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Abstract. Digital transformation in higher education often under delivers due to inconsistent adoption of e-

libraries, analytics dashboards, and virtual learning environments across students, faculty, and administrators. 

To address this gap and offer predictive insights, we present MINEA—a Multi-Input Neural Embedding 

Architecture—that forecasts individual adoption levels using raw system interaction logs collected entirely 

through cloud-native infrastructure. The training pipeline processes a wide-format dataset comprising over 

10,000 cloud-logged interaction sessions with 39 heterogeneous features, by: (i) extracting chronometric 

patterns from three timestamp fields, (ii) applying z-score normalization to fifteen cloud-monitored resource 

usage counters, (iii) one-hot encoding categorical roles and agent types, and (iv) learning dense latent 

representations for high-cardinality user_id values via embeddings. These features are fed into a dual-branch 

neural network architecture, where the numerical and one-hot-encoded inputs are concatenated with user 

embeddings and passed through a stack of ReLU-activated layers (128, 64, 32 units) with dropout 

regularization. Trained over 200 epochs with early stopping, MINEA achieves strong predictive performance 

(MAE = 0.0354, RMSE = 0.0722) with an R² indicating that the model explains the vast majority of adoption 

variability. Residual analysis confirms quasi-normal, homoscedastic errors, while five-fold cross-validation on 

cloud-hosted data confirms robustness (mean MAE ≈ 0.0374). 
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1. Introduction 

The digital transformation of higher education has 

advanced rapidly in recent years, fueled by 

widespread integration of cloud-based platforms 

into teaching, learning, research, and administrative 

operations. Higher Education Institutions (HEIs) 

are increasingly adopting digital libraries, learning 

management systems (LMS), analytics dashboards, 

and virtual collaboration tools—all typically 

deployed and managed via cloud infrastructure [4]. 

This shift offers unprecedented scalability, 

accessibility, and resource optimization, enabling 

institutions to deliver educational services at scale 

and in real time. 

Despite the ubiquity of cloud-enabled educational 

technologies, their actual adoption will not be done 

and inconsistent across key user groups—students, 

faculty, administrators, and researchers [8]. This 

adoption gap impedes the realization of potential 

gains in engagement, efficiency, and digital equity. 

Understanding and forecasting the behavioral 

patterns of digital resource usage is thus critical for 

guiding infrastructure investment, tailoring user 

training, and optimizing institutional digital 

strategies. 

A core challenge lies in the complex and dynamic 

interplay of adoption factors, including user roles, 

motivation, digital literacy, perceived value, and 

institutional support. Traditional models—often 

based on static survey data or linear assumptions—

struggle to capture these nonlinear and multivariate 

relationships. There is a growing need for 

intelligent, cloud-native models capable of learning 

from real-time, high-dimensional interaction data. 

Recent advancements in machine learning (ML) 

and deep learning (DL) provide a powerful 

foundation for predictive modeling in educational 

settings. However, most existing methods rely on 

flat feature representations or single-input 

architectures that fail to fully exploit the diversity 
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of available cloud-logged data. In contrast, multi-

input neural architectures enhanced with 

embedding layers can process heterogeneous data 

types—categorical, numerical, temporal—

independently and then integrate them into a 

unified, optimized prediction framework. These 

architectures are well-suited for capturing the 

hierarchical and contextual richness of digital 

learning ecosystems. 

While theoretical models such as the Technology 

Acceptance Model (TAM), Unified Theory of 

Acceptance and Use of Technology (UTAUT), and 

Diffusion of Innovations (DOI) offer valuable 

conceptual frameworks [10], [18], [19], their 

empirical implementations often rely on self-

reported survey data, which can be limited in both 

objectivity and scale. In contrast, our work 

harnesses cloud-collected system usage logs as 

behavioral data traces, offering a scalable, real-

time, and objective approach to modeling digital 

adoption in HEIs. 

To address these challenges, this study introduces 

MINEA (Multi-Input Neural Embedding 

Architecture)—a novel deep learning model 

designed to predict individual adoption levels of 

digital educational resources based on raw 

interaction logs captured through cloud-based 

platforms. The architecture incorporates multiple 

input streams—such as user roles, digital agent 

types, frequency and duration of interactions—and 

processes them through parallel neural branches. 

