International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING

ISSN:2147-6799 www.ijisae.org

Original Research Paper

k-vertex Anti-duplication Self Switching of Graphs

C. Jayasekaran¹, M. S. Thamarai²

Submitted:06/11/2024 Revised:14/12/2024 Accepted:24/12/2024

Abstract: For a finite undirected graph G(V, E) and a non-empty set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E')$ which is obtained from G by removing all edges between σ and its complement $V - \sigma$ and adding as edges all non-edges between σ and $V - \sigma$. If $G \cong G^{\sigma}$, then σ is called as self switching of G and if $\sigma \models k$, then it is called as K-vertex self switching. The set of all K-vertex self switchings of G is denoted by $SS_k(G)$ and its cardinality by $SS_k(G)$. K-vertex anti-duplication of the K vertices $V_i \in \sigma$ ($1 \le i \le K$) produces a new graph G' by adding new vertices V_i' ($1 \le i \le K$) such that $N_{G'}(V_i') = \left[N_G[v_i]\right]^c$ for $1 \le i \le K$. This paper explores the characteristics of K-vertex anti-duplication, propose the concept of K-vertex anti-duplication self switching and analyzes its associated properties.

Keywords: k-vertex self switching, anti-duplication, k-vertex anti-duplication switching, k-vertex anti-duplication self switching, $AD(\sigma G)$

AMS Subject Classification: 05C38, 05C60.

Introduction

Lint and Seidel introduced the concept of switching in 1966. For a finite undirected graph G(V, E) and a non-empty set $\sigma \subseteq V$, the switching of G by σ is defined as the graph $G^{\sigma}(V, E')$ which is obtained from G by removing all edges between σ and its complement $V - \sigma$ and adding as edges all non-edges between σ and $V - \sigma$. Switching, also known as Seidel switching or $|\sigma|$ -vertex switching, has been explained by Seidel [1, 6]. If $\sigma = \{v\} \subset V$,

1Associate Professor, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India.
2Research Scholar, Reg. No: 23113132092004, Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil - 629003, Tamil Nadu, India.
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India. email: jayacpkc@gmail.com1, divyathamarai35920@gmail.com2

then the corresponding switching $G^{\{v\}}$ is called as vertex switching and is denoted by G^{ν} . In 2007, Jayasekaran introduced the idea of self switching [7]. When $G \cong G^{\sigma}$, σ is called as self switching of G. It is sometimes referred to as $|\sigma|$ -vertex self switching and if $|\sigma| = k$, then it is called as kvertex self switching [5]. The set of all k-vertex self switchings of G is denoted by $SS_k(G)$ and its cardinality by $ss_k(G)$. Duplication of a vertex v of a graph G produces a new graph G' by adding a new vertex v' such that $N_{G'}(v') = N_G(v)$. Jayasekaran and Prabavathy introduced the idea of duplication self vertex switching [4]. A vertex v is termed duplication self vertex switching of G when v is a self vertex switching of the resultant graph obtained after duplication of v. Jayasekaran and Ashwin Shijo introduced the concept of anti-duplication of a point and anti-duplication self vertex switching [2, 3]. Anti-duplication of a vertex v in G produces a new graph G' by adding a new vertex v' such that

 $N_{G'}(v') = [N_G[v]]^c$. A vertex v is called antiduplication self vertex switching of a graph G if the resultant graph obtained after anti-duplication of v has v as a self vertex switching.

1 **Preliminaries**

Definition 2.1. [4] Duplication of a vertex v of a graph G produces a new graph G' by adding a new vertex v' such that $N_{G'}(v') =$ $N_G(v)$. In other words, a vertex v' is said to be duplication of v if all the vertices which are adjacent to v in G are also adjacent to v'in G'.

The graph obtained from G after duplication of a vertex v is denoted as D(vG).

Definition 2.2. [2] Anti-duplication of a vertex v in G produces a new graph G' by adding a new vertex v' such that $N_{G'}(v') =$ $[N_G[v]]^c$.

The graph obtained from G after antiduplication of the vertex v is denoted by AD(vG).

