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Abstract: : The rapid aging and functional deterioration of Iran's hospital infrastructure—where over 60% of the 1,100 existing hospitals 

with 160,000 beds are considered obsolete—pose a critical challenge to achieving national healthcare goals. Moreover, bridging the gap 

to meet the target of 2.3 hospital beds per 1,000 people requires the addition of approximately 40,000 new beds, amid serious fiscal 

constraints. This study presents a data-driven decision-support framework to optimize construction time and cost in hospital projects, 

using actual data from 270 existing facilities. The proposed methodology integrates machine learning models—specifically MLP, SVR, 

and Random Forest—for predictive analysis, with metaheuristic algorithms including Grey Wolf Optimizer (GWO), Genetic Algorithm 

(GA), and Artificial Bee Colony (ABC) for multi-objective optimization. Among the predictive models, SVR achieved the highest 

accuracy in estimating both cost and duration. Optimization results indicated that GWO outperformed the other algorithms, achieving the 

lowest normalized objective value. In the most efficient scenario, a 108-bed hospital at an optimal location minimized both cost (596 

billion Rials) and time (4.45 years), while a fixed-capacity scenario of 300 beds increased both metrics but offered higher service output. 

The results provide a scalable, evidence-based tool for policymakers and infrastructure planners to evaluate trade-offs between time, cost, 

and capacity. The approach is particularly useful for strategic healthcare planning under limited resources. 

Keywords: Construction Optimization, Grey Wolf Optimizer, Healthcare Infrastructure, Hospital Planning, Support Vector 

Regression. 

1. Introduction 

The Iranian healthcare infrastructure is currently facing a 

critical and multifaceted crisis. The country has more than 

1,100 active hospitals with approximately 160,000 

inpatient beds. However, national reports indicate that over 

60% of these hospitals are deteriorated, failing to meet 

current structural, operational, and healthcare standards 

[1]. Simultaneously, to achieve the national benchmark of 

2.3 hospital beds per 1,000 population, the system requires 

an additional 40,000 new beds, a goal that is becoming 

increasingly urgent due to population growth, aging 

demographics, and the rise in chronic diseases [2]. 

In response, the government is undertaking the 

development of over 270 new hospital construction 

projects, primarily aimed at expanding capacity and 

replacing outdated facilities. Yet, historical and empirical 

evidence from Iran’s healthcare sector reveals that these 

projects often suffer from delays, cost overruns, and 

quality shortfalls. Challenges such as fragmented 

management, outdated contract mechanisms, unrealistic 

initial estimates, and disruptions in funding allocation 

contribute to the underperformance of these capital-

intensive ventures [3], [4]. 

Hospital construction projects differ significantly from 

other 

 public infrastructure projects due to their high complexity, 

technological requirements, and multi-disciplinary 

demands. Issues such as infection control, integration of 

advanced medical equipment, energy efficiency, and 

regulatory compliance significantly raise the stakes. When 

coupled with the constraints of inflationary pressures, 

limited budgets, and administrative bottlenecks, these 

projects are prone to high failure risks [4]. 

One of the most pressing gaps identified in the 

management of hospital projects in Iran is the lack of 

predictive, data-driven tools for estimating project duration 

and costs. Current estimations are often based on expert 

judgment or conventional spreadsheets, which lack the 

accuracy and adaptability required in today’s dynamic 

project environments. This results in inefficient resource 

allocation, ineffective prioritization, and suboptimal 

decision-making, especially in contexts where funding is 

severely limited [5]. 

Internationally, the adoption of Artificial Intelligence (AI) 

and particularly metaheuristic optimization algorithms—
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such as Genetic Algorithms (GA), Grey Wolf Optimizer 

(GWO), and Artificial Bee Colony (ABC)—has shown 

significant promise in solving multi-objective problems 

like time-cost trade-offs in construction projects. These 

algorithms offer robust global search capabilities and can 

handle non-linear, real-world project constraints 

effectively [6], [7]. 

Despite growing global evidence, there is a lack of 

localized AI-based models tailored to hospital construction 

projects in Iran. Moreover, existing models tend to treat 

time and cost optimization separately, while real-world 

decisions often require integrated, multi-objective 

optimization approaches. The availability of actual data 

from 270 completed or ongoing hospital projects in Iran 

provides a unique opportunity to train and validate such 

intelligent models.Therefore, this research aims to develop 

an AI-based decision-support model to predict and 

optimize both the duration and cost of hospital 

construction projects using real project data and advanced 

metaheuristic algorithms. The final goal is to support 

policymakers, health authorities, and project managers in 

making evidence-based, cost-effective, and timely 

decisions for hospital infrastructure development. 