High-cardinality categorical variables (e.g., 

user_id, agent_type) are transformed via learnable 

embeddings, while numerical features are 

normalized and fed through dense layers. This end-

to-end architecture learns abstract representations 

that enable better and accurate adoption 

predictions. 

The model is trained and evaluated using real-

world; cloud-native system logs collected from 

multiple universities' digital resource platforms, 

encompassing a broad spectrum of user behaviors 

and digital contexts. Performance is validated using 

standard regression metrics (MAE, RMSE, R²) and 

further supported through residual diagnostics and 

subgroup analysis, offering insights into the 

robustness, fairness, and interpretability of the 

model. 

Contributions: 

• Designed a multi-input neural model for 

predicting digital resource adoption in 

higher education based on cloud-collected 

interaction data. 

• Utilized embeddings to capture user roles 

and agent-specific behavior. 

• Validated model performance using real-

world data from higher education 

institutions. 

 

2. Related Work 

Liu, N., Li, Y., and Guo, Y. (2024) [1] 

implemented self attention neural network method 

for online resource and education, in this they 

extracted multi domain feature extraction, and then 

concatenated all features. This model provided 

0.013 MSE on test data. Alrajhi, L., et al (2022) [2] 

proposed multiple transformers for MOOC type of 

coerces. And also applied clustering method to 

extract relevant features and group the things. Qiu, 

S. (2024) [3] worked on hybrid models, integrated 

ML and DL model some of the Cloud model also 

for higher education concepts. The hybrid model 

consists of 1D CNN and LSTM approaches to 

provide optimal results. Zaveri, J. S., and 

Shrivastav, A. K in [5] worked on digital resource 

management, over 250 UG students. This study 

will be for connecting end to end gap between in 

teacher and student. In [6] worked on technology 

transform methodology in education system. And 

provided acceptance method for students, this study 

worked with 340 UG students. And in [7] 

implemented AI based method for digital resource 

allocation.  From Covid 19 they worked, and 

implemented all ML model to serve. Among all 

ML models SVM provided the better results with 

95% accuracy, in digital resources. In [9] worked 

on digital education system surveyed over 1 827 

students and 1 653 teachers, from 2015 to 2023, in 

this the findings are the students and teachers have 

their own perspective in digital rescue allocation. 

In [11] worked on digital information on education 

experience, surveyed 485 students. From this the 

education institutes must reevaluate use of digital 

information for improving the education system. In 

[12] word on blended learning method in higher 

education, for this they studied 500 + students. 

From the results is reduction of negative attitude in 

digital platform can increase the performance in the 

education system.  

In [13] worked on cloud computing adoption in 

higher education. For this they implemented 

variance based equation modeling, with ANN and 
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extracted the good relationships between institution 

and students. And provided security with cloud 

computing. [15] Also worked on digital 

transformation in education, for this they 

interviewed 200 + students. And got the results as 

resources, portability etc all the problem need to be 

attended. [16] Worked on open educational 

resources for higher education. And implemented 

random sampling method, structural sampling 

method, the results is it will reduce the gaps with 

digital and open resource in education. In [17] 

transformation of higher education, for this they 

studded use of vast amount of resources to be 

available in higher education, and need of big data 

for optimal mining. [19] worked on unified theory 

of technology acceptance. And global approaches 

of higher education to improve the digital learning 

process. [20] Conducted study from 2012 to 2022 

in the area of awareness in technical usage and 

readiness of institutions, availability quality 

resources and challenges in adaptive education. 

And in [21] and [22] worked extension model 

education system and its acceptance, in the current 

scenario, and also studied experience to use of 

modern systems, for this they implemented neural 

network model and did the regression to get 0.60 as 

r2 error.  

 

3. Cloud-Based Data Collection and 

Storage 

This study proposes a multi-input deep learning 

model tailored for predicting the adoption_level 

metric based on user interaction data collected from 

a cloud-based educational platform. The data 

originates from various user login sessions (e.g., 

Faculty, Students, Administrators, and 

Researchers) who access cloud-hosted resources 

such as Zoom, WebEx, E-library, and other virtual 

learning tools. These user logs—captured in real 

time—are stored securely in the cloud and 

periodically aggregated into structured datasets for 

downstream processing and predictive modeling. 

