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Abstract: Since deep learning models continue moving to production scenarios, it is becoming important to ensure that they 

operate in a real-time setting. The latency of inference or throughput, and utilisation of system resources have a direct 

implication on the user experience, reliability of service, and cost of operation. Practical operation presents inconsistencies in 

the input data, the workload fluctuations, and the environment, and, therefore, to ensure the efficiency, quality, and integrity 

of the system, real-time monitoring is important to track its performance and ensure it. The real-time monitoring tools give an 

ongoing understanding of the behaviour of deep learning models when they are deployed in a wide variety of production 

settings--cloud-hosted services, on-site data centres, or edge devices. Such tools measure the critical parameters of CPU and 

GPU utilisation, memory usage, inference latency, and model response times. Beyond that, they facilitate anomaly detection 

that can be used to detect deviation in the anticipated behaviour, thus may point to drift in a model, contention in resources, or 

bottlenecks in systems. More contemporary technologies, such as Prometheus, Grafana, NVIDIA Triton Inference Server, and 

proprietary observability tools, are becoming incorporated in ML pipelines to alert and visualize according to their on-demand 

performance metrics. Such tools not only ease diagnosis but also guide automated scaling, load balancing, and model retraining 

solutions. Real-time monitoring is additional in guaranteeing services are achieved according to service-level agreements 

(SLAs), more specifically in the case of mission-critical applications, including medical diagnosis, securities, and virtual and 

artificial machines. By integrating real-time monitoring of performance within the life cycle of deep learning deployment, 

results in constant optimisation and increased visibility of operations, as well as proactive fault mitigation. This eventually 

aids the delivery of scalable, reliable, cost-efficient AI services. Thus, this paper discusses how integrating workload modeling 

and bottleneck feedback loops in hardware/software co-design helps manage design uncertainty and improve system 

adaptability. 

Keywords: Real-Time Monitoring, Deep Learning Inference, Performance Metrics, Production AI Systems, Model 

Observability 

1. Introduction 

With all the revolutions that artificial intelligence 

(AI) and deep learning technologies are making in 

industries, it has been an increasing trend that the 

deep learning models that had been kept as research 

and experimentation environments are entering the 

world of production. The shift is a turning point in 

the machine learning (ML) pipeline, making the 

models no longer a static experimental artefact, but 

rather the working part of real-time systems. Various 

healthcare diagnostics, autonomous vehicles, fraud 

detection, and recommendation engines are some of 

the missions that these systems tend to power. The 

latent effect of deep learning models in this kind of 

production situation can have a direct impact on end-

user actions, business continuity and business 

regulatory provisions, and cost of operation. Figure 

1 highlights how system and inference metrics, 

supported by monitoring tools, drive alerts, 

performance optimization, and scalability decisions. 

Dynamic environments found in the real world-

inputs that have varying distributions of data, 

systems resource contention, and changing 

computational workloads imply a number of 

problems that do not exist in a controlled laboratory 

setting. Therefore, a model that works effectively in 

a dev environment may not work as well in a 

production environment. High latency, memory 

errors, poor inference precision, or no response at all 

may make an ostensibly well-trained model 

unusable. Therefore, there exists an urgent necessity 

to have real real-time monitoring mechanism that 

constantly tallies the operating statistics of these 

models to facilitate performance, integrity, and 

reliability. The real-time monitoring is defined as the 
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organised observation in run time the behaviour of a 

particular system running and it provides feedback 

and alerts in real time. Applied to deployed deep 

learning models, this includes monitoring a variety 

of metrics, e.g., inference latency, throughput, 

system resource usage (CPU, GPU, memory), and 

distributions of model predictions. The identified 

metrics can assist not only in the identification of 

performance bottlenecks, but also in the detection of 

anomalies, including concept drift - the changing 

statistical characteristics of the input data - thereby 

assisting in proactive maintenance and retraining. 

Besides, real-time monitoring is critical in service-

level agreements (SLAs) in large-scale AI systems 

with a priority on the field of finance, defence, and 

medicine as part of the system performance 

measures that cannot be ignored due to their time 

sensitivity and accuracy. As an example, in the case 

of medical diagnostics that operate on convolutional 

neural networks (CNNs), as the model inference 

takes longer or its prediction accuracy drops, the 

potential clinical outcomes are disastrous [1]. 

Likewise, neural net transaction analysis-based 

fraud detection solutions require a severe hardware 

limitation imposed by latency, regardless of whether 

the solution is based on recurrent neural networks 

(RNNs) or other forms of neural net [2]. 

Incorporation of real-time monitoring features in the 

AI-production pipelines can offer more visibility in 

operations, as well as allow engineers to correct the 

mess by performing possible finishing actions in a 

very short time. This involves both automated 

horizontal/vertical scaling, dynamic load balancing, 

as well as the ability to roll auto-generated model 

retraining jobs when performance penalties are 

detected. Furthermore, with the widespread 

implementation of AI models on a wide variety of 

platforms, including cloud platforms and on-

premises data centres or edge devices, monitoring 

tools should be dynamic, platform-independent, and 

designed to offer scalable solutions to cope with 

high volumes of distributed implementations. 

A number of real-time monitoring frameworks have 

come up to capture such demands. System metrics 

can be gathered and visualised using open-source 

tools like Prometheus and Grafana to a large extent; 

domain-specific solutions, such as NVIDIA Triton 

Inference Server, offer model-serving capability 

with in-built observability. These tools can be easily 

combined with containerised deployments (e.g. 

Docker, Kubernetes) and allow AI engineers to 

monitor model metrics as well as the more common 

application health metrics. Some customisation and 

scaling opportunities are provided by proprietary 

observability platforms, e.g., by Datadog, AWS 

CloudWatch, and Google Operations Suite [3][4]. 

Nonetheless, despite these developments, some 

serious issues still occur. Among the key issues is the 

trade-off between the monitor granularity and 

system overhead. In its turn, high-resolution 

monitoring can give a detailed picture but might be 

powerful enough to eat too many of the available 

resources, thus impacting the activity it is supposed 

to measure. Likewise, it can be quite tedious to 

customise monitoring systems into legacy systems 

or proprietary ML pipelines, which increases the 

development complexity and hence the maintenance 

costs. Moreover, the reporting of the performance 

and the interpretation of the performance metrics 

should be standardised so that there is consistency 

between the teams and platforms [5]. 

Due to the multiple models or ensemble learning 

constructions, the utility of real-time monitoring 

increases even more. An example is that there could 

be multiple recommendation systems, and that in 

each one, collaborative filtering, content-based 

filtering, and contextual bandits can run 

simultaneously. These models may require different 

resource requirements and patterns of failure; thus it 

is necessary to individually and collectively monitor 

the models. It becomes even more complicated when 

models are updated dynamically by methods such as 

online learning or reinforcement learning, where 

monitoring strategies must also be adaptive, 

continuous, and capable of responding to evolving 

model behaviours in real time [6]. The following 

sections examine the key metrics employed to 

evaluate the performance of deep learning models, 

followed by a review of tools and frameworks that 

facilitate real-time observability of such models. 

