 

the cycle of 𝐺 − 𝜎 and the unique path 

connecting them contains at most one 

vertex of the cycle or one of the elements 

of 𝑀(𝑁), say a, lies on the cycle and the 

unique path connecting them contains no 

vertex of the cycle other than 𝑎. 

3. 𝐺 − 𝜎 is connected, two-cyclic and 

𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 3. 

2 Core Findings 

2-vertex Self-Switching of Connected and 

Disconnected Two-Cyclic Graphs 

Theorem 2.1. Assume 𝐺 is a graph for which 

|𝑉(𝐺)| = 𝑝 with = {𝑢, 𝑣} ⊆ 𝑉(𝐺). Define 𝑀 as the 

set of nodes in 𝐺 that are not neighbors of 𝑢, and 𝑁 

similarly for 𝑣. If 𝐵 is a 𝑑-joint in 𝐺, then 𝐵𝜎  cannot 

be two-cyclic. 

Proof. Suppose 𝐵𝜎  is a two-cyclic graph. Let 𝑀 and 

𝑁 represent the set of non-adjacent vertices of 𝑢 and 

𝑣, respectively in 𝐺. 

Since 𝐵𝜎  is two-cyclic, 𝐵 has at least 5 vertices. 

Since |𝑉(𝐵)| ≥ 5, ∣ 𝑉(𝐵) − 𝜎 ∣≥ 5 − 2 ≥ 3. We 

have two cases based on 𝑢𝑣 ∉ 𝐸(𝐺) and 𝑢𝑣 ∈

𝐸(𝐺). 

Case1.𝑢𝑣 ∉ 𝐸(𝐺) 

Subcase 1.1. The graph 𝐵 is a 𝑑-joint, while 𝐵𝜎  is a 

𝑐-joint 

According to Theorem 1.1, 𝐵 − 𝜎 is connected. 

Also, either 𝑑𝐵(𝑢) = 0 with 𝑑𝐵(𝑣) satisfying 0 ≤

𝑑𝐵(𝑣) ≤ |𝑉(𝐵)| − 3, or 𝑑𝐵(𝑣) = 0 with 𝑑𝐵(𝑢) 

satisfying 0 ≤ 𝑑𝐵(𝑢) ≤ |𝑉(𝐵)| − 3. Without loss 

of generality, choose 𝑑𝐵(𝑢) = 0. Therefore, every 

elements of 𝑀 in 𝑉(𝐵) − 𝜎 is neighbor of 𝑢 in 𝐵𝜎 . 

Since |𝑉(𝐵) − 𝜎| ≥ 3, 𝑀 has at least 3 nodes, say 

𝛼, 𝜅 and 𝛿 of 𝑉(𝐵) − 𝜎 for which 𝛼, 𝜅 and 𝛿 are 

neighbor of 𝑢 in 𝐵𝜎 . There are 𝛼 − 𝜅, 𝜅 − 𝛿, and 

𝛼 − 𝛿 paths in 𝐵𝜎 , Since 𝐵 − 𝜎 is connected. Hence, 

the edges 𝑢𝛼, 𝑢𝜅 and 𝑢𝛿, the paths 𝛼 − 𝜅, 𝜅 − 𝛿, and 

𝛼 − 𝛿 form at least three cycles in 𝐵𝜎  which 

contradicts our assumption that 𝐵𝜎  is two cyclic. 
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Subcase 1.2. The graph 𝐵 is a 𝑑-joint, while 𝐵𝜎  is a 

𝑑-joint 

According to Theorem 1.2, 𝐵 − 𝜎 is connected and 

{𝑑𝐵(𝑢), 𝑑𝐵(𝑣)} = {0, |𝑉(𝐵)| − 2}. We take 

𝑑𝐵(𝑢) = 0 and 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 2 to maintain 

genarality. It then follows, by an argument 

analogous to that in Subcase 1.1, we get 𝐵𝜎  has at 

least three cycles which contradicts 𝐵𝜎  is two cyclic. 