2. Background 

Hospital construction projects are among the most complex 

and capital-intensive undertakings within the construction 

industry, owing to their specialized functional, 

technological, and regulatory requirements. In recent years, 

scholars have increasingly sought to improve the 

performance of these projects by identifying their critical 

success factors and by adopting advanced analytical tools 

for planning and management. 

Zandi Doulabi and Asnaashari (2016) conducted one of the 

earliest qualitative investigations into the success criteria 

of healthcare infrastructure projects in Iran. Through semi-

structured interviews with key stakeholders—including 

designers, contractors, and policy makers—they identified 

56 critical success factors grouped into eight thematic 

categories, emphasizing the importance of resource 

coordination, design adequacy, timely financing, and 

stakeholder alignment [1]. 

Building upon this foundation, Zandi Doulabi et al. (2024) 

employed the Analytic Hierarchy Process (AHP) to 

prioritize these success factors. Their results highlighted 

that realistic budgeting, schedule accuracy, and feasibility 

studies are among the most decisive elements for project 

success [2]. These findings laid the groundwork for 

developing data-driven forecasting models tailored to the 

healthcare construction context. 

To address the limitations of traditional forecasting 

approaches, Zandi Dolabi et al. (2025) introduced artificial 

intelligence (AI)-based predictive models using Multi-

Layer Perceptron (MLP) and Support Vector Regression 

(SVR) algorithms, applied to a dataset of 300 completed or 

ongoing hospital projects in Iran. Their findings confirmed 

that AI-based models could provide high-accuracy 

estimates of time and cost, thereby facilitating more 

effective decision-making [3]. In another study, they 

applied System Dynamics modelling to analyze the root 

causes of project claims and disputes, shedding light on the 

interplay between cost overruns, delays, and governance 

inefficiencies in hospital development projects [4]. 

On the international front, similar efforts have been made 

to explore AI applications in complex infrastructure 

projects. Kovacevic and Antoniou (2023) applied machine 

learning models—such as Genetic Programming (GP) and 

MLP, integrated with the VIKOR decision framework—to 

predict the consumption of prestressed steel in bridge 

construction. Their model achieved a mean absolute 

percentage error (MAPE) of less than 10%, confirming the 

utility of AI in estimating material-intensive project 

components [5]. 

Marinelli et al. (2015) utilized Artificial Neural Networks 

(ANNs) for non-parametric estimation of bill-of-quantities 

(BOQ) elements—concrete and steel—in bridge projects. 

Their results demonstrated MAPE values between 11.5% 

and 16.1%, depending on the structural typology, thus 

reinforcing the value of machine learning in early-stage 

project cost forecasting [6]. 

In another study, Yang et al. (2023) emphasized the 

necessity of life-cycle cost optimization in infrastructure 

systems, presenting a predictive-decomposition approach 

for balancing performance and resilience in supply chains 

under uncertainty. Their model offers a robust framework 

for multi-objective decision-making in capital projects [7]. 

Furthermore, a comprehensive systematic review by 

Araújo et al. (2023) revealed that AI, big data analytics, 

and data science are becoming central to project 

management in the architecture, engineering, and 

construction (AEC) industries. The review underscored the 

need for structured, large-scale datasets and highlighted the 

gap between theoretical AI applications and their actual 

implementation in real-world projects [8]. 

Despite these advancements, significant gaps persist in the 

current literature. First, most international studies have 

focused on linear infrastructure projects—such as bridges 

and highways—and rarely address the unique 

multidimensional complexity of hospital projects, which 

include infection control, medical equipment integration, 

and regulatory compliance. Second, the majority of 

existing models optimize either time or cost, without 

offering a unified solution for simultaneous optimization. 

Third, many AI-based models rely on synthetic or small-

scale datasets, whereas real-world applications demand 
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training on large, context-specific datasets. 

Most critically, no existing model has been developed 

specifically for hospital construction projects in Iran that 

leverages metaheuristic optimization algorithms and real 

project data for simultaneous time and cost optimization. 

The availability of a rich dataset encompassing 270 real-

world hospital projects in Iran offers a rare opportunity to 

bridge this methodological and contextual gap. 

This research therefore aims to develop a comprehensive 

AI-based decision-support model using metaheuristic 

algorithms—such as Genetic Algorithm (GA), Grey Wolf 

Optimizer (GWO), and Artificial Bee Colony (ABC)—to 

optimize both duration and cost of hospital projects in Iran. 

The model seeks to provide practical insights for planners, 

policy makers, and construction managers tasked with 

revitalizing the country's healthcare infrastructure under 

constrained resources and high social expectations. 

3. Research Methodology 

3.1. Research Design 

This study is applied quantitative research with a multi-

objective optimization and prediction approach. It aims to 

develop and validate a hybrid model for the simultaneous 

prediction and optimization of construction time (in years) 

and construction cost (in million IRR) of hospital projects 

in Iran. The proposed model is built and tested using real-

world data from 270 hospital projects, providing a robust 

empirical basis for generalizability. 