How these tools fit in the deployment infrastructure, 

the place of anomaly detection and automated 

scaling, and trends in AI observability will be 

discussed in the next sections. The theoretical and 

practical knowledge that this structured exploration 

is meant to offer should be of help to engineers, 

scientists, and administrators active in the process of 

implementing deep learning models into a 

production setting.  
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When trying to comprehend how real-time 

monitoring can change production AI in the way that 

it actually is, it is essential to examine the specific 

measures that can be regarded as the pointers to 

model and system health at first. The values 

produced by these metrics serve as a quantitative 

foundation for evaluating performance and initiating 

automated remediation processes, which are 

examined in greater detail in the following section.

 

Figure 1: Real-time monitoring workflow in AI systems, linking inputs to metrics, tools, and optimization 

outcomes. 

2. Key Metrics for Deep Learning Model 

Performance 

The performance of the deep learning models cannot 

be exhaustively interpreted based on their efficiency 

and reliability when it comes to AI production 

systems without the quantitative measurement of the 

models. These metrics are also used as parameters of 

a successful model operation that can be used as the 

reason for the system-level intervention, i.e., 

resource reallocation, retraining, or even returning to 

the early versions of the model. The monitoring of 

these parameters in real time becomes critical when 

it is used in critical missions where accuracy, 

stability, and latency are closely related to the 

success of the operation. The types of performance 

calculations that may be made of deep learning 

models in production can be reduced to two large 

categories: inference-related metrics and system-

level operational metrics. Latency, throughput, and 

accuracy can be used as inference metrics, and CPU 

and GPU usage, memory and I/O performance, and 

system availability are operational metrics. 

Monitoring of these parameters in real-time allows 

organisations to be fully aware of how the health of 

their model and its efficiency are looking, and 

therefore make sure that it functions within 

identified performance boundaries. 

Inference latency, which can be in milliseconds, is 

the time a model needs to process a single input and 

generate output. Such a measure is essential where a 

fast reaction is paramount, e.g., in cases of online 

fraud detection, voice assistants, or medical devices 

providing diagnostic services. The latency increase 

may indicate the model inefficiency, load on a 

server, or problems with the data pipeline going 

upstream. Throughput, however, evaluates how 

many inferences the model can make in one second 

and is important in a batch-processing system or in 

high-traffic services. Finding a sweet spot between 

latency and throughput is a fragile operation, and 

there may be sacrifices on either side when one is 

enhanced [7]. Accuracy, too, is another important 

dimension of performance. Whereas accuracy tends 

to get validated at the training and the evaluation 

process, constant accuracy could be used as a 

production metric and could identify concept drift, 
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that is, a scenario where the statistical properties of 

the input data will drift across time, which causes a 

loss in performance. As an example, a model trained 

on the data of tweets in 2020 might not be able to 

parse the slang or use changing vernacular in 2025 

appropriately. Monitoring real-time changes in 

prediction distributions, overfit to classes, and 

confidence scores can be used as an imperfect 

surrogate to indicate such a shift, initiating retraining 

workflows or inspections [8-10]. 

Besides inference metrics, resource utilisation 

metrics are also necessary in real-time monitoring. 

Direct measures of computational efficiency are 

provided by the use of GPUs and CPUs. 

Underutilisation may reflect the over-provisioning 

of a model, and hence it can be downscaled to reduce 

the cost, and conversely, high satisfaction may 

indicate the presence of resource bottlenecks or 

imminent system failure. In the case of deep learning 

models, GPU parameters, like memory amounts, 

core usage, and temperature, are of special 

significance, since thermal throttling might cause 

wild variations with abrupt performance decreases 

[9]. Special tools used to track such parameters in a 

production environment, such as NVIDIA System 

Management Interface (nvidia-smi) or DCGM (Data 

Center GPU Manager), can be utilized to give a 

detailed monitor [10]. There should also be 

watchfulness on the memory leaks and RAM 

consumption. Large parameter models and deep data 

pipelines may get starved of system-level memory 

resources, particularly when working with large 

batch sizes or high-resolution input operating on 

large models. Real-time tracking aids in discovering 

where memory overflow can occur to optimise the 

same through the quantisation or pruning of models. 

In addition, the growth of used memory over time 

may be evidence of inappropriate garbage collection 

or redundancy in the source code, in which case it 

should be addressed by an engineer [11]. 

Another point, which is commonly ignored yet can 

significantly influence the deep learning inference 

times, is disk I/O performance in the systems that 

require frequent access to large tracts of data or 

intermediate files. As an illustration, deep learning 

models that consume large word embeddings, 3D 

imaging data, or high-definition video frames in 

inference are vulnerable to disk latency. The disk 

throughput and access latency monitoring tools can 

be helpful in detecting such a bottleneck, which 

would then serve as a guide to accommodate faster 

storage systems such as SSDs or memory-mapping 

replication strategies [12]. Less significant but 

telling is model availability and uptime, which is 

generally defined by a percentage of time that the 

model is accessible and operational in production. 

High availability is especially crucial in systems that 

require running perpetually, e.g., in autonomous 

vehicles or a high-frequency trading system. 

Nevertheless, downtime does not only mean the 

disruption of the service given, but also a financial 

or reputational setback. Observing uptime 

indicators, within related logs, gives an 

understanding of how reliable systems are and how 

to perform root cause analysis in the event of an 

outage [13]. Inference serving systems should also 

observe queue lengths and backlogs of requests in a 

real-time manner. An increasing number of requests 

in the queue could indicate that the model is unable 

to match the incoming load, which indicates a 

scalability problem. With microservices designs 

where a model is utilised through APIs, the request 

rate, error rate, and the response times provide very 

general indicators of system health, commonly 

visualized with RED (Rate, Error, Duration) rate 

indicators [14]. 

More sophisticated measures are layer-by-layer 

latency, activation distributions, and gradient norms, 

though normally the purview of debugging and 

performance optimization during development, 

immediate real-time calculation of these measures in 

production can offer fine-grained indicators when 

failures occur. As an example, the unexpected rise of 

activation sparsity or the disappearance of gradients 

might be a sign of hidden problems with model 

execution or corruption of input data [15]. The 

problem with real-time collection and analysis of all 

these metrics is that one has to deal with the trade-

off between observability and performance 

overhead. The possibility of resource conflict and 

the loss of important signals may occur via over-

monitoring and under-monitoring, respectively. This 

is why it is worth designing the monitoring system 

in a way that it works asynchronously, or 

implements the non-blocking algorithm of 

collecting telemetry data, shifting demanding 

calculations to additional processes [16]. 