Case2.𝑢𝑣 ∈ 𝐸(𝐺) 

Subcase 2.1. The graph 𝐵 is a 𝑑-joint, while 𝐵𝜎  is a 

𝑐-joint 

By Theorem 1.3, we have 𝐵𝜎  is a total joint at 𝜎 in 

𝐺𝜎 . Hence, 𝑑𝐵𝜎(𝑢) = 𝑑𝐵𝜎(𝑣) = |𝑉(𝐵)| − 1. Since 

𝑢𝑣 ∈ 𝐸(𝐺), 𝑢𝑣 is a component in 𝐵. Since |𝑉(𝐵) −

𝜎| ≥ 3, 𝑀 has at least three vertices, say 𝛽, 𝜆 and Γ, 

such that 𝛽, 𝜆 and Γ are adjacent to 𝑢 in 𝐵𝜎 . Hence, 

the edges 𝑢𝑣, 𝑢𝛽, 𝑢𝜆, 𝑢Γ and the paths 𝛽 − 𝜆, 𝜆 −

Γ, 𝛽 − Γ form more than two cycles in 𝐵𝜎  which 

contradicts 𝐵𝜎  is two cyclic. 

Subcase 2.2. The graph 𝐵 is a 𝑑-joint, while 𝐵𝜎  is a 

𝑑-joint 

By Corollory 1.4, 𝐵𝜎  cannot be a 𝑑-joint. Hence this 

case does not exist. 

From the above cases, we conclude that 𝐵𝜎  is not a 

two cyclic graph. Hence, we obtain the desired 

result. 

Theorem 2.2. Consider a graph 𝐺 such that 

|𝑉(𝐺)| = 𝑝 ≥ 5 with 𝜎 = {𝑢, 𝑣} ⊆ 𝑉(𝐺) for which 

𝑢𝑣 ∈ 𝐸(𝐺). Define 𝑀 as the set of nodes in 𝐺 that 

are not neighbors of 𝑢, and 𝑁 similarly for 𝑣. If 𝐵 is 

a 𝑐-joint at 𝜎 in 𝐺, it follows that 𝐵𝜎  is a 𝑑-joint and 

two-cyclic at 𝜎 in 𝐺𝜎  if and only if 𝐵 − 𝜎 is 

connected, two-cyclic with 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) =∣

𝑉(𝐵) − 1. 

Proof. Assume 𝐵 be a 𝑐-joint at 𝜎 in 𝐺 and 𝐵𝜎  is a 

𝑑-joint and two-cyclic at 𝜎 in 𝐺𝜎 . By Theorem 1.5, 

we have 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) =∣ 𝑉(𝐵) − 1 and 𝐵 − 𝜎 is 

connected. Since 𝑢𝑣 ∈ 𝐸(𝐺) and 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) =

∣ 𝑉(𝐵) − 1, 𝐵 is a total joint at 𝜎 in 𝐺. Hence, 𝐵𝜎 =

𝐾2 ∪ (𝐵 − 𝜎) and so 𝐵 − 𝜎 is two-cyclic as 𝐵𝜎  is 

two-cyclic. 

 

Conversely, Assume 𝐵 − 𝜎 is connected, two-cyclic 

and 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) = |𝑉(𝐵)| − 1. According to 

Theorem 1.5, 𝐵𝜎  is a 𝑑-joint at 𝜎 in 𝐺𝜎 . Since 𝐵𝜎  is 

𝑑-joint with 𝑑𝐵(𝑢) = 𝑑𝐵(𝑣) =∣ 𝑉(𝐵) − 1, 𝐵𝜎 =

𝐾2 ∪ (𝐵 − 𝜎), where 𝐾2 is the edge of 𝑢𝑣. Since 

𝐵 − 𝜎 is two-cyclic, 𝐵𝜎  is also two-cyclic. Hence, 

we obtain the desired result. 

