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Abstract: For a graph 𝐺(𝑉, 𝐸),  duplication of a vertex 𝑢  of a graph 𝐺 produces new graph 

𝐷(𝑢𝐺) by adding a new vertex 𝑢′ such that 𝑁(𝑢′) = 𝑁(𝑢). A k-vertex duplication of a graph 𝐺 

produces new graph 𝐷((𝑢1, 𝑢2, … . , 𝑢𝑘)𝐺) by adding 𝑘 new vertices 𝑢1′, 𝑢2′, … . , 𝑢𝑘′ as the 

duplication of any 𝑘 vertices 𝑢1, 𝑢2, … . , 𝑢𝑘  of 𝐺 such that 𝑁(𝑢𝑖
′) = 𝑁(𝑢𝑖). σ = {𝑢1, 𝑢2, … . , 𝑢𝑘} ⊆

 V(G) is called a 𝑘-vertex duplication self switching of graph 𝐺 if 𝐷(𝜎𝐺) ≅ 𝐷(𝜎𝐺)𝜎. The set of all 

𝑘-vertex duplication self switching of 𝐺 is denoted by 𝑑𝑆𝑆𝑘(𝐺) and the number of elements in the 

set is denoted by 𝑑𝑠𝑠𝑘(𝐺). When 𝑘 =3, it is called as 3-Vertex Duplication Self Switching. In this 

paper, we provide the necessary and sufficient conditions needed for a graph to be 3-vertex 

duplication self switching. We also find 𝑑𝑠𝑠3(𝐺) of path, cycle and complete graph. 
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    1 Introduction 

 

For a finite undirected Graph 𝐺(𝑉, 𝐸)  with 

|𝑉| = 𝑝 and a non-empty set σ ⊆ 𝑉 , the 

switching of 𝐺 by σ is defined as the graph 

𝐺𝜎(𝑉, 𝐸′), which is obtained from 𝐺 by 

removing all edges between σ and its 

complement  𝑉 −  σ  and adding as edges all 

non-edges between σ and 𝑉 −  σ. Switching 

was defined by Seidel, which is also known as 

seidel switching [1]. A subset σ of 𝑉(𝐺) is said 

to be self switching if  𝐺 ≅ 𝐺𝜎  and it is called 

as |σ|-vertex self switching. When |σ|=3, it is 

called as 3-vertex self switching [5]. The 

concept of 𝑘-vertex duplication self switching 

was introduced by Jayasekaran and Athithiya 

[4]. A 𝑘-vertex duplication of a graph 𝐺 

produces a new graph 𝐷((𝑢1, 𝑢2, … . , 𝑢𝑘)𝐺) by 

adding 𝑘 new vertices 𝑢1′, 𝑢2′,… . , 𝑢𝑘′ as the 

duplication of any 𝑘 vertices 𝑢1, 𝑢2, … . , 𝑢𝑘  of 𝐺 

such that 𝑁(𝑢𝑖
′) = 𝑁(𝑢𝑖). A subset σ =

{𝑢1 , 𝑢2, … . , 𝑢𝑘} of 𝑉(𝐺)  is called a 𝑘-vertex 

duplication self switching of graph G if 

𝐷(𝜎𝐺) ≅ 𝐷(𝜎𝐺)𝜎. The set of all 𝑘-vertex 

duplication self switching is denoted by 

𝑑𝑆𝑆𝑘(𝐺) and the number of elements in the set 

is denoted by 𝑑𝑠𝑠𝑘(𝐺). When 𝑘 =1, it is called 

as duplication self vertex switching. The 

concept of duplication self vertex switching 

was introduced by Jayasekaran and Prabavathy 

[3]. When 𝑘=3, it is called as 3-vertex 

duplication self switching. In this paper, we 

provide the necessary and sufficient conditions 

needed for a graph to be 3-vertex duplication 

self switching. We also find 𝑑𝑠𝑠3(𝐺) of path, 

cycle and complete graph. 