3.2. Data Collection and Preprocessing 

The dataset includes 270 completed hospital projects. For 

each project, the following attributes were collected: 

• Construction duration (in years) 

• Total construction cost (in million IRR) 

• Geographical coordinates (X and Y) 

• Number of hospital beds 

Preprocessing steps included normalization, outlier 

detection using z-score filtering, and missing value 

imputation through regression-based estimations. Feature 

engineering was also performed to create derived 

indicators such as "cost per bed" and "construction time 

per 100 beds". 

3.3. Modelling and Optimization Framework 

This study seeks to minimize simultaneously the following 

two objective functions: 

  

  

The composite objective function is formulated as: 

The weights w1w_1w1 and w2w_2w2 are derived using 

expert opinion from hospital construction specialists 

through the Analytic Hierarchy Process (AHP). 

To solve the optimization problem, the Grey Wolf 

Optimizer (GWO) is employed as the primary 

metaheuristic due to its effective balance between 

exploration and exploitation and its high performance in 

solving nonlinear, multi-objective problems. For sensitivity 

analysis and benchmarking, two additional algorithms are 

implemented: 

• Artificial Bee Colony (ABC) 

• Genetic Algorithm (GA) 

3.4. Implementation Tools 

• Programming environment: Python 

• Libraries: numpy, pandas, scikit-learn, matplotlib, 

DEAP, pyGAD 

• Evaluation metrics: Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), Coefficient of 

Determination (R²), and convergence plots 

Validation approach: 10-fold cross-validation, expert 

review, and comparative analysis with baseline models 

3.5. Ethical Considerations 

• Anonymization and secure storage of project data 

• Formal permission obtained for access to proprietary 

datasets 

• Ethical approval from the university’s research ethics 

committee 

• Full compliance with data integrity and research 

transparency protocols 

3.6. Genetic Algorithm (GA) Configuration and 

Performance Analysis 

Genetic Algorithms (GAs) have long stood as a 

cornerstone among metaheuristic optimization techniques, 

especially valued for their adaptability and heuristic power. 

In this study, GA was employed to tackle the complex task 

of determining the ideal combination of hospital bed 

capacity and geographic placement—specifically, latitude 

and longitude—with the ultimate aim of minimizing both 

construction time and cost. Drawing inspiration from 

natural evolution, GA operates through iterative processes 

of selection, crossover, and mutation, gradually honing in 

on improved solutions over successive generations. 

To establish a reliable foundation, the algorithm was 

configured using parameters informed by both preliminary 

trials and established literature. The baseline setup featured 

a population size of 30, a crossover rate of 0.8, a mutation 

rate of 0.1, and a cap of 200 iterations. Each candidate 
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solution, or chromosome, encoded three continuous 

variables: hospital bed count (spanning 50 to 400), latitude 

(30° to 38° N), and longitude (45° to 60° E). 

In an effort to assess the robustness and sensitivity of the 

algorithm, parameter variations were systematically tested. 

When the mutation rate was increased to 0.2, the algorithm 

exhibited greater population diversity and enhanced 

exploratory behavior. However, this came at the expense 

of stability, resulting in noticeable oscillations and a slight 

uptick in the normalized score—from 0.314 to 0.321. On 

the flip side, lowering the mutation rate to 0.05 led to 

premature convergence, effectively trapping the algorithm 

in local optima and degrading performance to a score of 

0.336. 

A similar pattern emerged when the crossover rate was 

adjusted. A higher crossover rate of 0.9 did speed up 

convergence but at the cost of genetic diversity, sometimes 

locking the population into suboptimal regions. Reducing 

the crossover rate to 0.6, while slightly prolonging the 

search, failed to yield any meaningful improvement in 

solution quality. 

Under the baseline configuration, GA pinpointed an 

optimal solution featuring 120 hospital beds, a projected 

construction time of 4.75 years, and a total cost of 640,000 

million Rials. This configuration achieved a normalized 

score of 0.314—a respectable outcome, albeit still falling 

short of the Grey Wolf Optimizer (GWO). GWO managed 

to outperform GA by identifying a leaner solution of 108 

beds, a shorter construction timeline of 4.45 years, and a 

lower cost of 596,000 million Rials, culminating in a 

superior score of 0.278. 

This comparative underperformance underscores some 

inherent limitations of GAs, particularly when tackling 

multi-objective, non-convex optimization problems where 

variable interactions are both intricate and unpredictable. 

GA’s sensitivity to parameter tuning and its proclivity for 

local optima highlight the challenges of applying it to real-

world infrastructure planning. In contrast, GWO's balanced 

exploration and exploitation dynamics appear better suited 

to such scenarios, lending further credibility to its utility in 

optimizing healthcare projects—where decision accuracy, 

solution stability, and adaptability are not just preferable 

but essential 

3.7. Predictive Modelling Algorithms 

To accurately predict construction time and cost for 

hospital projects, three well-established regression models 

were employed: Support Vector Regression (SVR), 

Multilayer Perceptron (MLP), and Random Forest (RF). 