Definition 2.3. [3] Let G be a graph and let v' be the anti-duplication vertex of v in AD(vG). A vertex v is called antiduplication self vertex switching of a graph G if v is a self vertex switching of AD(vG).

Notation 2.4. In this paper, we use the

following notation for our convenience.

 $N_G[v_i] = N_G(v_i) \cup \{v_i\}$ where $N_G(v_i)$ is the neighborhoods of v_i in G.

Theorem 2.5. [7] Let G(V, E) be a graph and let $\sigma \subset V$ be a self switching of G. Then the number of edges between the vertices of σ and $V - \sigma$ in G is $\frac{k(p-k)}{2}$ where $k = |\sigma|$.

Theorem 2.6. [5] Let G be a graph and let $\sigma = \{v_1, v_2, \dots, v_k\} \subset V$ be a k-vertex self switching of G. Then for $k \geq 2$, $\sum_{i=1}^{k} deg_G(v_i) = \frac{k(p-k)}{2} + 2(The number of$ edges between the vertices of σ in G).

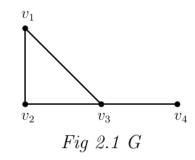
Corollary 2.7. [5] For even order graph, there is no odd k-vertex self switching.

2 **Main Results**

Definition 3.1. Let G(V, E) be a graph and let $\sigma = \{v_1, v_2, \dots, v_k\} \subseteq V(G)$. The **k-vertex** anti-duplication of the k vertices v_i ($1 \le i \le i$ k) produces a new graph G' by adding new vertices v'_i $(1 \le i \le k)$ such that $N_{G'}(v'_i) =$ $[N_G[v_i]]^c$ for $1 \le i \le k$.

The graph obtained from G after antiduplication of the k vertices v_1 , v_2 ,..., v_k is denoted by $AD(\{v_1, v_2, \ldots, v_k\}G)$ $AD(\sigma G)$.

Example 3.2. Consider the graph G given in figure 2.1. Let $\sigma = \{v_1, v_2, v_4\}$.



The 3-vertex anti-duplication of $\sigma = \{v_1, v_2, v_4\}$ is given in figure 2.2.

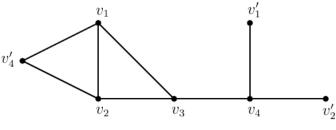


Fig 2.2 $AD(\{v_1, v_2, v_4\}G)$

Theorem 3.3. Let G be a graph and let $\sigma = \{v_1, v_2, ..., v_k\} \subseteq V(G)$. Then in $G' = AD(\sigma G)$, $N_{G'}(v_i) \cap N_{G'}(v_i') = \phi$ for $1 \le i \le k$ where v_i' is the anti-duplication vertex of v_i .

Proof. Let G be a graph and let $\sigma =$ $\{v_1, v_2, ..., v_k\} \subseteq V(G)$. Let $v'_1, v'_2, ..., v'_k$ be the anti-duplication vertices of v_1, v_2, \dots, v_k respectively. Let $G' = AD(\sigma G)$ and let v_i be any vertex in σ . By definition 3.1, $N_{G'}(v'_i) =$ $N_G(v_i) \cap [N_G[v_i]]^c = \phi,$ $[N_G[v_i]]^c$. Since $N_G(v_i) \cap N_{G'}(v'_i) = \phi$. In G', the vertex v_i is adjacent to the vertices in $N_G(v_i)$ and the antiduplication vertices of $\alpha = \{v_i \in \sigma : j \neq i \text{ and } v_i \text{ is } \}$ non-adjacent to v_i in G}. This implies that $N_{G'}(v_i) = N_G(v_i) \cup \{v'_i : v_j \in \sigma, j \neq i \text{ and } v_j \text{ is}$ non-adjacent to v_i in G}. Now, $N_{G'}(v_i) \cap$ $N_{G'}(v_i') = [N_G(v_i) \cup \{v_j' : v_j \in \sigma, j \neq i \text{ and } v_j \text{ is}$ non-adjacent to v_i in G}] $\cap N_{G'}(v_i') = [N_G(v_i) \cap$ $N_{G'}(v_i')] \cup [\{v_i' : v_j \in \sigma, j \neq i \text{ and } v_j \text{ is non-}$ adjacent to v_i in $G \cap N_{G'}(v_i') = \phi \cup [N_{G'}(v_i') \cap V_{G'}(v_i')]$ $\{v_i': v_i \in \sigma, j \neq i \text{ and } v_i \text{ is non-adjacent to } v_i \text{ in }$ $G\}]=N_{G'}(v_i')\cap\{v_j':v_j\in\sigma,j\neq i \text{ and } v_j \text{ is non-adjacent to } v_i \text{ in } G\}.$ Since all the anti-duplication vertices v_i' $(1\leq i\leq k)$ are not adjacent to each other in $G',N_{G'}(v_i')$ does not contain $v_j',j\neq i$. This implies that $N_{G'}(v_i')\cap\{v_j':v_j\in\sigma,j\neq i \text{ and } v_j \text{ is non-adjacent to } v_i \text{ in } G\}=\phi$. Hence, $N_{G'}(v_i)\cap N_{G'}(v_i')=\phi$ for $1\leq i\leq k$.