Corollary 2.3. Consider a graph 𝐺 such that 

|𝑉(𝐺)| = 𝑝 ≥ 5 with 𝜎 = {𝑢, 𝑣} ⊆ 𝑉(𝐺) such that 

𝑢𝑣 ∈ 𝐸(𝐺). Define 𝑀 as the set of nodes in 𝐺 that 

are not neighbors of 𝑢, and 𝑁 similarly for 𝑣. If 𝐺 is 

a 𝑐-joint at 𝜎, it follows that 𝐺𝜎  is a 𝑑-joint and two-

cyclic at 𝜎 if and only if 𝐺 − 𝜎 is connected, two-

cyclic with 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 𝑝 − 1. 

Example 2.4. Assume the graph 𝐺, having 8 

vertices, as depicted in figure 2.1. In this graph, 𝐺 is 

a c-joint at the vertex set 𝜎 = {𝑢, 𝑣}, where the 

degree of the vertices satisfy 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) =

|𝑉(𝐺)| − 1 = 7. The graph 𝐺𝜎  is illustrated in 

figure 2.2 is a 𝑑-joint at 𝜎. Clearly, 𝐺𝜎  is a 

disconnected and two-cyclic graph. 
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Theorem 2.5. Assume 𝐺 is a connected graph with |𝑉(𝐺)| = 𝑝 ≥ 5 containing exactly two cycles for which 𝜎 =

{𝑢, 𝑣} ⊆ 𝑉(𝐺), where 𝑢𝑣 ∉ 𝐸(𝐺) and 𝐺 − 𝜎 is connceted. Then 𝐺 has a 2 -vetex self switching at 𝜎 if and only 

if 𝐺 is either 𝐴(𝑇4), 𝐶3(𝑢)[0, 𝐶4, 0] or 𝐶3(𝑢)[0,0, 𝐶4] with 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 2. 

Proof. Let 𝐺 denote a connected graph containing exactly two cycles. Let 𝜎 = {𝑢, 𝑣} ⊆ 𝑉(𝐺) be a 2-vertex self 

switching of graph 𝐺. Then 𝐺 ≅ 𝐺𝜎  and so 𝐺𝜎  is connceted and two-cyclic. 

Let 𝑀 and 𝑁 represent the set of non-adjacent vertices of 𝑢 and 𝑣, respectively in 𝐺. Since 𝑢𝑣 ∉ 𝐸(𝐺), by Theorem 

1.6, |𝑉(𝐺)| ≥ 5 and either 𝐺 − 𝜎 is connected, acyclic, 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 4 and the path formed by 

elements of 𝑀 and by elements of 𝑁 have either at most one vertex in common for 𝑀 ∩ 𝑁 = 𝜑 or the vertex 𝑎 in 

common for 𝑀 ∩ 𝑁 = {𝑎} or 𝐺 − 𝜎 is connected, unicyclic, {𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} = {|𝑉(𝐺)| − 4, |𝑉(𝐺)| − 3} and for 

|𝑀 − {𝑣}| = 2 and |𝑁 − {𝑢}| = 1(|𝑀 − {𝑣}| = 1 and |𝑁 − {𝑢}| = 2) either the elements of 𝑀(𝑁) do not lie on 

the cycle of 𝐺 − 𝜎 and the unique path between them intersects the cycle in no more than one vertex or one of the 

elements of 𝑀(𝑁), say 𝑎, lies on the cycle and the unique path between them intersects the cycle only at vertex 𝑎 

or 𝐺 − 𝜎 is connected, two-cyclic and 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 3. 