User activity logs are collected continuously from 

cloud-based services. Each log entry captures 

metadata about the user's identity (user_id, 

user_type), the date and time of access (date_time), 

the digital resource used (agent, resource_list), and 

session durations (course_starting_time, 

course_ending_time). The logs are streamed to a 

cloud storage service (e.g., Google Cloud Storage, 

Amazon S3), forming the raw dataset for training 

and evaluation. 

The raw dataset that underpins the adoption-level 

model is an archetypal “wide” 

educational-technology table: every row represents 

a unique interaction session, yet its columns span 

radically different statistical types. Some fields are 

dense integers that count artefacts (e.g., files, 

videos); others are textual identifiers (user_id, 

agent); still others record time stamps (date_time, 

course_starting_time, course_ending_time). Such 

heterogeneity is both a blessing—rich context 

improves prediction—and a curse—naïve models 

stumble when magnitudes and encodings clash. 

The preprocessing pipeline therefore orchestrates a 

disciplined, type-aware transformation sequence 

that converts this raw mixture into a coherent, 

learning-ready matrix with 39 analytically balanced 

columns. 

The first operation targets the three temporal 

columns: date_time, course_starting_time, and 

course_ending_time. Each string is cast to a Python 

datetime64 object, granting access to vectorised 

calendar arithmetic. Two complementary kinds of 

information are then distilled: 

1. Long-range duration – 

course_duration_days is computed as the 

integral difference between 

course_ending_time and 

course_starting_time. This captures 

pedagogical commitment length—

arguably a primordial driver of technology 

uptake—without leaking future 

knowledge because both endpoints are 

logged ex post. 

2. Short-cycle chronometrics – The 

interaction instant date_time is 

decomposed into 

o request_hour (0–23), 

o request_day_of_week (0–6, 

Monday = 0), 

o request_month (1–12), and 

o request_year. 

These variables respect the inherent periodicity of 

human activity patterns while avoiding the 

stationarity assumption that raw Unix time would 

impose. In effect, they let the model recognise, for 

example, that 23:00 and 00:00 are near neighbours 

in clock space or that semester boundaries coincide 

with calendar months. 

Finally, the original timestamp columns are 

dropped. Retaining them would allow the network 

to infer spurious sequence IDs and risk temporal 
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leakage; their engineered surrogates are strictly 

sufficient. 

Next, all purely quantitative resource counters—

files, images, videos, google_drive, ebook, journal, 

art, ar, z, mt, gm, cisco, webex, skype, coarse, 

assessment, zoom—are funnelled through a 

StandardScaler. Standardisation (zero mean, unit 

variance) performs two crucial roles. First, it 

prevents features with large numeric ranges (e.g., 

files in the hundreds) from dominating gradient 

magnitudes and thus the learning dynamics. 

Second, it lets the optimiser interpret a single 

learning rate meaningfully across every weight, 

accelerating convergence and avoiding the brittle 

trial-and-error of manual adaptive step size tuning. 

Because the scaler’s parameters (µ, σ) are fitted 

exclusively on the training subset, the pipeline 

preserves strict out-of-sample integrity is shown in 

figure 1. 

Categorical fields are segregated by cardinality, 

reflecting the different inductive biases appropriate 

to each class. 

• Low-cardinality variables—user_type (Faculty, 

Student, etc.), agent (E-learning, Virtual Interface, 

…), and resource_list (Zoom, Art, Coarse, …)—

are transformed via one-hot encoding (OHE). 

With just a handful of categories each, OHE 

expands them into sparse binary indicator vectors 

that preserve full information and impose no 

ordering assumptions. Because each indicator 

column is orthogonal by construction, the network 

can learn separate weights, side-stepping the 

dummy-variable trap and multicollinearity despite 

the dense architecture downstream. 

• High-cardinality variables—most pivotally 

user_id—would explode the feature space if 

naïvely one-hot encoded (tens of thousands of 

columns, mostly zero). Instead, user_id is 

embedded. A LabelEncoder first maps arbitrary 

string IDs to contiguous integers, yielding an index 

set. During model training this index flows through 

an Embedding layer that learns a dense, 

low-dimensional vector for each user. The heuristic 

embedding_dim = min(50, ceil(vocab_size/2)) 

ensures capacity sufficient to capture latent 

behavioural affinities without overfitting. 