Theorem 3.4. Let G be a graph and let $\sigma \subseteq V(G)$. If no two vertices of σ are adjacent to each other in G, then $AD(\sigma G) - \sigma \cong G^{\sigma}$ where G^{σ} is the graph obtained by switching the vertices of σ in G.

Proof. Let G be a graph and let $\sigma = \{v_1, v_2, ..., v_k\} \subseteq V(G)$. Let $v_1', v_2', ..., v_k'$ be the anti-duplication vertices of $v_1, v_2, ..., v_k$, respectively. Let v_i be any vertex in σ and let v_j be any vertex in $V - \sigma$. Now, $V(AD(\sigma G) - \sigma) = \{v_j : v_j \in V - \sigma\} \cup \{v_i' : v_i \in \sigma\}$ and $V(G^\sigma) = \{v_i : v_i \in \sigma\} \cup \{v_j : v_j \in V - \sigma\}$. The graph $G' = AD(\sigma G)$ is obtained by adding new vertices v_i' $(1 \le \sigma)$

 $i \leq k$) such that $N_{G'}(v_i') = \left[N_G[v_i]\right]^c$. That is, in $AD(\sigma G)$, the anti-duplication vertices v_i' are adjacent only to the vertices non-adjacent to v_i in G. Since no two vertices of σ are adjacent to each other in G, they are also not adjacent to each other in G and by definition, the anti-duplication vertices are not adjacent to each other in $AD(\sigma G)$. Now, we define a map $f:V(G^\sigma) \to V(AD(\sigma G) - \sigma)$ by $f(v_i) = v_i'$, $f(v_j) = (v_j)$. Clearly, f is an isomorphism between G^σ and $AD(\sigma G) - \sigma$ and hence $AD(\sigma G) - \sigma \cong G^\sigma$.

Theorem 3.5. Let G be a (p,q) graph and let $\sigma = \{v_1, v_2, ..., v_k\} \subseteq V(G)$. Let $v'_1, v'_2, ..., v'_k$ be the anti-duplication vertices of $v_1, v_2, ..., v_k$, respectively. Let $G' = AD(\sigma G)$ be a (p', q') graph. Then

- (i) $\deg_{G'}(v_i) = k 1 + number$ of adjacent vertices of v_i in $V \sigma$ of G
- (ii) For $v \in V \sigma$, $\deg_{G'}(v) = k + number of vertices in <math>V \sigma$ which are adjacent to v in G

(iii)
$$deg_{G'}(v'_i) = p - 1 - deg_G(v_i)$$

(iv)
$$p' = p + k$$

(v)
$$q' = q + k(p-1) - \sum_{i=1}^{k} deg_G(v_i)$$
.

Proof. Let G' be a graph $AD(\sigma G)$ with p' vertices and q' edges.