Different metrics would be gauged in the actual 

environment with the help of diverse tools and 

frameworks that fit in the deployment stack. As an 

example, inference latency and model accuracy 

could be observed through custom middleware, 



 
International Journal of Intelligent Systems and Applications in Engineering                           IJISAE, 2024, 12(23s), 3475–3490 |  3479 

whereas GPUs and memory usage are commonly 

used with vendor-specific APIs. The gathered 

information may be saved in time-series databases 

such as InfluxDB or Prometheus, and visualised 

with a dashboard in Grafana or Kibana. Scheduling 

Alert: It is possible to set alerts to alert 

administrators on a system due to a breach in a 

metric, enabling proactive remediation. Hence, it is 

important to detect and actively track such 

performance indicators for the health, scalability, 

and reliability of deployed deep learning. The 

following part is about the various tools and 

frameworks that are available, which enable such 

monitoring of activities on a larger scale and in a 

more efficient manner in modern, containerised, 

cloud-native environments. The diagram (Figure 2) 

illustrates how CPU/GPU usage, memory I/O, 

latency, throughput, and other factors contribute to 

evaluating and maintaining model accuracy, drift 

detection, and overall model health. 

To further place the role of such metrics in 

perspective, it is useful to take a closer look at how 

the various application areas weigh particular 

performance indicators across the operational 

parameters and thereby give specific attention to 

situations with differing performance indicators. 

Figure 2: Key performance and resource metrics involved in monitoring the health of a deep learning model. 

 

Table 1: Importance of Key Performance Metrics by Application Domain 

Application Domain 
Latency 

Sensitivity 

Accuracy 

Priority 

Resource 

Constraint 

Observability 

Complexity 

Autonomous Vehicles Extremely High High Moderate Very High 

Real-Time Fraud Detection High High Low High 

Medical Imaging Diagnosis Moderate Very High Moderate High 

E-commerce 

Recommendations 
Low Moderate Low Moderate 

Voice Assistants High Moderate Moderate High 

Industrial IoT Monitoring Moderate High Very High Very High 
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3. Tools and Frameworks for Real-Time 

Monitoring 

After determining the essential performance 

indicators in the deep learning production systems, 

the obvious next step is the system of tools and 

frameworks that would aid in the monitoring of the 

system in real time. These technologies form the 

observability infrastructure of any model and enable 

AI engineers and DevOps to consume performance 

data by collecting it, storing it, visualizing it, and 

making decisions. Effective monitoring tools serve 

not only a critical role in diagnostics and debugging 

but also ensure that AI systems operate within 

defined service-level agreements (SLAs). This is 

essential for cost control and for enabling 

incremental improvements in deployed AI systems. 

The diagram (Figure 3) categorizes commonly used 

technologies like Prometheus, Grafana, Docker, and 

PagerDuty under their respective roles in enabling 

robust real-time monitoring systems. The currently 

available line of machine learning (ML) operations 

is filled with monitoring solutions that can be 

divided, in general, into three groups, namely: 

system observability, model-specific observability 

platforms, and system-aware monitoring systems. 

The different categories have various and mostly 

overlapping functions in establishing resilient real-

time observability. 

Prometheus is one of the most popular open-source 

monitoring solutions at a system level. First created 

by SoundCloud and cemented as an open-source 

community today in the Cloud Native Computing 

Foundation (CNCF), Prometheus is especially well 

known due to its time-series database, pull-based 

collection of metrics, and its powerful alerting 

systems. It fits well in container orchestration such 

as Kubernetes, facilitating auto-discovery of 

services and sampling of metrics in real time at the 

model-serving endpoints [17]. Prometheus was 

frequently linked to Grafana, an open-source tool 

used for querying and visualizing metrics over 

customizable dashboards. Using Grafana, AI 

engineers are able to visualise latency distributions, 

GPU usage, memory consumption, and error rates 

on various models and services [18]. The NVIDIA 

Triton Inference Server is another important 

instrument in the sphere. Triton is specifically 

developed to serve deep learning models in 

production and can serve multiple different model 

frameworks (TensorFlow, PyTorch, ONNX, etc.). 

Triton allows inspecting all inference requests with 

extensive metrics, including overall latency of the 

inference request, queue time and compute time per 

model. It publishes these metrics through 

Prometheus endpoints, which means that it is perfect 

to incorporate into the wider observability pipelines. 

Triton also implements dynamic batching and 

concurrent model execution, which are the key 

features of maintaining the high throughput and low 

latency in the cloud and edges [19]. 

In GPU-centric deployments, a hardware-level 

telemetry is available with NVIDIA DCGM (Data 

Center GPU Manager) that can offer the level of 

detail needed on GPU temperature, power, and 

utilization, memory bandwidth, and memory 

utilization. DCGM is particularly useful to data 

centres with multiple models competing over GPU 

resources as it allows the optimal use of hardware 

and avoids thermal throttling or overutilization, 

which may lead to worse model inference [20]. 

Within the domain of model-specific observability, 

platforms such as Arize AI, Fiddler, and WhyLabs 

are increasingly being adopted in industrial 

applications. These tools are specific to data drift, 

outliers, fairness, and performance decay. As an 

example, Arize AI enables teams to examine the 

NLP model embeddings and identify the changes in 

language usage that can potentially impact the 

model predictions. Likewise, Fiddler offers 

explainable AI (XAI) information with model health 

observability to support the adherence of ethical AI 

frameworks and regulations [21]. The platforms 

frequently include self-contained SDKs that can be 

wrapped into code to serve models, allowing 

arbitrary logging of model-specific metrics in real 

time. Another prominent tool that promotes 

standardizing observability in logs, metrics, and 

traces is OpenTelemetry, an open-source project 

listed under the CNCF. Although it was initially 

created to be applied to performance monitoring of 

a traditional application (APM), there is an effort to 

extend it to the workflows of ML. The transition to 

OpenTelemetry presents an opportunity for 

organisations to consolidate the observability stack 

and reduce the engineering effort required to 

maintain diverse logging and metrics frameworks 

[22]. 

The emergence of cloud-native ML pipelines has 

also seen the emergence of monitoring solutions that 

are built into common MLOps platforms, namely 

Kubeflow, MLflow, and Triton Model Analyzer. 