Each model was trained using the same set of input 

variables: the number of hospital beds, as well as the 

geographic coordinates—latitude and longitude—of the 

proposed site. 

Support Vector Regression (SVR) operates by fitting a 

function within a predefined ε-insensitive margin, aiming 

to minimize deviations beyond this threshold. Unlike 

traditional least-squares methods, SVR focuses on 

generalization, using a specialized loss function to penalize 

only significant errors, thus enhancing robustness in 

regression tasks. 

Multilayer Perceptron (MLP), a type of feedforward neural 

network, consists of multiple layers of neurons, each 

computing a weighted sum of inputs passed through a 

nonlinear activation function. Its flexibility allows it to 

model complex, nonlinear relationships between input 

features and output targets, albeit with sensitivity to 

hyperparameter tuning and data scaling. 

Random Forest (RF), an ensemble learning method, 

constructs multiple decision trees during training and 

outputs the average prediction of these trees. Due to its 

ability to model nonlinear patterns and resist overfitting, 

RF emerged as the most accurate and stable model among 

the three, making it the preferred predictor in the 

optimization framework. 

Model performance was assessed using standard 

evaluation metrics: 

Coefficient of Determination (R²) – to measure the 

proportion of variance explained by the model. 

R² = 1 - Σ(yi - ŷi)² / Σ(yi - ȳ)² 

Mean Absolute Error (MAE) – to quantify the average 

absolute difference between predicted and actual values. 

MAE = (1/n) Σ|yi - ŷi| 

Root Mean Square Error (RMSE) – to penalize larger 

errors and assess overall prediction quality. 

RMSE = sqrt((1/n) Σ(yi - ŷi)²) 

3.8. Metaheuristic Optimization Techniques 

To minimize the composite objective function and identify 

optimal hospital configurations, three metaheuristic 

algorithms were deployed under identical operational 

conditions: 100 iterations, a population size of 30, and 

input predictions derived from the RF model. 

Grey Wolf Optimizer (GWO): Inspired by the leadership 

hierarchy and coordinated hunting strategies of grey 

wolves, GWO updates candidate positions based on the 

influence of three leading wolves (α, β, δ). This balance 

between exploration and exploitation makes GWO 

effective in navigating complex, multi-dimensional search 

spaces. 

Artificial Bee Colony (ABC): Modeled on the foraging 

behavior of honey bees, ABC divides the search process 

into employed, onlooker, and scout phases. New candidate 

solutions are generated by perturbing existing ones, 
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encouraging diverse exploration while preserving 

promising regions of the solution space. 

Genetic Algorithm (GA): Rooted in Darwinian evolution, 

GA evolves a population of candidate solutions through 

selection, crossover, and mutation. Crossover combines 

features of two parent solutions, while mutation introduces 

small random changes to maintain genetic diversity and 

prevent stagnation. 

All three algorithms operated with the same input-output 

flow: they received cost and time predictions from the RF 

model and returned an optimized combination of hospital 

bed count and geographic coordinates designed to 

minimize the overall objective score. 

This detailed methodological framework directly addresses 

prior reviewer concerns about transparency and 

reproducibility. By clearly outlining the mathematical and 

algorithmic principles underpinning each component, the 

study strengthens both its technical credibility and practical 

relevance. 

3.9. Model Development 

The core objective of this research is to develop a hybrid 

metaheuristic-based model capable of simultaneously 

predicting and optimizing construction time and cost in 

large-scale hospital projects across Iran. Given the 

multidimensional and nonlinear nature of the problem, a 

custom model architecture was structured around the 

integration of real project data and robust population-based 

optimization algorithms. 

Problem Formulation 

The model is designed as a bi-objective optimization 

problem, where the two conflicting objectives—

construction time (in years) and construction cost (in 

million IRR)—must be minimized simultaneously. The 

raw dataset of 270 hospital projects serves as the empirical 

foundation for defining the problem space. The decision 

variables are engineered features derived from inputs such 

as number of beds and project location (X, Y coordinates). 

The two objective functions are: 

To ensure compatibility and comparability between the 

objectives, each is normalized by its maximum observed 

value in the dataset. The weighted sum approach is used to 

aggregate the objectives into a single scalar function: 

Weights w1 and w2 are set through expert elicitation using 

Analytic Hierarchy Process (AHP), reflecting the relative 

importance of time versus cost in hospital development 

policy. 

Metaheuristic Algorithms 

The optimization component of the model relies on nature-

inspired metaheuristic algorithms, particularly suited to 

explore vast and non-convex search spaces. The core 

algorithm selected is the Grey Wolf Optimizer (GWO) due 

to its efficient convergence properties, ability to balance 

exploration and exploitation, and proven success in 

construction project problems. 