- (i) By definition, $deg_{G'}(v_i) = deg_G(v_i) + \text{number of vertices non-adjacent to } v_i \text{ in } G[\sigma] = deg_G(v_i) + k 1 \text{number of vertices adjacent to } v_i \text{ in } G[\sigma] = deg_G(v_i) + k 1 |N_{G[\sigma]}(v_i)| = deg_G(v_i) + k 1 (deg_G(v_i) \text{number of vertices in } V \sigma \text{ of } G \text{ which are adjacent to } v_i \text{ in } G). \text{ Hence, } deg_{G'}(v_i) = k 1 + \text{number of vertices adjacent to } v_i \text{ in } V \sigma \text{ of } G.$
 - (ii) Let v be a vertex in $V \sigma$. By definition,

 $deg_{G'}(v) = deg_G(v)$ + the number of vertices in σ which are non-adjacent to v in $G = deg_G(v) + k$ - number of vertices in σ which are adjacent to v in $G = deg_G(v) + k - (deg_G(v) - \text{number})$ of vertices in $V - \sigma$ which are adjacent to v in G in G.

- (iii) Since $N_{G'}(v_i') = [N_G[v_i]]^c$, $deg_{G'}(v_i') = |N_{G'}(v_i')| = |[N_G[v_i]]^c| = |V N_G[v_i]| = p |N_G[v_i]| = p (deg_G(v_i) + 1) = p 1 deg_G(v_i)$.
- (iv) By definition, the graph $AD(\sigma G)$ is the graph obtained by adding k vertices v'_i $(1 \le i \le k)$ to the graph G. Hence, the number of vertices in $AD(\sigma G)$ is p' = p + k.
- (v) The number of edges in $AD(\sigma G)=$ The number of edges in G + the number of edges added after the anti-duplication of the k vertices in G. That is, $q'=q+\sum_{i=1}^k deg_{G'}(v_i')$. By (ii), $deg_{G'}(v_i')=p-1-deg_G(v_i)$, $1\leq i\leq k$. Hence, $q'=q+\sum_{i=1}^k (p-1-deg_G(v_i))=q+kp-k-\sum_{i=1}^k deg_G(v_i)=q+k(p-1)-\sum_{i=1}^k deg_G(v_i)$.

Hence the theorem.

Corollary 3.6. Let G be a graph and let $v \in V(G)$. Let G' = AD(vG). Then for $u \neq v$, $deg_{G'}(u)$ is either $deg_{G}(u)$ or $deg_{G}(u) + 1$.

Proof. Let G be a graph and let $v \in V(G)$. Let G' = AD(vG) and let $u \neq v$. By Theorem 3.5. (ii), we have, $deg_{G'}(u) = 1 + \text{number of vertices in } V - v$ which are adjacent to u in G. If u is adjacent to v in G, then $deg_{G'}(u) = 1 + deg_{G}(u) - 1 = deg_{G}(u)$ and if u is not adjacent to v in G, then $deg_{G'}(u) = 1 + deg_{G}(u)$. Hence the theorem.

Result 3.7. Let G be a graph and let $\sigma \subseteq V(G)$. Let $G' = AD(\sigma G)$. Then for $v \in \sigma$, $deg_{G[\sigma]}(v) = deg_{G'[\sigma]}(v)$.

Proof. Let G be a graph and let $\sigma \subseteq V(G)$. Let v be a vertex in σ . By the definition of anti-duplication, we have, $G[\sigma] = G'[\sigma]$. Hence, $deg_{G[\sigma]}(v) = deg_{G'[\sigma]}(v)$.

Definition 3.8. Let G be a graph and let $\sigma \subseteq V$ be such that $|\sigma| = k$. The **k-vertex anti-duplication switching** σ of G is the switching of the graph $AD(\sigma G)$ by σ . The resultant graph is denoted by $AD(\sigma G)^{\sigma}$.

Theorem 3.9. Let G be a graph and let $\sigma \subseteq V$ be a k-vertex anti-duplication switching of G. Let G' be the graph $AD(\sigma G)^{\sigma}$. Then for $v \in \sigma$, $deg_{G'}(v) = p - k + 3 deg_{G[\sigma]}(v) - deg_{G}(v) + 1$.

Proof. Let G be a graph and let $\sigma \subseteq V$ be the k-vertex anti-duplication switching of G. Let v be any vertex in σ . By definition of switching, in $AD(\sigma G)^{\sigma}$, the vertex v is adjacent to the vertices adjacent to v in $AD(\sigma G)[\sigma]$ and the vertices of $AD(\sigma G)[V - \sigma]$ that are non-adjacent to v in $AD(\sigma G)$.