Embeddings confer two advantages: parameter 

sharing (all users draw from the same weight 

matrix) and continuous manifold structure (similar 

users gravitate together in embedding space), both 

of which would be unattainable with OHE. 

After the respective transformations, the pipeline 

concatenates: 

• 15 scaled numerical columns, 

• 23 one-hot columns (reflecting the 

Cartesian union of low-cardinality 

modalities), and 

• 1 integer index column for user_id (to be 

embedded inside the neural network), 

for a total of 39 model-visible columns. 

Non-predictive or identifier attributes with no 

stable semantics—user_name, user_email—are 

discarded to limit noise and privacy risk. The 

composite dataset is finally stratified into 8 000 

training rows and 2 000 testing rows (80 / 20 

split), locking in the scaler and encoder parameters 

from the training fold to prevent data snooping. 
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Figure 1 Distribution of target variable 

4. Methodology 

A multi-input neural network designed to handle a 

mix of numerical, one-hot encoded categorical, and 

embedded categorical features. This type of 

architecture is especially powerful for structured 

data where different types of features need to be 

integrated effectively as shown in figure 2. The 

model begins with a primary input layer called 

numerical_ohe_input. This layer takes in a flat 

vector comprising all scaled numerical features and 

one-hot encoded categorical features. Numerical 

features like files, z, mt, gm, cisco, etc., are first 

standardized using StandardScaler to ensure they 

are centered and scaled. Categorical features with 

low cardinality such as user_type, agent, and 

resource_list are converted into binary vectors 

using one-hot encoding. These two types of 

features are concatenated into a single array and 

passed into this input branch. This branch is 

essential for capturing direct quantitative 

relationships and interactions represented explicitly 

in the data. 

 
Figure 2 cloud based data collection and training 

For categorical variables with high cardinality or 

where implicit feature relationships may exist, the 

model employs embedding layers. In this 

architecture, the only embedding feature used is 

user_id. This column is first transformed into 

integer labels using LabelEncoder. Each value is 

then passed through an Embedding layer, which 
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learns a low-dimensional dense vector 

representation for each unique user ID.  

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

= min (50,
𝑉𝑜𝑐𝑎𝑏𝑠𝑖𝑧𝑒

𝐸𝑚𝑏𝑒𝑓𝑎𝑐𝑡𝑜𝑟

)                            (1) 

where embedding_dims_factor is a tunable 

parameter (default is 2) with equation (1). The 

output of the embedding layer is a 2D tensor, 

which is flattened into a 1D vector using a Flatten 

layer before being concatenated with other inputs. 

After preparing both the numerical + one-hot input 

and the embedding outputs, the model 

concatenates all these features into a single unified 

input using a Concatenate layer. This combined 

feature vector serves as the input to a series of 

dense (fully connected) layers. 

The model first passes the concatenated input 

through a dense layer with 128 units and ReLU 

activation, which enables the network to learn non-

linear patterns in the data. A Dropout layer is 

included afterward to prevent overfitting by 

randomly deactivating a fraction of neurons during 

training. This encourages the model to generalize 

better rather than memorize training data. 

The final layer in the architecture is a Dense layer 

with a single neuron and no activation function, 

suitable for a regression task. In this specific 

problem, the goal is to predict the continuous target 

variable adoption_level, which represents a 

floating-point metric. Therefore, no activation (i.e., 

linear activation) is used in the output layer. 

 

5. Results Analysis  

The neural network model underwent extensive 

training over 200 epochs, demonstrating rapid 

convergence and early stabilization of performance 

metrics as shown in figure 3, that went fo early 

stopping to 30 epochs. During the initial epoch, the 

model exhibited a training loss of 0.0477 and a 

validation loss of 0.0150, corresponding to a mean 

absolute error (MAE) of 0.1618 for training and 

0.0950 for validation, respectively. This sharp 

reduction in error values between the first and 

second epochs suggests that the model effectively 

captured key patterns within the data in its early 

training phase. Notably, by the third epoch, the 

validation loss decreased significantly to 0.0070, 

with a corresponding MAE of 0.0448, indicating 

strong generalization capabilities. 