Telemetry comes natively to these tools at all points 
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of the model life cycle: training, experimentation, 

inference, and retraining. An example is MLflow, 

which can log model parameters, metrics, and 

artifacts during training, and optionally be extended 

with inference-time monitoring plugins. Kubeflow 

Pipelines provide dashboards and a metadata 

tracking tool to assist with debugging performance 

regressions and pipeline blockers [23]. In 

organisations running on big cloud systems, closed-

source observability solutions provide a high level 

of interconnectivity with the deployment 

infrastructure. Monitoring solutions specific to AI 

workloads are available: AWS CloudWatch, Azure 

Monitor, and Google Cloud Operations Suite 

(previously Stackdriver). These services enable the 

gathering of fine-grained metrics, the aggregation of 

logs, and automatic alerting, typically with little 

configuration. As an example, the Vertex AI solution 

by Google is compatible with Operations Suite and 

provides pre-built dashboards in addition to anomaly 

detection specific to ML models, which require AI 

Platform Prediction or Vertex Endpoints as a 

solution [24]. In edge computing contexts, 

connectivity can be an exploitable element in 

situations where it might not be available at all 

times, and the ability to exercise constraints on 

available resources is a major consideration. The 

need to tip the scales of manageability means giving 

it lightweight monitoring frameworks. Such tools as 

Telegraf, StatsD, and Fluent Bit are frequently 

utilized at the edge to gather and send telemetry data 

to the centralized servers or cloud dashboards. These 

solutions are designed to minimise overhead and can 

function effectively in constrained environments 

with negligible impact on model inference 

performance [25]. 

Adding to the standard tools, monitoring of the 

model performance can also be done via tailoring 

instrumentation. It entails the incorporation of 

measuring collection directly into the inference 

code. Custom metrics can be made, for example, the 

distinction between correct and incorrect inferences 

can be measured by counting successful and 

unsuccessful time stamps before and after model 

prediction or by time stamping itself, e.g., how many 

times the developed trade is incorrectly as opposed 

to correctly predicted. Such metrics may then be 

published through APIs or message queues and read 

by monitoring platforms. The other important issue 

in monitoring tools is integration. The success of a 

real-time monitoring instrument is based on its 

capability of integrating into deployment pipes, 

either by catering CI/CD platforms, such as Jenkins 

and GitLab CI, or by utilizing container or container 

orchestration platforms, such as Kubernetes. The 

monitoring tools ought to provide APIs, webhooks, 

and plugins that enable smooth importation of 

automated retraining pipelining, scaling policies, or 

even incident management tools like PagerDuty and 

Opsgenie [26]. Monitoring is further complicated by 

the increasing popularity of serverless inference, 

made possible by AWS Lambda or Google Cloud 

Functions, among others. As such services 

dynamically scale, and are stateless, optimization, 

often measured at instance-level metrics might not 

be adequate. Methods used in these instances are 

application performance monitors (APM) such as 

New Relic or Dynatrace, which monitor 

performance on a granular degree of function calls, 

runtimes, and memory printouts [27]. 

Figure 3: Tools and frameworks supporting real-time monitoring across key functionalities such as metric 

collection, visualization, deployment, and alerting. 

 

To demonstrate the actual functionality of these parts 

as a whole, the following table describes the 

common kinds of anomalies, their causes, and the 

auto-remediation actions that are taken within real-

time AI systems in real-time. 
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Table 2: Examples of Anomalies, Detection Triggers, and Automated Responses 

Anomaly Type Trigger Metric(s) Detection Tool Automated Response 

Latency Spike 
Inference Time > 2x 

baseline 

Prometheus + 

Alertmanager 

Horizontal Pod Autoscaling 

(Kubernetes) 

Memory Leak 
Gradual increase in RAM 

usage 

Grafana + Custom 

Scripting 

Container Restart (via K8s 

Liveness Probe) 

Concept Drift 
Change in prediction 

confidence stats 
Arize AI / WhyLabs Trigger retraining pipeline 

GPU 

Overutilization 
GPU usage > 90% sustained NVIDIA DCGM Scale-up GPU cluster 

Input Distribution 

Shift 
PSI > 0.25 

Custom Drift Detection 

Model 

Send alert + roll back to stable 

model 

Surge in 5xx Errors 5xx error rate exceeds 5% CloudWatch / Datadog 
Trigger incident response + auto-

scaling 

 

In conclusion, various monitoring tools exist to 

monitor the real-time performance of deep learning 

models in production, and the entire ecosystem is 

rich in those tools. The selection of tools is based on 

the amount of deployment, latency expectations, 

compliance needs, and data center complexities. The 

following section explores the integration of these 

tools within modern deployment pipelines and 

infrastructure, highlighting how they facilitate 

comprehensive observability and monitoring of AI 

systems in real-world environments. 

4. Integration with Deployment Pipelines and 

Infrastructure 

Observability of deep learning models in production 

should not be treated as a standalone capability, but 

should instead be fully integrated with all the aspects 

of machine learning operations (MLOps) and 

deployment mechanisms. Monitoring, detecting, 

and responding to model performance concerns is 

possible only through the ability to fully embed 

monitoring into the continuous integration and 

deployment (CI/CD) pipelines, orchestrating 

systems, and platforms of compute. This integration 

turns observability into an agent of system health, 

SLA compliance, and allows an iterative 

optimisation. 

CI/CD pipelines are addressing automating the 

model training, validating, testing, deployment, and 

rollback in modern AI implementations. Continuous 

integration and delivery tools such as GitLab CI, 

Jenkins, CircleCI, and GitHub Actions are popular 

to automate such workflows so that every update in 

code/data of the models goes through robust tests 

and is deployed as quickly and automatically as 

possible. By building real-time monitoring into such 

pipelines, engineers can not only validate model 

performance statically (on test data) but can also do 

so during operation once a model is deployed, in 

effect, creating a closed feedback loop between 

experimentation and production [28]. As an 

example, at the deployment time, synthetic inference 

calls to the model serving endpoint could be 

introduced in the pipeline in the form of integration 

tests. One could be able to capture metrics like 

latency, memory utilisation, and prediction accuracy 

in real-time and analyse them to know whether the 

new version of the model has sufficient 

performance. Otherwise, it is possible to 

automatically abort or roll back the deployment, 

therefore, never exposing the faulty model to end 

users. And, monitoring systems may record these 

measures in a model registry like MLflow, Weights 

& Biases, or SageMaker Model Registry, forming a 

version-tracked history of performance variation 

with time [29]. This can be made even more 

powerful by being combined with containerisation 

and orchestration tools like Docker and Kubernetes. 

Model-serving applications are regularly used in 

pods as microservices in a deployment that is 

grounded on Kubernetes. Kubernetes provides built-

in support to probes, including liveness, readiness, 
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and startup probing, but may be extended to 

additional metrics that may be gathered using 

Prometheus exporters. An example would be a 

readiness probe that requests a model server to 

reveal its current latency so that only those instances 

that are performing well get added to the load 

balancer. Similarly, horizontal pod autoscaling 

(HPA) can be set to react to live CPU/GPU usage 

information, by increasing and decreasing the 

number of model-serving instances as required [30]. 