___(1)

By Result 3.7, the number of vertices adjacent to v in $AD(\sigma G)[\sigma]$ is equal to $deg_{G[\sigma]}(v)$.

___(2)

The vertices of $AD(\sigma G)[V - \sigma]$ that are non-adjacent to v in $AD(\sigma G)$ are the vertices of $G[V - \sigma]$ that are non-adjacent to v in G and the anti-duplication vertices that are non-adjacent to v in $AD(\sigma G)$.

___(3)

Now, the number of vertices of $G[V - \sigma]$ that are non-adjacent to v in G is equal to the number of vertices in $G[V - \sigma]$ —number of vertices of $G[V - \sigma]$ that are adjacent to v in G.

___(4)

The number of vertices in $G[V - \sigma]$ is equal to p - k.

The number of vertices of $G[V - \sigma]$ that are adjacent to v in G is equal to the number of vertices adjacent to v in G—the number of vertices adjacent to v in $G[\sigma] = deg_G(v) - deg_{G[\sigma]}(v)$.

___(6)

Hence, from equation (4), (5) and (6), we have, the number of vertices of $G[V - \sigma]$ that are non-adjacent to v in $G = p - k - (deg_G(v) - deg_{G[\sigma]}(v)) = p - k - deg_G(v) + deg_{G[\sigma]}(v)$.

___(7)

Now, the number of anti-duplication vertices that are non-adjacent to v in $AD(\sigma G)$ is equal to the number of vertices adjacent to v in $G[\sigma] + 1 = deg_{G[\sigma]}(v) + 1$. ___(8)

Hence, from (3), (7) and (8), the number of vertices of $AD(\sigma G)[V - \sigma]$ that are non-adjacent to v in $AD(\sigma G) = p - k - deg_G(v) + deg_{G[\sigma]}(v) + deg_{G[\sigma]}(v) + 1 = p - k - deg_G(v) + 2 deg_{G[\sigma]}(v) + 1.$ (9)

Thus, from (1), (2) and (9), we have, the number of vertices adjacent to v in $G' = deg_{G[\sigma]}(v) + p - k - deg_G(v) + 2 deg_{G[\sigma]}(v) + 1$. That is, $deg_{G'}(v) = p - k + 3 deg_{G[\sigma]}(v) - deg_G(v) + 1$.

Definition 3.10. Let G be a graph and let $\sigma \subseteq V$ be a k-vertex anti-duplication switching of the graph G. Then σ is called as **k-vertex** anti-duplication self switching of G if $AD(\sigma G)^{\sigma} \cong AD(\sigma G)$ where $AD(\sigma G)$ is the graph obtained after the anti-duplication of the k vertices in G and $AD(\sigma G)^{\sigma}$ is the

switching graph of $AD(\sigma G)$ by σ .

Example 3.11. Consider the graph G given in

figure 2.3. Let $\sigma = \{v_2, v_4\}$. Here, p = 4 and k = 2.

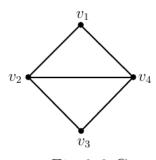


Fig 2.3 G

The graphs $AD(\sigma G)$ and $AD(\sigma G)^{\sigma}$ are given in figure 2.4 and figure 2.5, respectively. Clearly, $AD(\sigma G) \cong AD(\sigma G)^{\sigma}$. Hence, σ is a 2-vertex anti-duplication self switching of G.

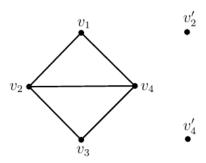


Fig 2.4 $AD(\sigma G)$

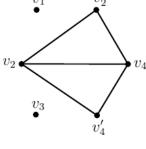


Fig 2.5 $AD(\sigma G)^{\sigma}$

Result 3.12. Let G(V,E) be a graph with p vertices and let $\sigma \subseteq V$ be a k-vertex anti-duplication self switching of G. Let G' be $AD(\sigma G)(V',E')$. Then the number of edges between the vertices of σ and $V' - \sigma$ in G' is $\frac{kp}{2}$.