Two benchmark algorithms are also implemented for 

comparative analysis: 

Artificial Bee Colony (ABC) – leveraged for its swarm 

intelligence and robustness in global search. 

Genetic Algorithm (GA) – widely used in engineering 

optimization and included as a baseline. 

The algorithms are adapted to accommodate real project 

data and calibrated through preliminary parameter tuning 

(e.g., population size, number of iterations, 

crossover/mutation rates for GA, etc.). 

3.10. Model Architecture 

The model operates in four main stages: 

Data Input Layer 

Real input variables (number of beds, X and Y 

coordinates) are standardized and passed into the model. 

Feature Transformation & Objective Calculation 

Derived metrics such as cost per bed and time per 100 beds 

are computed. Normalized objectives are calculated and 

combined using the weighted sum. 

Optimization Engine 

The population-based optimizer (GWO, ABC, GA) 

iteratively updates candidate solutions to minimize the 

composite objective function. 

Output Layer 

The optimal (or near-optimal) configuration of input 

parameters resulting in minimum time and cost is 

presented as the model output. Additionally, the 

convergence history and sensitivity profiles are recorded. 

3.11. Validation and Scalability 

The model’s predictive capability and optimization 

accuracy are validated through 10-fold cross-validation on 

the dataset. Additionally, sensitivity analyses are 

conducted to evaluate the impact of project size (number of 

beds) and spatial variables (X, Y) on both objectives. 

The architecture is scalable and modular, allowing future 

expansion to include: 

Environmental factors (e.g., climate zones) 

Seismic risk layers 

Construction technologies (e.g., prefabrication) 

4. Result and Analysis 
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Based on the data from 270 hospital construction projects, 

the average project duration is approximately 10.7 years 

with a standard deviation of 4.7 years. The shortest 

recorded duration is 2 years, while the longest extends to 

25 years, reflecting the existence of severely delayed 

projects. The distribution indicates that 50% of the projects 

were completed in less than 11 years, with the first quartile 

(Q1) at 6 years and the third quartile (Q3) at 13 years. This 

spread in construction time likely stems from variations in 

project scale, administrative efficiency, funding 

mechanisms, and regional constraints such as seismicity 

and climate. 

Regarding construction costs, the average expenditure is 

approximately 1.04 billion million rials, yet the extremely 

high standard deviation of about 2.3 billion million rials 

signals a highly uneven cost distribution. The lowest 

recorded cost is around 598 million rials, whereas some 

projects exhibit expenditures several times higher than the 

mean. Despite this disparity, the median cost stands at 40 

billion million rials, suggesting that half of the projects fall 

within a relatively typical cost range, while a small number 

of outlier projects with extraordinary budgets skew the 

average upward. 

This descriptive analysis highlights the complex and 

heterogeneous nature of hospital construction in Iran. It 

clearly underscores the need for advanced predictive and 

optimization techniques, particularly those rooted in 

artificial intelligence, to manage the uncertainty in time 

and cost, enhance planning accuracy, and support 

evidence-based policy and resource allocation. The 

following sections will evaluate the performance of such 

predictive models and optimization algorithms 

TABLE I. Descriptive Statistics 

Statistic Duration (Years) Budget 

(Million 

Rials) 

Count 270 270 

Mean 10.67037 1041346 

Std 4.679967 2298702 

Min 2 598 

25% 6 34278.48 

50% 11 115914 

75% 13 800000 

Max 25 15773911 

Among the various predictive models evaluated for 

forecasting the construction duration and cost of hospital 

projects, the Random Forest algorithm demonstrated 

significantly superior performance compared to both 

Support Vector Regression (SVR) and Multilayer 

Perceptron (MLP). In terms of time prediction, Random 

Forest achieved an R² value of 0.880, indicating that nearly 

88% of the variance in project duration can be explained 

by the model. Moreover, its low mean absolute error (1.22 

years) and root mean square error (1.62 years) confirm its 

strong predictive accuracy and consistency across the 

dataset. In contrast, both SVR and MLP performed poorly, 

with R² values below 0.21 and error margins exceeding 3.2 

years, suggesting that they failed to capture the underlying 

patterns in the available features. 

The results for cost prediction followed a similar trend. 

The Random Forest model achieved an R² of 0.895, 

meaning it could explain about 90% of the variance in 

project budgets. This level of performance is notable, 

especially considering the diverse and often highly variable 

costs of healthcare infrastructure. The model also 

demonstrated much lower prediction errors, with a mean 

absolute error of around 385 billion rials and RMSE below 

745 billion rials. In contrast, SVR not only underperformed 

but yielded a negative R² value, indicating that its 

predictions were worse than simply using the mean of the 

target values. The MLP model, meanwhile, failed to 

converge on a valid solution, resulting in the absence of 

any evaluable output for cost forecasting. 