 

   2  Preliminaries 

 

Definition 2.1. [4]  A 𝑘-vertex duplication of a 

graph 𝐺 produces a new graph 𝐺′ by adding 𝑘 

new vertices 𝑢1′, 𝑢2′,… . , 𝑢𝑘 ′  as the duplication 

of any 𝑘 vertices 𝑢1 , 𝑢2 , … . , 𝑢𝑘  of 𝐺 such that 

𝑁(𝑢𝑖
′) = 𝑁(𝑢𝑖). The new graph obtained after 

duplication of the 𝑘 vertices is denoted by 

𝐷((𝑢1, 𝑢2, … . , 𝑢𝑘)𝐺). If σ = {𝑢1, 𝑢2, … . , 𝑢𝑘}, 
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then the duplication of 𝐺 by 𝜎 is denoted by 

𝐷(𝜎𝐺). 

Definition 2.2. [4]  𝜎 = {𝑢1, 𝑢2, … . , 𝑢𝑘} ⊆

 𝑉(𝐺) is called a 𝑘-vertex duplication self 

switching of a graph G if 𝐷(𝜎𝐺) ≅ 𝐷(𝜎𝐺)𝜎. 

The set of all 𝑘-vertex duplication self 

switching of 𝐺 is denoted by 𝑑𝑆𝑆𝑘(𝐺). The 

number of k-vertex duplication self switchings 

is denoted by 𝑑𝑠𝑠𝑘(𝐺). 

Definition 2.3. [3]  If 𝑣 is a duplication self 

vertex switching of a graph 𝐺 of order 𝑝, then 𝑝 

is even and deg𝐺(𝑣) =
𝑝

2
 . 

Definition 2.4. [5]  If 𝜎 is a 3-vertex self switching of 𝐺, then 

𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) =

{
 
 
 

 
 
 
3𝑝 − 5

2
𝑖𝑓 𝐺[𝜎] = 𝐾1 ∪ 𝐾2

3𝑝 − 1

2
         𝑖𝑓 𝐺[𝜎] = 𝑃3

3𝑝 + 3

2
         𝑖𝑓 𝐺[𝜎] = 𝐾3

3𝑝 − 9

2
         𝑖𝑓 𝐺[𝜎] = 𝐾3̅̅̅̅

 

Definition 2.5. [5]  Let 𝐺 be a graph and let 

𝜎 = {𝑢, 𝑣,𝑤} ⊂ 𝑉(𝐺) be a 3-vertex self 

switching of 𝐺. Then the number of edges 

between the vertices of 𝜎 and 𝑉 − 𝜎 in 𝐺 is 
3(𝑝−3)

2
. 

Definition 2.1. [6]  If 𝐺 is a tree with order 𝑝 

and size 𝑞, then 𝑞 = 𝑝 − 1. 

 

3 Main Results 

 

Definition 3.1. A 3-vertex duplication of a 

graph 𝐺 produces a new graph 𝐺′ by adding 

three vertices 𝑢′, 𝑣′, 𝑤′ as the duplication of any 

three vertices 𝑢, 𝑣,𝑤 of 𝐺 such that all the 

vertices which are adjacent to 𝑢, 𝑣,𝑤 are also 

adjacent to 𝑢′ , 𝑣′, 𝑤′ respectively. It is denoted 

by 𝐷((𝑢, 𝑣,𝑤)𝐺).  

  
 

Definition 3.2. 𝜎 = {𝑢, 𝑣,𝑤} ⊆ 𝑉(𝐺)  is called 

a 3-vertex duplication self switching of a graph 

𝐺 if 𝐷(𝜎𝐺) ≅ 𝐷(𝜎𝐺)𝜎. The set of all 3-vertex 

duplication self switching of G is denoted by 

𝑑𝑆𝑆3(𝐺). The number of 3-vertex duplication 

self switchings is denoted by 𝑑𝑠𝑠3(𝐺). 

Example 3.3. Consider the graph 𝐺 given in 

figure 3. Let 𝜎 = {𝑢, 𝑣,𝑤} ⊆ 𝑉(𝐺). The graphs 

𝐷(𝜎𝐺) and 𝐷(𝜎𝐺)𝜎 are given in figure 4 and 

figure 5 respectively. Clearly, 𝐷(𝜎𝐺) ≅

𝐷(𝜎𝐺)𝜎and hence 𝜎 is a 3-vertex duplication 

self switching of graph 𝐺. 
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Result 3.4. Let 𝐺 be a (𝑝, 𝑞) graph. Then 

𝐷((𝑢, 𝑣,𝑤)𝐺) is a (𝑝 + 3, 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤)) graph. 