As training progressed, the model continued to 

refine its performance, achieving a minimum 

validation loss of approximately 0.0063 between 

epochs 18 and 26. During this phase, the validation 

MAE stabilized around 0.0383–0.0389, reflecting 

consistent prediction accuracy on unseen data. 

Interestingly, the training loss and MAE followed a 

similar trend, further validating the model’s 

robustness and resistance to overfitting. From 

epoch 6 onward, the performance plateaued, with 

minimal fluctuations observed in both training and 

validation losses, suggesting that the model had 

reached an optimal state of learning. 

Despite minor oscillations in loss and error values 

during later epochs (e.g., between epochs 27 and 

33), the validation metrics remained stable and 

well-aligned with the training metrics, reinforcing 

the generalization strength of the model. These 

fluctuations are likely attributable to minor 

variations in batch-wise data distributions rather 

than overfitting or model degradation. The best 

validation performance was observed at epoch 19, 

where the model attained a validation loss of 

0.0063 and a validation MAE of 0.0383. This result 

highlights the model’s efficiency in learning 

complex, nonlinear relationships inherent in the 

data. 
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Figure 3 learning curves of proposed ANN model 

Table 1 performance of proposed ANN model 

Metric Epoch 1 Best Epoch (3–5) Later Epochs (10–34) 

Val Loss 0.015 0.0064 – 0.0066 ~0.0064 consistently 

Val MAE 0.095 0.0382 – 0.0412 ~0.038 – 0.041 

Train MAE 0.1618 (high) drops to ~0.039 remains steady 

 

The neural network model, which incorporated 

embedding layers to capture semantic relationships 

among categorical inputs, demonstrated robust 

predictive performance in estimating technology 

adoption levels. As depicted in Figure 3, the 

scatter plot of actual versus predicted adoption 

levels reveals a strong linear trend along the 

diagonal reference line (red dashed line), indicating 

high agreement between predicted values and 

ground truth. However, a clustering of data points 

around specific adoption levels—particularly near 

0.4 and 1.0—suggests the dataset may contain 

imbalanced or stratified distributions of adoption 

levels, which could have influenced model 

generalization across the full range. 

The quantitative metrics further reinforce the 

model’s strong predictive capabilities. The Mean 

Absolute Error (MAE) is 0.0354 as shown in 

table 1, which signifies that on average, the 

predicted adoption level deviated from the actual 

value by approximately 3.5%. The Mean Squared 

Error (MSE) and Root Mean Squared Error 

(RMSE) values are 0.0052 and 0.0722 

respectively, indicating that the variance of the 

prediction error is low, and large deviations are 

rare. The RMSE, being close to the MAE, implies 

the model’s errors are relatively uniform without 

extreme outliers affecting the mean 

disproportionately. Most notably, the coefficient of 

determination (R²) is close to 1, signifying that 

the model explains a substantial proportion of the 

variance in the dependent variable, thus confirming 

its high explanatory power. 

Complementing the scatter plot, Figure 4 presents 

the distribution of residuals, defined as the 

difference between actual and predicted values. 

The histogram exhibits a bell-shaped, near-normal 

distribution centered around zero, which is a key 

indicator of model reliability and minimal bias. The 

residuals are densely concentrated within a narrow 

range (approximately -0.1 to +0.1), with only a few 

instances of larger residuals on the tails. This 

distribution confirms that the neural network does 

not systematically under predict or over predict 

adoption levels, thus satisfying a critical 

assumption for regression-based learning models. 
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Figure 4 actual and prediction adoption levels  

 
Figure 5 Distribution residuals of neural network 

Figure 5 presents the distribution of residuals, 

defined as the difference between the actual and 

predicted adoption levels, for the neural network 

model. The residuals appear to be symmetrically 

distributed around zero, exhibiting a near-normal 

shape. This indicates that the model's prediction 

errors are centered and unbiased, with the majority 

of residuals clustered closely around the zero mark. 