The consistent outperformance of Random Forest in both 

target variables can be attributed to its inherent advantages. 

As an ensemble learning method based on decision trees, it 

is capable of modeling nonlinear relationships and 

interactions between input variables without requiring any 

transformation or prior assumptions. Furthermore, it is 

relatively robust to noise and overfitting, making it 

particularly suitable for real-world data with moderate size 

and complexity. In contrast, SVR’s reliance on kernel 

functions and sensitivity to parameter tuning, along with 

MLP’s dependency on large datasets and meticulous 

architecture design, limited their applicability under the 

conditions of this study. 

Given these findings, Random Forest emerges as the most 

reliable and effective tool among the tested models for 

early-stage estimation of both time and cost in hospital 

construction projects. Its adoption could offer significant 

benefits for policymakers, planners, and project managers 

aiming to optimize resource allocation and minimize 

planning uncertainties in healthcare infrastructure 

development. 

TABLE Ⅱ. Model Performance Metrics – Duration and 

Budget Predictions 

Model Target 

Variable 

R² MAE RMSE 

SVR Duration 0.113 3.39 4.4 

Random Forest Duration 0.88 1.22 1.62 

MLP Duration 0.208 3.26 4.16 

SVR Budget -0.163 1002603 2474032 

Random Forest Budget 0.895 384850 744975 

MLP Budget  - -   - 
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The results of the sensitivity analysis based on the Random 

Forest model reveal insightful distinctions regarding the 

influence of input features on construction duration and 

budget. For the duration prediction, the most influential 

variable was the number of beds, contributing 

approximately 37.5% to the model’s decision-making 

process. This is closely followed by the longitude of the 

project site, which accounted for around 35.2% of the 

influence, while latitude played a relatively smaller role at 

27.3%. These findings suggest that both the scale of the 

hospital, as reflected in bed count, and its geographic 

location have substantial impacts on the duration of 

construction. The influence of location, particularly 

longitude, could reflect regional variations in logistics, 

workforce availability, and regulatory procedures that 

affect project timelines. 

In the case of budget prediction, the dominance of the 

number of beds becomes even more pronounced, with a 

contribution of 55.8% to the model’s explanatory power. 

This confirms the intuitive understanding that larger 

hospitals, which typically require more beds, are also 

costlier to construct. Latitude and longitude, while still 

relevant, had more balanced and modest effects, 

accounting for 21.6% and 22.6% of the model’s 

performance respectively. This implies that although 

geographical differences do affect construction costs, they 

are secondary compared to the sheer size and capacity of 

the healthcare facility. The higher impact of latitude 

compared to duration prediction may be attributed to 

climate and environmental factors that affect construction 

costs more than timelines. 

Taken together, these results emphasize the importance of 

hospital size and location in early cost and time 

estimations, reinforcing the need for localized planning 

strategies and scalable budgeting frameworks in hospital 

construction projects. 

To determine the optimal design scenario for hospital 

construction projects under resource constraints, three 

widely recognized metaheuristic optimization algorithms 

were implemented: 

• Grey Wolf Optimizer (GWO) 

• Artificial Bee Colony (ABC) 

• Genetic Algorithm (GA) 

The primary objective was to minimize the combined 

normalized values of construction time and total cost, 

using predictive models trained on actual data from 270 

hospital projects across various regions. The machine 

learning models—based on Random Forest regressors—

predicted project duration and cost using input features 

including number of beds and geolocation (latitude and 

longitude). These predictive outputs served as the objective 

functions for the optimization algorithms. 

Each algorithm was configured with equivalent parameters 

(e.g., population size, iteration count) to ensure a fair 

comparison. The algorithms explored the feasible solution 

space by adjusting both the number of hospital beds and 

the geographical location, seeking a configuration that 

yields the lowest normalized cost and time. 

Among the three nature-inspired optimization algorithms 

applied in this study—Grey Wolf Optimizer (GWO), 

Artificial Bee Colony (ABC), and Genetic Algorithm 

(GA)—the GWO algorithm yielded the most efficient 

solution for hospital project planning. Specifically, GWO 

identified an optimal configuration involving 108 hospital 

beds, positioned at latitude 36.05 and longitude 55.37, with 

a projected construction duration of 4.45 years and an 

estimated cost of 596,000 million Rials. This configuration 

resulted in the lowest overall objective score (0.278), based 

on the normalized sum of predicted time and cost. 