Theorem 3.5. Let 𝜎 = {𝑢, 𝑣,𝑤} ⊆ 𝑉(𝐺). Then 

deg𝐷(𝜎𝐺)(𝑢) + 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) +

deg𝐷(𝜎𝐺)(𝑤) = deg𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) +

deg𝐺(𝑤) + 𝑖  where 𝑖 = 0,2,4,6 for 𝐺[𝜎] =

𝐾3̅̅̅̅ , 𝐾1 ∪ 𝐾2, 𝑃3, 𝐾3, respectively. 

Proof. Let 𝐺 be the given graph. Let 𝜎 =

{𝑢, 𝑣,𝑤} ⊆ 𝑉(𝐺). Let 𝐷(𝜎𝐺) be a 3-vertex 

duplication of graph 𝐺. Let 𝑢′, 𝑣′, 𝑤′ be the 

duplication vertices of 𝑢, 𝑣 and 𝑤 respectively. 

We consider the following four cases. 

Case 1. 𝐺[𝜎] = 𝐾3̅̅̅̅  

 𝑢 is non-adjacent to both 𝑣 and 𝑤 in 𝐺 

implies that 𝑢′ is non-adjacent to both 𝑣 and 𝑤 

in 𝐷(𝜎𝐺) and so 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑢)= 𝑑𝑒𝑔𝐺(𝑢). 

Similarly, 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) = 𝑑𝑒𝑔𝐺(𝑣)  and 

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑤) = 𝑑𝑒𝑔𝐺(𝑤). Hence, 

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑢) + 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) +

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑤) =  𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) +

𝑑𝑒𝑔𝐺(𝑤)  . 

Case 2. 𝐺[𝜎] =  𝐾1 ∪ 𝐾2 

 Let 𝐾2 be 𝑢𝑣 and consider 𝑤 be the 

vertex of 𝐾1 which is not adjacent to both 𝑢 and 

𝑣. Since 𝑢 is adjacent to 𝑣 in 𝐺, 𝑢′ is adjacent 

to 𝑣 in 𝐷(𝜎𝐺). Similarly, 𝑣′  is adjacent to 𝑢 in 

𝐷(𝜎𝐺). Therefore, 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑢)= 𝑑𝑒𝑔𝐺(𝑢) +

1 and 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣)= 𝑑𝑒𝑔𝐺(𝑣) + 1. Since 𝑤 is 

non-adjacent to both 𝑢 and 𝑣, the vertex 𝑤′ is 

non-adjacent to both 𝑢 and 𝑣 and so 

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑤) = 𝑑𝑒𝑔𝐺(𝑤). Hence 

deg𝐷(𝜎𝐺)(𝑢) + 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) + deg𝐷(𝜎𝐺)(𝑤) =

 deg𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) + deg𝐺(𝑤)  + 2. 

Case 3. 𝐺[𝜎] = 𝑃3 

 Let 𝑃3 be 𝑢𝑣𝑤. Since 𝑣 is adjacent to 

both 𝑢 and 𝑤 in 𝐺, 𝑣′ is adjacent to both 𝑢 and 

𝑤 in 𝐷(𝜎𝐺). As, 𝑢 and 𝑤 are adjacent to 𝑣 in 

𝐺, both 𝑤′ and 𝑢′ are adjacent to 𝑣 in 𝐷(𝜎𝐺). 

This implies that 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑢)=𝑑𝑒𝑔𝐺(𝑢) +
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1,𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑤)=𝑑𝑒𝑔𝐺(𝑤) + 1, 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣)= 

𝑑𝑒𝑔𝐺(𝑣) + 2. Hence deg𝐷(𝜎𝐺)(𝑢) +

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) + deg𝐷(𝜎𝐺)(𝑤) = 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤)  + 4. 

Case 4. 𝐺[𝜎] = 𝐾3 

 Since 𝑢 is adjacent to both 𝑣 and 𝑤 in 

𝐺, 𝑢′ is adjacent to both 𝑣 and 𝑤 in 𝐷(𝜎𝐺). 

Similarly, 𝑣′ is adjacent to both 𝑢 and 𝑤, 𝑤′ is 

adjacent to both 𝑢 and 𝑣 in 𝐷(𝜎𝐺). This implies 

that 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑢)= 𝑑𝑒𝑔𝐺(𝑢) + 2, 

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣)= 𝑑𝑒𝑔𝐺(𝑣) + 2, 𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑤)= 

𝑑𝑒𝑔𝐺(𝑤) + 2. Hence deg𝐷(𝜎𝐺)(𝑢) +

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) + deg𝐷(𝜎𝐺)(𝑤) = deg𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + deg𝐺(𝑤)  + 6. 