Moreover, Kubernetes can handle Custom Resource 

Definitions (CRDs) and Operators that allow 

developers to extend the functionality of Kubernetes 

in order to handle complex AI workloads. Such parts 

can be combined with monitoring tools to start 

automated processes. As an illustration, when the 

drift-detection tools are applied to the models will 

reveal a concept drift in the model predictions, a 

Kubernetes Operator will be able to start a retraining 

pipeline with new datasets, redeploy the new model, 

and refresh the related dashboards with metrics. This 

level of automation changes model monitoring from 

a reactive process to a proactive process. In the case 

of cloud-based deployments, observability services, 

like AWS SageMaker, Google Vertex AI, and Azure 

ML, have their built-in features that are highly 

integrated with deployment infrastructure. In 

particular, SageMaker supports Model Monitor, a 

feature that in real-time, gathers data about 

prediction distributions, latency, and features. These 

measurements may be piped into AWS CloudWatch, 

and visualized, stored, and used to raise alarms or 

retraining workflows. An analogous feature is 

available in Google Vertex AI, which includes such 

features as Drift Detection and Model Monitoring, 

which feature visual interfaces to interpret model 

performance over time and reveal anomalies [31]. 

The issues of integration are more complicated when 

deploying to edge devices or hybrid architectures. 

Under these conditions, models can be distributed on 

heterogeneous hardware, some of them in the cloud, 

some on-premises, or on mobile/embedded systems. 

In order to make observability uniform, it is 

common to use a centralised store of log records and 

a centralised store of metrics. In order to either select 

the logs and metrics or pass them onwards, the 

process employs lightweight agents such as Fluent 

Bit, Beats, or Vector, installed on every device, 

which pass the data to centralised systems like 

Elasticsearch, InfluxDB, or Datadog, where the data 

will be analysed. Such systems commonly run a top 

message queue such as Kafka or MQTT in order to 

support asynchronous communications, allowing 

fault tolerance when the connection is not constant 

[32]. Integration is also done with the versioning of 

models and experimentation frameworks. In cases 

where several variants of a model under 

consideration are simultaneously compared 

(typically called A/B testing or canary 

deployments), performance metrics in real time 

must be isolated and compared between versions. 

Existing platforms such as Seldon Core, KServe, 

and Triton Inference Server provide model 

versioning and routing so that traffic can be divided 

among models. Then, real-time monitoring tools can 

be applied, and checking which version works better 

not only with the help of offline measures but also 

with the help of live inference data, which is more 

relevant to production conditions [33]. 

Monitoring integration also should take into account 

security and compliance. The industries where the 

performance is more regulated, industry as finance 

and healthcare, it is not enough to simply monitor 

the performance, and logs and metrics should be 

stored in a secure manner, which has to be audited 

and access-controlled. Use of security information 

and event management (SIEM) such as Splunk, 

QRadar, or Elastic SIEM includes integration so that 

data in the management can be correlated with other 

system logs to detect possible breaches, 

abnormalities, or violations. In addition, the due 

diligence audits due to the existence of the audit trail 

because of the use of unceasing observing vehicles 

can also have importance towards legal or regulatory 

inspections [34]. Finally, monitoring can also be 

combined with incident response systems, which 

also increases operational preparedness. Monitoring 

tools can use other platforms such as PagerDuty, 

Opsgenie, or VictorOps to send notifications in real-

time when performance limits are reached. It can 

also cause escalation policies, on-call engineers to 

be alerted, and playbooks to automatically fix upon 

such alerts. This allows the quicker mean time to 

detection (MTTD) as well as the mean time to 

resolution (MTTR) when combined with root-cause 

analysis tools, both of which, in turn, reduce 

downtimes and the reliability of AI services [35]. 

To sum up, deployment pipelines and infrastructure 

integration with real-time monitoring are one of the 

pillars of confident and resilient operations in AI. It 

facilitates feedback, feeds, autonomous decision 

making, and close response to anomalies. The next 
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section examines how these integrations contribute 

to enhanced anomaly detection, alerting, and 

automated scaling functions that are essential for 

maintaining the performance and stability of 

production AI systems. 

5. Anomaly Detection, Alerting, and Automated 

Scaling 

The smooth unification of real-time monitoring into 

deep learning model pipelines not only gives a peek 

into the behaviour of a model and status of a system, 

but also supports important functions like detecting 

anomalies, setting up alerts, and automatic scaling. 

These elements transform observability into an 

active reporting system, rather than a passive one, by 

enabling the identification, diagnosis, and resolution 

of issues as they emerge. Such responsiveness is 

critical to the reliability, safety, and compliance of 

mission-critical AI systems, used, e.g., in healthcare 

diagnostics, financial services, and autonomous 

systems.  

The concept of anomaly detection in the context of 

deep learning production systems is to detect the 

behaviour that does not conform to expectations 

under the model performance, data coming to 

models as input, or in the system response. The 

anomalies can be an indication of any number of 

problems, such as data drift, adversarial inputs, 

hardware failures, or software bugs. As an example, 

a sharp loss or a sharp increase in classification 

accuracy, an unusual burst or deficit of model 

latency, or offensively irregular usage of GPU 

memory may all show that a model is encountering 

an unexpected input distribution, system contention, 

or internal instability [36]. Detection of anomalies in 

real-time is usually based on statistical models or 

machine learning approaches to report irregular 

behaviour. In the validation or initial deployment 

phase, the first step is to define the baselines, i.e., 

typical operating ranges in inference latency, 

throughput, error rates, and resource usage. These 

baselines are adapted to the system continuation, and 

anomaly flags are raised when these deviations 

exceed some established limits. More advanced 

techniques involve time-series forecasting, 

unsupervised learning (e.g., clustering, PCA), or 

probabilistic models such as Hidden Markov Models 

(HMMs), respectively, to detect more complex 

multivariate anomalies [37]. Concept drift detection 

is also applied in some of the frameworks, and it is 

relevant to such models running in non-stationary 

conditions. To compare the current distribution of 

input data or probability predictions with past 

baselines, such comparison techniques are employed 

as Population Stability Index (PSI), Kullback-

Leibler divergence, and Wasserstein distance, 

among others. In a simpler example, a change of 

diction or email format can be an indicator of 

malicious attempts to get past filters in an email 

spam detection model. Diagnosis of such changes is 

real-time, which allows activating retraining 

pipelines or returning to more stable models [38]. 

The second step is to alert once an anomaly is 

identified, and this entails informing interested 

parties about a problem. Good alerting schemes take 

into consideration responsiveness and noise 

reduction. False alarms or too many of them may 

also result in alert fatigue, where the vital ones are 

ignored. To help deal with this, newer alerting 

systems such as PagerDuty, Opsgenie, and 

VictorOps incorporate smart alert routing, intelligent 

escalation policies, and rate-limiting systems. Alerts 

may be severity-based, i.e., warnings, critical errors, 

or informational messages, and directed differently. 