Comparatively, the ABC algorithm proposed a slightly 

higher capacity of 114 beds with a construction time of 

4.60 years and a cost of 615,000 million Rials, yielding a 

higher objective score of 0.292. Similarly, the GA 

algorithm selected 120 beds, requiring 4.75 years and 

640,000 million Rials, with the highest objective score of 

0.314 among the three. These results clearly highlight the 

superior performance of GWO, which achieved the best 

trade-off between minimizing time and cost. The 

algorithm’s ability to maintain a strong balance between 

exploration of the global solution space and exploitation of 

local optima makes it particularly suitable for complex, 

nonlinear decision problems in healthcare infrastructure. 

While ABC and GA also provided viable alternatives, the 

differences in performance metrics underscore the 

importance of algorithm selection in optimization-based 

project planning. In the context of resource-constrained 

health systems, such distinctions can have a substantial 

impact on both strategic planning and long-term 

operational sustainability. 

Perspectives in hospital infrastructure planning. In the first 

scenario, the primary objective was to minimize the 

predicted construction cost and time, without fixing the 

hospital capacity. Under this configuration, the model 

identified the most cost-effective solution: a hospital with 

108 beds located at latitude 36.05 and longitude 55.37, 

with an estimated construction time of 4.45 years and a 

predicted cost of 596,000 million Rials. This outcome 

represents the minimum-resource configuration, optimal in 

terms of efficiency and speed. 

In the second scenario, a fixed capacity of 300 beds was 

imposed to assess the optimal outcome for high-demand 

settings. Keeping the same geographic coordinates, the 

GWO model predicted a construction time of 7.97 years 

and a total cost of 1,393,906 million Rials. While this 
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scenario entails significantly greater investment and 

project duration, it reflects the most capacity-efficient 

configuration, meeting long-term service demands in 

regions with critical bed shortages. The comparison 

between the two scenarios underscores the inherent trade-

offs between minimal resource allocation and maximum 

service capacity. In environments with constrained budgets 

and urgent delivery requirements, the lower-bed solution 

may be preferable. However, in long-term planning 

frameworks, the 300-bed configuration may offer strategic 

advantages despite the higher cost and timeline. 

4.1. Validation and Limitations of the Metaheuristic 

Framework 

To bolster the framework's real-world relevance and 

empirical robustness, a validation phase was conducted by 

benchmarking the model’s predicted outputs against actual 

data from comparable hospital construction projects. For 

example, estimates for a 300-bed facility located within a 

specific geographic range were compared with historical 

records of similar-scale projects. The deviation between 

predicted and observed outcomes—quantified through 

Root Mean Square Error (RMSE) and Mean Absolute 

Error (MAE)—provided tangible evidence of the model’s 

predictive reliability. 

While the results generally aligned well with real-world 

figures, underscoring the framework’s utility, several 

limitations remain that merit consideration. Chief among 

them is the assumption of static input conditions: the 

model presumes fixed unit costs and uninterrupted 

timelines. In practice, however, construction is often 

influenced by variables such as inflationary pressures, 

supply chain volatility, and geopolitical disruptions—

factors that the current model does not capture. 

Additionally, the feature set was intentionally streamlined 

to include only the number of beds and geographic 

coordinates. This decision, driven by data availability, 

excluded other potentially impactful variables such as 

contractor efficiency, workforce skill levels, material 

availability, and administrative hurdles. These latent 

variables, while difficult to quantify, can significantly 

skew timelines and budgets in actual projects. 

A further methodological constraint lies in the 

normalization of the objective function, which assigns 

equal weight to time and cost. In reality, stakeholder 

priorities often diverge—some may prioritize rapid 

deployment (e.g., during public health emergencies), while 

others may emphasize cost containment. The uniform 

weighting may thus fail to reflect the nuanced trade-offs 

that define real-world decision-making. 

These limitations inevitably temper the model’s accuracy 

and scope of generalization. In regions marked by atypical 

construction norms or regulatory anomalies, for instance, 

the framework may produce overly optimistic forecasts. 

Addressing these shortcomings in future work will be 

crucial. Potential improvements include adopting a multi-

objective optimization strategy with stakeholder-specific 

weighting schemes and incorporating broader contextual 

variables—such as regional construction indices or 

political risk factors—into the input structure. Such 

enhancements would not only refine the model’s predictive 

capabilities but also strengthen its applicability across 

diverse planning environments. 

4.2. Comparative Assessment and Accuracy 

Justification 

In response to reviewer feedback calling for deeper 

validation and comparative scrutiny, further analysis was 

undertaken to evaluate the framework across both its 

predictive and optimization components. 

From a predictive standpoint, the Random Forest (RF) 

model emerged as the most effective among the three 

tested approaches. When forecasting construction duration 

and cost, RF achieved an R² of 0.88 and 0.895, 

respectively—indicating strong explanatory power and 

reliable generalization. In contrast, Support Vector 

Regression (SVR) and Multilayer Perceptron (MLP) 

models exhibited significantly weaker performance, with 

SVR, notably, returning negative R² values in budget 

prediction. Such discrepancies underscore the RF model’s 

robustness in capturing the nonlinearities and complex 

variable interdependencies characteristic of healthcare 

infrastructure data. 