Hence theorem follows from above 

four cases. 

Theorem 3.6.   If 𝜎 is a 3-vertex duplication 

self switching of 𝐺, then 

𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝

2
. 

Proof. Let 𝜎 = {𝑢, 𝑣,𝑤} be a 3-vertex 

duplication self switching of 𝐺. Then σ is a 3-

vertex self switching of the graph 𝐷(𝜎𝐺) of 

order p+3. Now, 𝐷(𝜎𝐺)[𝜎] is either  𝐾3̅̅̅̅  or 

 𝐾1 ∪ 𝐾2 or 𝑃3 or 𝐾3. 

Case 1. 𝐷(𝜎𝐺)[𝜎] = 𝐾3̅̅̅̅    

           By Theorem 2.4, deg𝐷(𝜎𝐺)(𝑢) +

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) +  𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑤) 

= 
3(𝑝+3)−9

2
 =  

3𝑝

2
.  Since 𝐺[𝜎] = 𝐷(𝜎𝐺)[𝜎], 

𝐺[𝜎] = 𝐾3̅̅̅̅ . By Theorem 3.5, 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝

2
. 

Case 2. 𝐷(𝜎𝐺)[𝜎] =  𝐾1 ∪ 𝐾2      

      Let 𝐾2 be 𝑢𝑣 and consider 𝑤 be the 

vertex of 𝐾1 which is not adjacent to both 𝑢 and 

𝑣.  By Theorem 2.4, we have, deg𝐷(𝜎𝐺)(𝑢) +

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) +𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑤) =  
3(𝑝+3)−5

2
  =

 
3𝑝+4

2
. Since 𝐺[𝜎] = 𝐷(𝜎𝐺)[𝜎], 𝐺[𝜎] =  𝐾1 ∪

𝐾2. By Theorem 3.5, 𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) +

𝑑𝑒𝑔𝐺(𝑤) = 
3p+4

2
  which implies 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝

2
. 

Case 3. 𝐷(𝜎𝐺)[𝜎] = 𝑃3 

 By Theorem 2.4, deg𝐷(𝜎𝐺)(𝑢) +

𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑣) +  𝑑𝑒𝑔𝐷(𝜎𝐺)(𝑤) =
3(𝑝+3)−1

2
 =

 
3𝑝+8

2
. Since 𝐺[𝜎] = 𝐷(𝜎𝐺)[𝜎], 𝐺[𝜎] = 𝑃3. By 

Theorem 3.5, 𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) +

𝑑𝑒𝑔𝐺(𝑤)  =  
3𝑝+8

2
   which implies 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝

2
. 

Case 4. 𝐷(𝜎𝐺)[𝜎] =   𝐾3 

           By Theorem 2.4, 𝑑𝑒𝑔{𝐷(𝜎𝐺)}(𝑢) +

𝑑𝑒𝑔{𝐷(𝜎𝐺)}(𝑣)𝑑𝑒𝑔{𝐷(𝜎𝐺)}(𝑤) =
3(𝑝+3)+3

2
 =

 
3𝑝+12

2
. Since 𝐺[𝜎] = 𝐷(𝜎𝐺)[𝜎], 𝐺[𝜎] = 𝐾3.  

By Theorem 3.5, 𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) +

𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝+12

2
  which implies 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝

2
. 

 Hence theorem follows from 

above four cases. 

Remark 3.7. The converse of the above 

theorem is not necessarily true. 

 Consider the cycle graph 𝐺 = 𝐶4  given 

in figure 6. Let 𝜎 = {𝑢, 𝑣,𝑤} ⊆ 𝑉(𝐺).  Here 

𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 2 + 2 +

2 = 6 =
3(4)

2
=

3𝑝

2
 . The graph 𝐷(𝜎𝐺) and 

𝐷(𝜎𝐺)𝜎  are given in figure 7 and figure 8 

respectively. Clearly, 𝐷(𝜎𝐺) is not isomorphic 

to 𝐷(𝜎𝐺)𝜎 and hence 𝜎 is not a 3-vertex 

duplication self switching of 𝐺. 
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Theorem 3.8. Let 𝐺 be a (𝑝, 𝑞) 

graph and let 𝜎 ⊆ 𝑉(𝐺) be a 3-vertex 

duplication self switching of 𝐺. Then the 

number of edges between the vertices of 𝜎 and 

𝑉(𝐷(𝜎𝐺)) − 𝜎 in 𝐷(𝜎𝐺) is 
3𝑝

2
. 