As an illustration, a slight change in latency could 

cause a caution to the monitoring dashboard, but a 

GPU or 503 response error would be sent out in the 

form of an emergency message to the on-call 

engineer [39]. The alerting can be specified using 

fixed thresholds set (e.g., latency > 500ms), dynamic 

baselines set (e.g., 3 standard deviations above the 

mean), or specified in the monitoring system, such 

as Prometheus Alertmanager, Datadog Monitors, or 

AWS Cloudwatch alarms. The webhook integrations 

are also supported on these platforms that allow 

alerts to initiate automated remediation workflows, 

including restarting a container, triggering a 

rollback, or an increase in the number of model 

replicas. As an example, a Kubernetes pod that 

overflows its memory can be terminated 

automatically, and a new pod can be deployed so that 

the service provisioning is not interrupted [40]. 

Automated scaling, which synchronizes with 

alerting, provides deep learning services with the 

ability to auto-discover real-time changes in 

workloads. This is essential in a setting where traffic 

patterns are not predictable- e.g., in e-commerce 

websites on the day of sales, or financial trading 

systems during market turbulence. Scaling 

Mechanisms can be divided into one of the 

following subtypes: horizontal scaling 

(addition/removal of instances) and vertical scaling 
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(addition/removal of resources assigned to an 

instance). 

Kubernetes Horizontal Pod Autoscalers (HPA) 

allow on-demand scaling up and down of instances 

depending on real-time usage of resources like 

CPU/GPU utilisation, memory utilisation, or any 

custom metric like queries per second (QPS). In the 

case of deep learning models, the use of a GPU is 

usually the main factor that drives scaling decisions. 

As an example, at a defined time frame when GPU 

utilization is more than 85%, HPA may 

automatically spin up more model-serving pods to 

start sharing the resources. On the contrary, pods that 

are not occupied can be downsized to meet off-peak 

demand, thus lowering the costs of operation [41]. 

Application-layer metrics can also form a basis for 

scaling. As an example, it can be: scalable resources 

are initiated when the queues at a certain point in an 

inference, such as the model-level endpoint, reach a 

certain level, or the level of failures reaches a certain 

rate. These measures give a direct measure of 

perceived performance by the users, which enables 

the system to emphasise quality of service in the real 

world in preference to crude hardware utilisation. 

More sophisticated forms of autoscaling can be 

controlled by frameworks such as KEDA 

(Kubernetes-based Event Driven Autoscaling) with 

events to scale based on things like Kafka topics, 

RabbitMQ queues, or Prometheus queries [42]. 

Even more scaling is provided by cloud-native 

platforms. An example of this is that AWS 

SageMaker has support on multi-model endpoints 

and automatic model scaling when using invocation 

metrics. Google Vertex AI can deploy a model on a 

serverless infrastructure, deploying with automatic 

policies that scale according to real-time incoming 

traffic. Such services shadow the intricacies of 

resource management, making the latter oblivious to 

the developers who only need to develop models 

with the infrastructure dynamically scaling them 

[43]. It is also interesting to add that there can be a 

synergetic interaction between automated scaling 

and anomaly detection. To take one example, an 

anomaly detection system could identify that the 

inference latency has abruptly spiked, and conclude 

that this is caused by a spike in traffic volume. Such 

situations can be resolved with the system 

automatically increasing the amount of model-

serving replicas not without raising an alert. On the 

other hand, it can be that the outlier is caused by 

concept drift/ upstream data problem; in that case, 

scaling can be useless or even harmful. In this way, 

it becomes necessary that monitoring, alerting, and 

scaling modules coordinate in an intelligent manner 

to secure proper functioning of the AI system [44]. 

In order to increase resilience further, organisations 

can use to implement fallback mechanisms or 

graceful degradation. In case of disastrous model 

failure, the system can cache the requests to a model 

system with less complex heuristics, or merely do a 

servicing of the responses. These concepts are 

particularly useful in a sphere where continuous 

service is essential, e.g., healthcare or self-driving. 

The Monitoring System should be able to see when 

such fallbacks occur, view their performance to 

ensure that the user experience is not significantly 

diminished [45]. Last but not least, the historical 

data produced by the anomaly detection and alerting 

systems can be successfully used in root cause 

analysis (RCA) and continued improvements. 

Comparing metrics of models, infrastructure, and 

user behaviour can be used to diagnose system 

vulnerabilities and help in long-term capacity 

modeling. Observables can be stored in 

observability platforms such as Elastic Stack, 

Datadog, or Splunk, where engineers can do 

advanced queries and create interactive dashboards 

during live retrospectives and system health checks 

[46]. 

Finally, to conclude, a triad of anomaly detection, 

alerting, and automated scaling becomes the 

foundation stone of a robust and self-adapting 

ecosystem of AI deployment. Such features not only 

alleviate failure and performance impact, but are 

also used to increase the agility, cost-effectiveness, 

and user Experience of deep learning systems in the 

production environment. The following section 

highlights emerging trends and developments in 

real-time AI observability, which are poised to 

elevate operational excellence within the field of 

artificial intelligence. 

6. Future Trends in Real-Time AI Observability 

With artificial intelligence on the rise in the 

business, where these systems are becoming central 

to operations and making major decisions in the 

business environment, the field of real-time 

observability of deep learning models is truly 

innovating. Even though the existing range of tools 

gives the fundamental means of metric tracking, 

anomaly detection, and alert/scale actions, the new 

challenges of the development in AI (including 

generative AI, federated learning, and autonomous 

systems) will challenge what observability 
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technologies should accomplish. The direction of 

development in this area is in the direction of 

predictive, adaptive, and autonomous observability 

in place of reactive monitoring, which is facilitated 

by developments in systems engineering, machine 

learning, as well as software architecture. Among 

the most potentially promising tendencies, the 

development of self-healing AI systems may be 

listed. Control loops in such systems are highly 

observable and automatically detect and fix the 

problems even without human interaction. Self-

healing is a combination of detecting performance 

degradation as well as the smart choice and 

execution of the recovery options, including 

redeployment of a model, restart of a failing node, 

or exchange to a backup model. These are enabled 

by the introduction of AI into the observability stack 

itself, so-called AI for AI (AIOps), where meta-

models are used to analyse telemetry data to manage 

the health of primary models in real time [47]. 

Associated very closely is the direction of predictive 

observability. Unlike traditional monitoring, which 

focuses on detecting anomalies after they have 

occurred, predictive systems are designed to 

anticipate potential failures or performance 

degradation before such issues manifest. This is 

arrived at through a time-series forecasting model 

including Prophet, LSTM networks, or a 

Transformer-based model, which looks at the past 

metrics of the system and makes future predictive 

analysis. As an example, a predictive observability 

system could predict the occurrence of a memory 

leak or GPU overheating hours before it actually 

happens so that engineers or automated systems 

could act in advance. Such a practice can 

considerably lessen the downtime, enhance SLA, 

and greatly lessen interference with end users [48]. 

The second thing that is a development in the future 

focus is an augmenting involvement of semantic 

monitoring and being alerted in a contextual focus. 