Case 1. 𝐺 − 𝜎 is connected, acyclic, 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 4 and the path formed by elements of 𝑀 and by 

elements of 𝑁 have either at most one vertex in common for 𝑀 ∩ 𝑁 = 𝜑 or the vertex 𝑎 in common for 𝑀 ∩ 𝑁 =

{𝑎}  

If |𝑉(𝐺)| = 5, then |𝑉(𝐺) − 𝜎| = 5 − 2 = 3. 𝐺 − 𝜎 = 𝑃3, Since 𝐺 − 𝜎 is acyclic and connected. Moreover 

𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 1 refers that 𝐺 is either 𝑃5 or 𝑃3(0,2𝑃2, 0) or 𝑃3(2𝑃2, 0,0) or 𝑃3(𝑃2, 𝑃2, 0). This leads to a 

contradiction, 

since 𝐺 is assumed to be two-cyclic. Therefore, it must be |𝑉(𝐺)| ≥ 6. 

 

If |𝑉(𝐺)| ≥ 7, then 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) ≥ 3 and |𝑉(𝐺) − 𝜎| ≥ 5. Therefore there exist minimum three vertices, say, 

𝛾, Λ and Δ in 𝐺 − 𝜎 implies 𝑢 is neighbor of 𝛾, Λ and Δ. Since 𝐺 − 𝜎 is connected, the edges 𝑢𝛾, 𝑢Λ and 𝑢Δ and 

the paths 𝛾 − Λ, −Δ and 𝛾 − Δ yielding at least three distinct cycles in 𝐺, contradiction to 𝐺 being two-cyclic. 

Therefore, |𝑉(𝐺)| = 6. This implies that 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 6 − 4 = 2 and |𝑉(𝐺) − 𝜎| = 6 − 2 = 4. Since 𝐺 −

𝜎 is connected and acyclic, 𝐺 − 𝜎 is either 𝑃4 or 𝐾1,3. The possible two-cyclic graphs that are not-isomorphic on 

6 vertices with 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = 2 are 𝐴(𝑇4), 𝐶3(𝑣)[0, 𝑃2, 𝐶3], 𝐶3(𝑢)[0, 𝐶4, 0], 𝐶3(𝑢)[0,0, 𝐶4], 𝐶3(𝑢)[0,0, 𝑃2 ∪ 𝐶3] 

which are given in figures 2.3,2.5,2.7,2.9 and 2.11. 
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The switching graphs of 

𝐴(𝑇4), 𝐶3(𝑣)[0, 𝑃2, 𝐶3], 𝐶3(𝑢)[0, 𝐶4, 0], 𝐶3(𝑢)[0,0, 𝐶4] 

and 𝐶3(𝑢)[0,0, 𝑃2 ∪ 𝐶3] are given in figures 

2.4,2.6,2.8,2.10 and 2.12. 

It is evident that the graphs 𝐴(𝑇4), 𝐶3(𝑢)[0, 𝐶4, 0] and 

𝐶3(𝑢)[0,0, 𝐶4] are the graphs that obtained from a 2 -

vertex self switching at the vetrex set 𝜎 = {𝑢, 𝑣}. 

Case 2. 𝐺 − 𝜎 is connected, unicyclic, 

{𝑑𝐺(𝑢), 𝑑𝐺(𝑣)} = {|𝑉(𝐺)| − 4, |𝑉(𝐺)| − 3} and for 

|𝑀 − {𝑣}| = 2 and |𝑁 − {𝑢}| = 1(|𝑀 − {𝑣}| = 1 

and |𝑁 − {𝑢}| = 2) either the elements of 𝑀(𝑁) do 

not lie on the cycle of 𝐺 − 𝜎 and the unique path 

between them intersects the cycle in no more than 

one vertex or one of the elements of 𝑀(𝑁), say 𝑎, 

lies on the cycle and the unique path between them 

intersects the cycle only at vertex 𝑎. 

Let 𝑑𝐺(𝑢) = |𝑉(𝐺)| − 3 and 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 4. 

Let 𝐶 represent the only cycle in 𝐺 − 𝜎. 

If |𝑉(𝐺)| ≥ 6, then |𝑉(𝐺) − 𝜎| ≥ 4. Also 𝑑𝐺(𝑢) =

|𝑉(𝑅)| − 3 ≥ 3 and 𝑑𝐺(𝑣) = |𝑉(𝑅)| − 4 ≥ 2. 