Proof. Let 𝜎 ⊆ 𝑉(𝐺)  be a 3-vertex duplication 

self switching of 𝐺. Then 𝜎 is a 3-vertex self 

switching of 𝐷(𝜎𝐺) of order 𝑝 + 3 and so 

𝐷(𝜎𝐺) ≅ 𝐷(𝜎𝐺)𝜎. By Theorem 2.5, the 

number of edges between the vertices of 𝜎 and 

𝑉(𝐷(𝜎𝐺)) − 𝜎 in 𝐷(𝜎𝐺) is 
3(𝑝+3−3)

2
=

3𝑝

2
. 

Corollary 3.9. If a graph has a 3-vertex 

duplication self switching, then the order of the 

graph is even. 

Proof. Let 𝐺 be a (𝑝, 𝑞) graph and 𝜎 ⊆ 𝑉(𝐺) be 

a 3-vertex duplication self switching of 𝐺. By 

Theorem 3.8, 
3𝑝

2
 is an integer and therefore 𝑝 is 

even. 

Theorem 3.10. If 𝐺 is a graph with odd size, 

then the line graph 𝐿(𝐺) has no 3-vertex 

duplication self switching. 

Proof. Let 𝐺 be a graph with odd size. By 

definition of line graph 𝐿(𝐺), edges of 𝐺 are the 

vertices of 𝐿(𝐺). Since 𝐺 has odd number of 

edges, 𝐿(𝐺) has odd number of vertices. By 

Corollary 3.9, 𝐿(𝐺) has no 3-vertex duplication 

self switching. 

Theorem 3.11. Let 𝐺 be a self complementary 

graph with |𝑉(𝐺)| = 4𝑛, 𝑛 ∈ 𝑁 and 𝑛 is odd. 

 Then 𝐿(𝐺) and 𝐿(𝐺̅) have no 3-vertex 

duplication self switching. 

Proof. Let 𝐺 be a self complementary graph 

with |𝑉(𝐺)| = 4𝑛, 𝑛 ∈ 𝑁 and 𝑛 is odd. Then 

𝐺 ≅ 𝐺̅ and |𝐸(𝐺)|  =  |𝐸(𝐺̅)|. Since |𝐸(𝐺)|  +

|𝐸(𝐺̅)| = (
𝑝
2
), 2|𝐸(𝐺)|  =  

4𝑛(4𝑛−1) 

2
  and 

so|𝐸(𝐺)|  =  𝑛(4𝑛 − 1). Hence both 𝐺 and 𝐺̅ 

have odd number of edges and so both L(G) and 

L(G) have odd number of vertices. By 

Corollary 3.9, 𝐿(𝐺) and 𝐿(𝐺̅)  have no 3-vertex 

duplication self switching.   

Theorem 3.12.  Let 𝐺 be (𝑝, 𝑞) tree with 𝑝 is 

even. Then 𝐿(𝐺)  has no 3-vertex duplication 

self switching. 

Proof. Let 𝐺 be a tree with even order 𝑝. By 
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Theorem 3.6, 𝑞 = 𝑝 − 1 is odd. By Theorem 

3.10, 𝐿(𝐺) has no 3-vertex duplication self 

switching.           

Theorem 3.13. If eulerian graph has a 3-vertex 

duplication self switching, then the order of the 

graph is multiple of 4.  

Proof.  Let 𝐺 be an eulerian graph and 𝜎 =

{𝑢, 𝑣,𝑤} ⊆ 𝑉(𝐺) be a 3-vertex duplication self 

switching of 𝐺. By Theorem 3.6, 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝

2
. Since 𝐺 is eulerian, 

all vertices are of even degree. This implies that 
3𝑝

2
 is even and therefore 𝑝 = 4𝑛, 𝑛 ∈ 𝑁. 