Proof. Let σ be a k-vertex anti-duplication self switching of G and let $G' = AD(\sigma G)$. By the definition of anti-duplication self switching, σ is a k-vertex self switching of $AD(\sigma G)$ and hence $AD(\sigma G) \cong AD(\sigma G)^{\sigma}$. By Theorem 3.5. (iv), G' has p' = p + k vertices and by Theorem 2.5, the number of edges between the vertices of σ and $V' - \sigma$ in $AD(\sigma G)$ and in $AD(\sigma G)^{\sigma}$ is $\frac{k(p'-k)}{2} = \frac{kp}{2}$.

Result 3.13. Let G(V, E) be a graph and let $\sigma = \{v_1, v_2, ..., v_k\} \subseteq V(G)$ be a k-vertex anti-duplication self switching of G. Then the number of edges between the vertices of σ in $AD(\sigma G)^{\sigma}$ is $\frac{1}{2} \sum_{i=1}^{k} deg_{G[\sigma]}(v_i)$.

Proof. Let G be a graph and let $\sigma = \{v_1, v_2, \ldots, v_k\} \subseteq V(G)$ be a k-vertex antiduplication self switching of G. Clearly, the number of edges between the vertices of σ in $AD(\sigma G)^{\sigma}$, $AD(\sigma G)$ and G are equal. Hence, the number of edges between the vertices of σ in $AD(\sigma G)^{\sigma} = \frac{1}{2} \sum_{i=1}^{k} \deg_{G[\sigma]}(v_i)$.

Theorem 3.14. Let G(V,E) be a graph with p vertices and let $\sigma = \{v_1, v_2, ..., v_k\} \subseteq V$ be a k-vertex anti-duplication self switching of

G. Then the number of edges between the vertices of σ and $V - \sigma$ in G is $\frac{kp}{2} - k(k - 1) + \sum_{i=1}^{k} deg_{G[\sigma]}(v_i)$.

Proof. Let σ be a k-vertex anti-duplication self switching of G and let $G' = AD(\sigma G)(V', E')$. Let $\sigma' = \{v'_1, v'_2, ..., v'_k\}$ where $v'_1, v'_2, ..., v'_k$ are the anti-duplication vertices of $v_1, v_2, ..., v_k$, respectively. By the definition of anti-duplication, the number of edges between the vertices of σ and $V - \sigma$ in G and the number of edges between the vertices of σ and $V - \sigma$ in G' are equal. Since $V'(G') = V(G) \cup \sigma'$, the number of edges between the vertices of σ and $V - \sigma$ in G' = the number of edges between the vertices of σ and $V' - \sigma$ in $G' - \sigma$ the number of edges between the vertices of σ and σ' in σ' .

___(1)

By Result 3.12, the number of edges between the vertices of σ and $V' - \sigma$ in $G' = \frac{kp}{2}$.

___(2)

The number of edges between the vertices of σ and σ' in $G' = \sum_{i=1}^k$ (the number of vertices that are non-adjacent to v_i in σ of G). The number of vertices that are non-adjacent to v_i in σ of $G = k - deg_{G[\sigma]}(v_i) - 1$. Hence, the number of edges between the vertices of σ and σ' in $G' = \sum_{i=1}^k (k - deg_{G[\sigma]}(v_i) - 1) = k^2 - \sum_{i=1}^k deg_{G[\sigma]}(v_i) - k$.

Thus from equations (1), (2) and (3), the number

of edges between the vertices of σ and $V - \sigma$ in $G = \frac{kp}{2} - (k^2 - \sum_{i=1}^k \deg_{G[\sigma]}(v_i) - k) = \frac{kp}{2} - k(k - 1) + \sum_{i=1}^k \deg_{G[\sigma]}(v_i)$.