Since 𝑑𝐺(𝑢) ≥ 3, there exist minimum three 

vertices, say 𝛼, Γ and Δ, in 𝐺 − 𝜎 implies that 𝑢𝛼, 𝑢Γ 

and 𝑢Δ are the edges in 𝐺. Since 𝐺 − 𝜎 remains 

connected, the paths 𝛼 − Γ, Γ − Δ and 𝛼 − Δ can be 
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found in 𝐺 − 𝜎. Now the edges 𝑢𝛼, 𝑢Γ and 𝑢Δ and 

the paths 𝛼 − Γ, Γ − Δ and 𝛼 − Δ form minimum 

three cycles that are distinct from 𝐶. This contradicts 

𝐺 is two-cyclic and hence |𝑉(𝐺)| = 5 

Now |𝑉(𝐺 − 𝜎)| = 3. Since 𝐺 − 𝜎 is unicyclic, 𝐺 −

𝜎 = 𝐶3. Also 𝑑𝐺(𝑢) = |𝑉(𝐺)| − 3 = 2 and 

𝑑𝐺(𝑣) = |𝑉(𝐺)| − 4 = 1. Since 𝑑𝐺(𝑢) = 2, 𝑢 is 

neighbor of exactly a pair of vertices, say 𝛼 and 𝛾, 

in 𝑉(𝐺) − 𝜎, thus 𝑢𝛼 and 𝑢𝛾 are edges in 𝐺. Figure 

2.13 presents the unique graph of order 5 with 

exactly two cycles. As this graph lacks any vertex of 

degree 1 , no connected 5 -vertex graph with exactly 

two cycles allows  a 2 -vertex self-switching 

 

Case 3. 𝐺 − 𝜎 is connected, two-cyclic and 

𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) = |𝑉(𝐺)| − 3 

 

𝐺 − 𝜎 is two-cyclic implies that |𝑉(𝐺 − 𝜎)| ≥ 5 

and so ∣ 𝑉(𝐺) ≥ 7. Now 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣) =

|𝑉(𝐺)| − 3 ≥ 4. Since 𝑑𝐺(𝑢) ≥ 4, there exist 

minimum four vertices, say 𝛼′, 𝛽′, 𝛾′ and 𝛿′ in 

𝑉(𝐺) − 𝜎, and for which the edges 𝑢𝛼′, 𝑢𝛽′, 𝑢𝛾′ 

and 𝑢𝛿′ belong to 𝐺. Since 𝐺 − 𝜎 contains exactly 

two cycles, label these cycles as 𝐶1 and 𝐶2, which 

are also in 𝐺. Now the edges 𝛼′𝑢 and 𝑢𝛽′ together 

with the 𝛽′ − 𝛼′ path create a cycle in 𝐺 distinct 

from 𝐶1 and 𝐶2. This contradicts 𝐺 is two-cyclic 

and so the case does not exist. 

Conversely, Consider a connected graph 𝐺 such that 

|𝑉(𝐺)| = 𝑝 ≥ 5 with exactly two cycles, where 𝜎 =

{𝑢, 𝑣} ⊆ 𝑉(𝐺) be non-empty for which 𝐺 − 𝜎 

remains connected and for 𝑢𝑣 ∉ 𝐸(𝐺), 𝐺 is either 

𝐴(𝑇4), 𝐶3(𝑢)[0, 𝐶4, 0] or 𝐶3(𝑢)[0,0, 𝐶4] with 𝑑𝐺(𝑢) =

𝑑𝐺(𝑣) = 2. 

It is evident for every graph 𝐺, the set 𝜎 = {𝑢, 𝑣} 

constitutes a 2 -vertex self switching of 𝐺. 

3 Conclusion 

This article establishes a condition for a graph 𝐺 

such that 𝐺𝜎  is disconnected and two-cyclic. 

Furthermore, we provide a characterization of 

graphs that are connected and two-cyclic that allow 

a 2 -vertex self-switching. 
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