Present systems mostly isolate metrics, but in the 

future, it is likely to contextualise them on the basis 

of the type of model, the characteristics of input data, 

and the business process being facilitated. Take, as 

an example, a loss in accuracy in a medical 

diagnostic model would cause a more significant 

alert than an equivalent loss in an automated 

sentiment analysis model of social media. These 

semantic observability frameworks align what is 

monitored with business impact and can therefore 

make alerts and monitoring more relevant and 

interpretable, therefore reducing noise and 

increasing the speed of problem resolution [49,50]. 

The other noticeable progress is the observability of 

distributed and federated learning. Federated 

systems allow training and reaching a conclusion 

with the distribution of training and inference over 

many devices or data silos, which can be controlled 

separately and only occasionally communicate with 

each other. Previous centralised monitoring systems 

are ineffective in these kinds of cases because the 

methods suffer in terms of latency, bandwidth, and 

privacy. It is coming forward with new structures 

that facilitate the decentralisation of metric 

gathering, edge-local anomaly search, and federated 

dashboard aggregations of metrics without 

sacrificing information sovereignty. These 

breakthroughs are essential to use cases like 

personalised mobile assistants, predictive 

maintenance using the IoT, and privacy-conserving 

healthcare paradigms. The trend of multi-modal 

observability is also seeing an increased role in 

dealing with the increasing complexity of AI 

workloads. Models are being deployed in production 

environments that require multi-modal input, i.e, a 

combination of text, audio, images, and tabular data. 

It is necessary not only to monitor such systems 

using standard indicators such as the latency, the 

accuracy, but also by means of indicators specific to 

a domain. To consider an example, within a vision-

language scheme, metrics of image quality (e.g., 

resolution, contrast, noise) and text (e.g., sentiment, 

syntactic structure) should be tracked to determine 

input integrity. The development of multi-modal 

observability platforms is therefore shaping up 

towards extractions, normalisation, and analysis of 

various data streams in a consolidated way. 

The other aspect that is on the rise is privacy-aware 

monitoring. The wider the scope of sensitive input 

on which the AI system is functioning (and, it may 

be health records, financial transactions, or even 

personal communications), the more observability 

monitoring frameworks should not become the 

source of data leakage. Solutions like differential 

privacy, homomorphic encryption, or federated 

logging are being investigated to facilitate secure 

telemetry gathering. As an example, on-device 

anonymisation and aggregation of telemetry data 

can be performed, prior to the data being transmitted 

to centralised servers, in order to protect user 

privacy with maintainable insights sufficient to 

inform action. A theme that is another important one 
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is observability/governance convergence. With 

increasingly AI systems being used in organisations, 

there is an urgent need to have a common system of 

tracking, reporting, and auditing the performance of 

models. Next-generation observability systems will 

include governance capabilities, including lineage 

tracking, compliance reporting, and policy 

enforcement. As an example, dashboards can take on 

such forms as having what are called a compliance 

score that indicates how closely a model is behaving 

according to its internal policies or external rules. 

Auditors, risk managers, and regulators can 

determine operational integrity and accountability 

using these scores. 

There is also the innovation of visual analytics on AI 

observability. The old dashboards are turning into 

interactive AI-enabled visual displays that facilitate 

root-cause analysis, hypothesis testing, and anomaly 

correlation on many layers of the stack. Such 

environments employ data visualisation, human-

computer interaction, and augmented analytics 

techniques to enable users to understand model 

behaviour interactively. As an illustration, one may 

visualise a cluster of anomalies in a 3D embedding 

space, so that engineers could go back and identify 

the origins of certain anomaly clusters in terms of a 

particular dataset, hyperparameter regime, or other 

infrastructure status. Last but not least, AI 

observability will probably imply standardisation 

and interoperability. The current state of 

observability is patchy, and no single observability 

enables uniformity in the tools, formats, and 

protocols used by different teams. New principles, 

like OpenTelemetry on metrics and traces, or ML 

Schema on model metadata, attempt to introduce 

these standard interfaces upon which tools can 

effectively interoperate. It is especially significant 

when large businesses and government 

organizations have hybrid, multi-cloud 

environments. A set of interoperable observability 

tools will allow these organisations to use a “single 

pane of glass” when it comes to monitoring, enhance 

collaboration, and eliminate tooling overheads. 

To conclude, augmented intelligence and 

automation, contextual awareness, and regulatory 

compliance will characterize the future of real-time 

observability of deep learning models. Observability 

capabilities need to develop hand in hand with 

models that are increasingly complex and 

omnipresent, delivering not only performance 

visibility, but also intelligent actions, forecasting, 

and governance functionality. This long article will 

now be rounded off by drawing a conclusion that 

will draw a connection between the need to have 

real-time observability and a summary of its 

usefulness in the provision of robust, ethical, as well 

as high-performance Artificial Intelligence. 

7. Conclusion 

Deep learning models used in production are now 

considered a hallmark of the modern artificial 

intelligence system. Whether applied in medical 

diagnostics, autonomous vehicles, financial 

forecasting, or content recommendation, these 

models are increasingly being deployed as mission-

critical systems, where performance, reliability, and 

regulatory compliance are non-negotiable. In those 

conditions, the real-time performance monitoring is 

not a luxury anymore but a necessity. This paper has 

analysed the critical role of real-time monitoring as 

a foundation for the deployment, stability, and 

overall health of AI systems. As a fundamental 

requirement for managing dynamic and uncertain 

production environments, continuous observability 

has been highlighted as essential. Key performance 

metrics such as latency, throughput, memory 

consumption, accuracy, and system utilisation were 

reviewed as standard indicators for characterising 

machine learning models in operational contexts. 

The metrics form a quantitative basis of measuring 

the system behaviour, finding bottle necks, and 

taking proactive actions. An extensive range of 

frameworks and tools supporting real-time 

observability has also been reviewed, highlighting 

their roles in enhancing the monitoring and 

operational management of AI systems. The 

observability universe is quickly expanding, 

comprising of system level monitoring instruments 

such as Prometheus and Grafana, to dedicated AI 

observability devices such as NVIDIA Triton, Arize 

AI and WhyLabs. The tools are not just suitable to 

collect metrics and visualise them but also to 

integrate them into container orchestration 

platforms, cloud services as well as continuous 

deployment pipelines. These systems are 

interoperable, so dynamic scaling, health checks, 

and automated failover are provided and ensure 

robustness and elasticity of the AI infrastructure. 

An important part of this ecosystem is a triad of 

anomaly detection, alerting, and automatic scaling. 

Such abilities help AI systems to act on their own 

when other performance, system failure, and 

changes of data distribution conditions occur. 
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Anomaly detection systems apply statistical and 

machine learning algorithms to detect outliers in 

performance data, and alert systems take care of 

ensuring that those anomalies are reported to 

stakeholders, or auto-initiated steps are taken to 

remediate them. Kubernetes and cloud-native 

platforms in particular feature automated scaling, so 

that there is no decrease in performance and costs as 

demand changes. Several emerging trends are poised 

to significantly transform the landscape of AI 

observability. Notable developments include the rise 

of predictive and self-healing observability systems, 

the advancement of semantic and explainable 

monitoring approaches, and the broader adaptation 

of observability tools to accommodate federated, 

multi-modal, and privacy-sensitive environments. 