Theorem 3.15. Let G be a graph and let $\sigma = \{v_1, v_2, ..., v_k\} \subseteq V(G)$ be a k-vertex anti-duplication self switching of G. Then $\sum_{i=1}^k deg_G(v_i) = \frac{kp}{2} - k(k-1) + 2\sum_{i=1}^k deg_{G[\sigma]}(v_i).$

Proof. Let σ be a k-vertex anti-duplication self switching of G and let $G' = AD(\sigma G)$. Now, $\sum_{i=1}^k deg_G(v_i) =$ The number of edges between the vertices of σ and $V - \sigma$ in G + 2 (the number of edges between the vertices of σ in G). By Theorem 3.14, the number of edges between the vertices of σ and $V - \sigma$ in $G = \frac{kp}{2} - k(k-1) + \sum_{i=1}^k deg_{G[\sigma]}(v_i)$. Also, the number of edges between the vertices of σ in $G = \frac{1}{2}\sum_{i=1}^k deg_{G[\sigma]}(v_i)$. Hence, $\sum_{i=1}^k deg_G(v_i) = \frac{kp}{2} - k(k-1) + \sum_{i=1}^k deg_{G[\sigma]}(v_i)$ and $\sum_{i=1}^k deg_{G[\sigma]}(v_i)$ have $\sum_{i=1}^k deg_{G[\sigma]}(v_i)$. Hence, $\sum_{i=1}^k deg_{G[\sigma]}(v_i)$ have $\sum_{i=1}^k deg_{G[\sigma]}(v_i)$ have the theorem.

Remark 3.16. The converse of the above theorem need not be true. For example, consider the graph G given in figure 2.6. Let $\sigma = \{v_1, v_2, v_4\}$. Then k = 3 and p = 6. Now, $\deg_G(v_1) + \deg_G(v_2) + \deg_G(v_4) = 2 + 2 + 3 = 7$. Also, $\frac{kp}{2} - k(k-1) + 2\sum_{i=1}^k \deg_{G[\sigma]}(v_i) = \frac{(3)(6)}{2} - 3(3-1) + 2(1+1+0) = 9 - 6 + 4 = 7$.

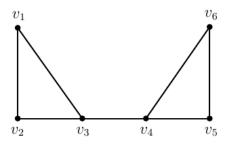


Fig 2.6 G

The graphs $AD(\sigma G)$ and $AD(\sigma G)^{\sigma}$ are given in figure 2.7 and 2.8, respectively. Clearly, $AD(\sigma G) \ncong AD(\sigma G)^{\sigma}$. Hence, σ is not a k-vertex anti-duplication self switching of G.

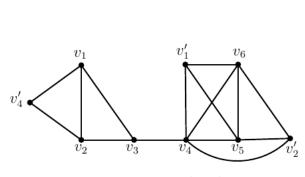


Fig 2.7 $AD(\sigma G)$

Theorem 3.17. Let G be a graph with p vertices and $\sigma = \{v_1, v_2, ..., v_k\} \subseteq V(G)$ be a k-vertex anti-duplication self switching of G. Let $G' = AD(\sigma G)$. Then $\sum_{i=1}^k deg_{G'}(v_i) = \frac{kp}{2} + \sum_{i=1}^k deg_{G'[\sigma]}(v_i)$.

Proof. Let G be a graph with p vertices and $\sigma = \{v_1, v_2, \ldots, v_k\} \subseteq V(G)$ be a k-vertex antiduplication self switching of G. Let $G' = AD(\sigma G)$ with p + k vertices. Then by the definition of antiduplication, σ is a k-vertex self switching of G'. By Theorem 2.6, we have, $\sum_{i=1}^k deg_{G'}(v_i) = \frac{k(p+k-k)}{2} + 2$ (the number of edges between the vertices of σ in G') = $\frac{kp}{2} + 2\left[\frac{1}{2}\left(\sum_{i=1}^k deg_{G'[\sigma]}(v_i)\right)\right] = \frac{kp}{2} + \sum_{i=1}^k deg_{G'[\sigma]}(v_i)$.

Theorem 3.18. Let G be a graph with p vertices

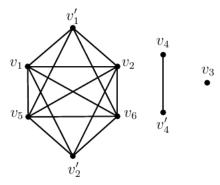


Fig 2.8 $AD(\sigma G)^{\sigma}$

and $\sigma = \{v_1, v_2, \dots, v_k\} \subseteq V(G)$ be a k-vertex antiduplication self switching of G. Let $G' = AD(\sigma G)$. Then $\sum_{i=1}^k deg_{G'}(v_i) = \frac{kp}{2} + \sum_{i=1}^k deg_{G[\sigma]}(v_i)$.