Theorem 3.14. 𝑑𝑠𝑠3(𝑃𝑝)  = 0 for 𝑝 ≥ 3 

Proof.   Let 𝐺 = 𝑃𝑝 be the path graph with 𝑝 

vertices and 𝑝 − 1 edges. Let 𝜎 = {𝑢, 𝑣,𝑤} ⊆ 

𝑉(𝐺) be a 3-vertex duplication self switching of 

𝐺. By Theorem 3.6, 𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) +

𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝

2
. If 𝑝 ≥ 6, then 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 
3𝑝

2
 ≥

3(6)

2
 =9. But for 

any three vertices 𝑢, 𝑣 and 𝑤 in 𝑃𝑝, 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) ≤  6  which is a 

contradiction. Hence, 𝑑𝑠𝑠3(𝐺)  = 0 for 𝑝 ≥ 6. 

So we calculate 𝑑𝑠𝑠3(𝐺)  for 3 ≤  𝑝 ≤  5. If 𝑝 ∈

 {3,5}, then by Corollary 3.9, 𝐺 has no 3-vertex 

duplication self switching. Let us calculate 

𝑑𝑠𝑠3(𝐺) for 𝑝 = 4 But there is no possibility of 

choosing three vertices 𝑢, 𝑣,𝑤 such that 

𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 6 =
3𝑝

2
. 

Hence, 𝑑𝑠𝑠3(𝑃𝑝)  = 0. 

Theorem 3.15. 𝑑𝑠𝑠3(𝐶𝑝)  = 0 for 𝑝 ≥ 3 

Proof. Let 𝐺 = 𝐶𝑝  be the cycle graph with 𝑝 

vertices and 𝑝 edges. Let 𝜎 = {𝑢, 𝑣,𝑤} ⊆ 𝑉(𝐺). 

Since 𝐶𝑝 is a 2-regular graph, for any three 

vertices 𝑢, 𝑣 and 𝑤 in 𝐶𝑝, 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 6. If 𝑝 is odd, then by 

Corollary 3.9, 𝐺 has no 3-vertex duplication 

self switching. Let us calculate 𝑑𝑠𝑠3(𝐺) for 

even number of vertices. Now, 𝑑𝑒𝑔𝐺(𝑢) +

𝑑𝑒𝑔𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) = 6 =
3𝑝

2
 for 𝑝 = 4 only.    

 
The graphs 𝐷(𝜎𝐺) and 𝐷(𝜎𝐺)𝜎 are 

given in figure 10 and figure 11 respectively. In 

𝐷(𝜎𝐺)𝜎, the vertex 𝑣′ has degree one whereas 

𝐷(𝜎𝐺) has no vertex of degree one. Clearly, 

𝐷(𝜎𝐺) is not isomorphic to 𝐷(𝜎𝐺)𝜎 and so 𝜎 is 

not a 3-vertex duplication self switching of 𝐺. 

Hence,  𝑑𝑠𝑠3(𝐶𝑝)  = 0. 

Theorem 3.16. 𝑑𝑠𝑠3(𝐾𝑝)  = 0 for 𝑝 ≥ 3 

Proof.    Let 𝐺 = 𝐾𝑝   be  the  complete  graph  

with  𝑝 vertices.  Let 𝜎 = {𝑢, 𝑣,𝑤}  ⊆   𝑉(𝐺)  

so  that  𝑝 ≥ 3.  Since  degree  of  each  vertex  

in 𝐾𝑝  is  𝑝 − 1,  for  any   three vertices  𝑢, 𝑣  

and  𝑤  in  𝐾𝑝,  𝑑𝑒𝑔𝐺(𝑢) +   

𝑑𝑒𝑔𝐺(𝑢) + 𝑑𝑒𝑔𝐺(𝑤) = 3𝑝 − 3. If 𝑝 is odd, 

then by Corollary 3.9, 𝐺 has no 3-vertex 

duplication self switching. Let us calculate 

𝑑𝑠𝑠3(𝐺) for even number of vertices. If 𝜎  is a 

3-vertex duplication self switching of 𝐺, then 

𝑑𝑒𝑔𝐺(𝑢) + deg𝐺(𝑣) + 𝑑𝑒𝑔𝐺(𝑤) =
3𝑝

2
 and so 

3𝑝 − 3=
3𝑝

2
 implies that 𝑝 = 2 which is 

contradiction. Hence, 𝑑𝑠𝑠3(𝐾𝑝)  = 0. 
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