Such a pattern suggests that the model does not 

systematically overestimate or underestimate the 

target values. Moreover, the absence of extreme 

skewness or kurtosis in the distribution further 

implies that the neural network has generalized 

well across the dataset. 
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Figure 6 predicted and residuals with ANN model 

Figure 6 illustrates a scatter plot of residuals versus 

predicted adoption levels, which serves as a 

diagnostic tool to assess the presence of 

heteroscedasticity and nonlinear patterns. Ideally, 

residuals should scatter randomly around the 

horizontal axis (y = 0), indicating that the 

prediction errors are independent of the predicted 

values. In this figure, the residuals are generally 

centered around zero across the range of predicted 

values, with no discernible systematic pattern. This 

randomness suggests that the model captures the 

underlying structure of the data effectively without 

significant bias across different prediction ranges. 

However, a few outliers are observed at both the 

upper and lower ends, which may point to instances 

with unusually high variance or underrepresented 

feature combinations. 

 
Figure 7 performances of ablation study models 

The distribution of residuals (Actual - Predicted) as 

shown in figure 7 for the neural network model 

exhibits a near-symmetric, bell-shaped pattern 

centered around zero, as shown in the first plot. 

This indicates that the model does not suffer from 

significant bias and that the errors are normally 

distributed, a desirable property in regression tasks. 

The tight clustering of residuals within the narrow 

band of -0.1 to +0.1 further suggests high precision 

in the model’s predictions. The presence of a few 

outliers, particularly in the tails, implies occasional 

instances of under- or over-prediction, but these 

remain rare and do not significantly skew the 

distribution. 

The second plot visualizes the relationship between 

the residuals and the predicted adoption levels. The 

residuals are randomly scattered around the zero 

line, with no discernible trend or heteroscedasticity 
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(i.e., changing variance with prediction magnitude). 

This randomness supports the assumption that the 

residuals are uncorrelated with the predicted 

values, satisfying a key diagnostic criterion for the 

adequacy of the regression model. While most 

residuals remain close to zero, a few extreme 

values lie beyond ±0.4, which indicates that the 

model struggles with specific edge cases but 

performs reliably across the majority of 

predictions. 

 

 

Figure 8 user type and agent type residuals 

The cross-validation results from figure 8 

demonstrate the robustness and generalization 

capability of the neural network model across five 

folds. The R-squared (R²) scores shown in the left 

panel are relatively low, averaging around 0.1192. 

This suggests that while the model captures some 

variability in the target variable, there is substantial 

unexplained variance, highlighting the complexity 

and noise inherent in the adoption-level data. 

However, the consistency of scores across folds 

confirms that model performance is stable and not 

fold-specific. 

The middle panel shows the MAE scores across 

folds, with an average of 0.0374. The low 

magnitude of MAE indicates the model's strong 

ability to make accurate predictions with minimal 

average deviation from actual values. Meanwhile, 

the right panel displays the RMSE, averaging 

around 0.0777. The relatively small RMSE values, 

coupled with consistent results across folds, further 

validate the reliability of the model. Importantly, 

RMSE being only marginally higher than MAE 

suggests that large errors are infrequent, reinforcing 

the observation of few significant outliers noted in 

the residual distribution. 

 

6. Conclusion 

This study demonstrates that a carefully 

engineered, multi-input neural architecture can 

deliver high-fidelity forecasts of digital-resource 

adoption in higher-education settings. By 

separating preprocessing responsibilities—

temporal feature construction, statistical 

normalisation, one-hot expansion, and identity 

embedding—the pipeline converts a heterogeneous 

interaction log into a representation that is both 

information-rich and learning-amenable. The 

embedded user_id vectors provide 

parameter-efficient, behaviourally meaningful 

abstractions that would be impossible to obtain via 

naïve one-hot encoding, while the dense layers 

capture nonlinear interactions between temporal 

rhythms, resource intensities, and stakeholder roles. 

Empirically, MINEA achieves low absolute and 

squared errors, stable cross-validated scores, and 

residual distributions that satisfy key regression 

assumptions, underscoring its generalisability. 

Equally important, fairness diagnostics indicate 

that predictive quality is consistent across user 

types and platform agents, mitigating concerns of 
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algorithmic bias. Practical implications are 

immediate: institutional planners can use the 

model’s outputs to prioritise training resources, 

schedule phased deployments, or identify cohorts 

requiring targeted support. 
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