On the optimization front, a uniform experimental setup 

was applied to three metaheuristic algorithms—Grey Wolf 

Optimizer (GWO), Artificial Bee Colony (ABC), and 

Genetic Algorithm (GA)—to ensure a fair basis for 

comparison. Among them, GWO consistently delivered the 

most favorable results. It identified a configuration 

featuring 108 hospital beds with a composite normalized 

score of 0.278, outperforming ABC (0.292) and GA 

(0.314). This not only affirms GWO’s superior 

convergence behavior but also highlights its adeptness in 

balancing competing objectives. 

To assess real-world applicability, the optimization 

framework was tested under a practical constraint: a fixed 

hospital capacity of 300 beds. GWO’s output under this 

constraint projected a cost of approximately 1.39 trillion 

Rials and a construction timeline of 7.97 years—both 

figures falling squarely within the empirical range of actual 

high-capacity hospital projects included in the dataset. This 

convergence between predicted and observed values 

provides compelling evidence of the model's external 

validity. 

Collectively, these multi-layered validations—spanning 

algorithmic comparisons, statistical performance, and 



International Journal of Intelligent Systems and Applications in Engineering                                              IJISAE, 2025, 13(1), 385–394  |  393 

empirical cross-referencing—reinforce the framework’s 

reliability and practical utility. By triangulating findings 

across both predictive modeling and optimization 

performance, the study presents a robust and replicable 

decision-support system tailored to the nuanced demands 

of healthcare infrastructure planning. 

5. Discussion 

The findings of this study underscore the potential of 

combining predictive models with metaheuristic 

optimization algorithms to enhance decision-making in the 

planning of hospital infrastructure projects. The use of 

machine learning models such as MLP, SVR, and Random 

Forest enabled accurate forecasting of construction time 

and cost, based on historical data from 270 hospital 

projects across Iran. Among these models, Random Forest 

achieved the highest predictive accuracy, highlighting its 

robustness and flexibility for nonlinear regression tasks 

with mixed-type variables, which aligns with prior studies 

emphasizing ensemble methods in construction analytics 

[9]. 

Furthermore, the integration of optimization algorithms—

particularly Grey Wolf Optimizer (GWO), Artificial Bee 

Colony (ABC), and Genetic Algorithm (GA)—

demonstrated varying levels of efficiency in minimizing 

project time and cost. GWO emerged as the most effective 

method, achieving the lowest normalized combined 

objective score, suggesting a superior balance between 

global search and local refinement. This observation 

echoes previous findings in infrastructure planning that 

underline the competitive convergence ability of GWO 

compared to traditional population-based optimizers [10]. 

The scenario-based analysis revealed that a 108-bed 

configuration at optimal geographic coordinates minimized 

total cost and time, whereas a fixed 300-bed scenario 

significantly increased both metrics yet offered greater 

service capacity. These results emphasize the trade-offs 

that decision-makers face when selecting between capacity 

maximization and resource efficiency. While higher 

capacity may be ideal in the long term for addressing 

national healthcare deficits, the financial and temporal 

feasibility must be thoroughly considered, particularly in 

contexts of fiscal constraints. 

Additionally, the methodology proposed in this study fills 

an important research gap by embedding real-world 

geospatial and capacity variables into a dual-objective 

optimization process. Similar frameworks have been 

applied in other infrastructure sectors [11], yet applications 

in hospital planning remain scarce. This study contributes 

to the limited but growing literature on data-driven 

healthcare facility planning under uncertainty and offers a 

scalable model that policymakers can adapt to different 

project sizes, geographies, and budgetary limitations. 

Moreover, it aligns with recent calls in the literature to 

incorporate AI and hybrid approaches for resilient 

infrastructure design, particularly in high-risk or resource-

limited regions [12]. 

6. Conclusion 

This study presented an integrated data-driven framework 

that combines predictive analytics and optimization 

techniques to support informed decision-making in 

hospital infrastructure planning. By applying SVR for time 

and cost prediction and optimizing configurations using 

GWO, ABC, and GA, the study demonstrated that it is 

possible to identify efficient and feasible solutions under 

realistic constraints. 

The scenario-based analysis showed that the GWO 

algorithm not only achieved superior performance but also 

allowed flexible exploration of trade-offs between cost, 

time, and capacity. The findings highlight the critical role 

of algorithm selection in achieving optimal outcomes, and 

the practical value of AI-based tools in managing complex 

infrastructure investments. 

Future research may explore hybrid optimization 

approaches, incorporate more granular construction factors 

(e.g., contractor type, structural system), and expand the 

model to include environmental and social sustainability 

indicators. Moreover, integrating real-time data streams 

could further enhance model responsiveness and precision. 
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