Proof. Let G be a graph with p vertices and $\sigma = \{v_1, v_2, \ldots, v_k\} \subseteq V(G)$ be a k-vertex antiduplication self switching of G. Let $G' = AD(\sigma G)$ with p+k vertices. By Theorem 3.17, we have, $\sum_{i=1}^k deg_{G'}(v_i) = \frac{kp}{2} + \sum_{i=1}^k deg_{G'[\sigma]}(v_i). \qquad \text{By}$ Theorem 3.7, $deg_{G[\sigma]}(v_i) = deg_{G'[\sigma]}(v_i)$, $1 \le i \le k$. Hence, $\sum_{i=1}^k deg_{G'}(v_i) = \frac{kp}{2} + \sum_{i=1}^k deg_{G'}(v_i).$

Remark 3.19. The converse of the above theorem need not be true. For example, consider the graph given in figure 2.6. Let $\sigma = \{v_1, v_2, v_4\}$. Then k = 3 and p = 6. The graph $AD(\sigma G)$ is given in figure 2.7. Now, $\sum_{i=1}^k deg_{G'}(v_i) = 3 + 3 + 5 = 11$. Also,

 $\frac{kp}{2} + \sum_{i=1}^{k} deg_{G'[\sigma]}(v_i) = \frac{kp}{2} + \sum_{i=1}^{k} deg_{G[\sigma]}(v_i) =$ $\frac{(3)(6)}{2} + (1+1+0) = 11$. The graph $AD(\sigma G)^{\sigma}$ is given in figure 2.8. Clearly, $AD(\sigma G) \ncong AD(\sigma G)^{\sigma}$. Hence, σ is not a k-vertex anti-duplication self switching of G.

Remark 3.20. An odd order graph G has no odd *k-vertex anti-duplication self switching.*

Proof. Let G be a graph with odd order p and let σ be a k-vertex anti-duplication self switching of G where *k* is odd. Let $G' = AD(\sigma G)$. By Theorem 3.5. (iv), G' has p' = p + k vertices. Since both p and kare odd, G' has even number of vertices p'. By Theorem 2.7, G' has no odd k-vertex self switching. Hence, G has no odd k-vertex anti-duplication self switching.

Conclusion

The concept of k-vertex anti-duplication self switching has been proposed and its associated properties have been analyzed in this paper.

References

[1] Corneil. D. G. and Mathon. R. A. (editors), Geometry and Combinatorics Selected Works of J. J. Seidel, Academic Press, Boston, 1991.

[2] Jayasekaran. C. and Ashwin Shijo. M., Some Results on Anti-duplication of a Vertex in Graphs, Advances in Mathematics: Scientific Journal, Vol. 6, 4145-4153, 2020. pp. https://doi.org/10.37418/amsj.9.6.96.

[3] Jayasekaran. C. and Ashwin Shijo. M., Antiduplication self vertex switching in some graphs, Malaya Journal of Mathematik, Vol. 9, No. 1, pp. 338-342, 2021.

https://doi.org/10.26637/MJM0901/0057.

[4] Jayasekaran. C. and Prabavathy. V., A characterisation of duplication self vertex switching in graphs, International Journal of Pure and Applied

Mathematics, Vol. 118, No. 2, pp. 149-156, 2008. https://www.researchgate.net/publication/32353922 <u>2</u>.

[5] Jayasekaran. C. and Thamarai. M. S., k-vertex Self Switching of Graphs, Journal of Computational Analysis and Applications (JOCAAA), Vol. 33, No. 2, 1119-1127, 2024. pp. https://eudoxuspress.com/index.php/pub/article/vie w/1917/1238.

[6] Seidel. J. J., A survey of two-graphs, Geometry Combinatorics, pp. 146-176, 1991. https://doi.org/10.1016/B978-0-12-189420-7.50018-9.

[7] Vilfred. V., Jayasekaran. C., Interchange similar self vertex switchings in graphs, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 12, No. 467-480, 2009. pp. https://www.researchgate.net/publication/26559088 <u>8</u>.