These innovations are expected to revolutionise how 

monitoring and diagnostics are conducted across 

diverse AI applications. Regulatory and ethical 

requirements of AI are increasing at the same rate, 

which means observability platforms will soon 

consider governance, compliance, and auditability 

as first-class features. To sum it up, real-time 

monitoring would be one of the keystones to 

successful AI operations. It empowers organisations 

to make the leap of faith between experimentation 

and production securely, avoiding both technical 

defaults, as well as user confidence. Through holistic 

observability, AI teams are able to assure themselves 

that their models pay off consistently, ethically, and 

superhigh-impact, notwithstanding the obscurity of 

deployment or field of use. The systems that 

observe, maintain, and optimise the deployment of 

deep learning in the real world must also scale as this 

technology matures and scales. 

References 

[1] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. 

Swetter, H. M. Blau, et al., “Dermatologist-level 

classification of skin cancer with deep neural 

networks,” Nature, vol. 542, no. 7639, pp. 115–118, 

2017. 

[2] A. C. Bahnsen, D. Aouada, A. Stojanovic, and B. 

Ottersten, “Feature engineering strategies for credit 

card fraud detection,” Expert Syst. Appl., vol. 51, pp. 

134–142, 2016. 

[3] D. Nigenda, Z. Karnin, M. B. Zafar, R. Ramesha, 

A. Tan, M. Donini, et al., “Amazon SageMaker 

Model Monitor: A system for real-time insights into 

deployed machine learning models,” in Proc. 28th 

ACM SIGKDD Conf. Knowledge Discovery Data 

Mining, 2022, pp. 3671–3681. 

[4] Y. C. Wang, J. Xue, C. Wei, and C. C. J. Kuo, 

“An overview on generative AI at scale with edge–

cloud computing,” IEEE Open J. Commun. Soc., 

vol. 4, pp. 2952–2971, 2023. 

[5] S. Amershi, A. Begel, C. Bird, R. DeLine, H. 

Gall, E. Kamar, et al., “Software engineering for 

machine learning: A case study,” in Proc. 41st 

IEEE/ACM Int. Conf. Software Engineering (SEIP), 

2019, pp. 291–300. 

[6] A. Swaminathan and T. Joachims, “Batch 

learning from logged bandit feedback through 

counterfactual risk minimization,” J. Mach. Learn. 

Res., vol. 16, no. 1, pp. 1731–1755, 2015. 

[7] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, 

J. E. Gonzalez, and I. Stoica, “Clipper: A low-

latency online prediction serving system,” in Proc. 

14th USENIX Symp. Networked Syst. Design 

Implementation (NSDI), 2017, pp. 613–627. 

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, 

and A. Bouchachia, “A survey on concept drift 

adaptation,” ACM Comput. Surv., vol. 46, no. 4, pp. 

1–37, 2014. 

[9] C. C. Yang and G. Cong, “Accelerating data 

loading in deep neural network training,” in Proc. 

26th IEEE Int. Conf. High Perform. Comput., Data, 

Analytics (HiPC), Dec. 2019, pp. 235–245. 

[10] L. Wesolowski, B. Acun, V. Andrei, A. Aziz, G. 

Dankel, C. Gregg, et al., “Datacenter-scale analysis 

and optimization of GPU machine learning 

workloads,” IEEE Micro, vol. 41, no. 5, pp. 101–

112, 2021. 

[11] M. Jegorova, C. Kaul, C. Mayor, A. Q. O’Neil, 

A. Weir, R. Murray-Smith, et al., “Survey: Leakage 

and privacy at inference time,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 45, no. 7, pp. 9090–9108, 

2022. 

[12] Y. Fu, T. M. Nguyen, and D. Wentzlaff, 

“Coherence domain restriction on large scale 

systems,” in Proc. 48th Int. Symp. 

Microarchitecture, 2015, pp. 686–698. 

[13] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. 

Armbrust, A. Dave, et al., “Apache Spark: A unified 

engine for big data processing,” Commun. ACM, vol. 

59, no. 11, pp. 56–65, 2016. 

[14] B. Burns, B. Grant, D. Oppenheimer, E. 

Brewer, and J. Wilkes, “Borg, Omega, and 

Kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 50–

57, 2016. 



 
International Journal of Intelligent Systems and Applications in Engineering                           IJISAE, 2024, 12(23s), 3475–3490 |  3489 

[15] Y. Zhou and K. Yang, “Exploring TensorRT to 

improve real-time inference for deep learning,” in 

Proc. 24th IEEE Int. Conf. High Perform. Comput. 

Commun. (HPCC), 2022, pp. 2011–2018. 

[16] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, 

A. Khreishah, I. Khalil, M. Guizani, et al., “Smart 

cities: A survey on data management, security, and 

enabling technologies,” IEEE Commun. Surv. Tutor., 

vol. 19, no. 4, pp. 2456–2501, 2017. 

[17] T. Schlossnagle, J. Sheehy, and C. McCubbin, 

“Always-on time-series database: Keeping up where 

there’s no way to catch up,” Commun. ACM, vol. 64, 

no. 7, pp. 50–56, 2021. 

[18] N. Bhawsinka, “Change tracking and 

observability for complex software development,” 

M.S. thesis, 2023. 

[19] S. Liang, Y. Wang, C. Liu, L. He, H. Li, D. Xu, 

and X. Li, “EnGN: A high-throughput and energy-

efficient accelerator for large graph neural 

networks,” IEEE Trans. Comput., vol. 70, no. 9, pp. 

1511–1525, 2020. 

[20] T. Gajger, “NVIDIA GPU performance 

monitoring using an extension for Dynatrace 

OneAgent,” Scalable Comput. Pract. Exp., vol. 21, 

no. 4, pp. 689–699, 2020. 

[21] Z. Xu, R. Wang, G. Balaji, M. Bundele, X. Liu, 

L. Liu, et al., “Alertiger: Deep learning for AI model 

health monitoring at LinkedIn,” in Proc. 29th ACM 

SIGKDD Conf., 2023, pp. 5350–5359. 

[22] D. G. Blanco, Practical OpenTelemetry. 

Apress, 2023. 

[23] B. Hutchinson, A. Smart, R. Hanna, R. Denton, 

C. Greer, O. Kjartansson, et al., “Towards 

accountability for machine learning datasets: 

Practices from software engineering and 

infrastructure,” in Proc. ACM Conf. Fairness, 

Accountability, Transparency (FAccT), Mar. 2021, 

pp. 560–575. 

[24] P. Dewan, “A guide to Suite,” Tech. Rep. 

SERC-TR-60-P, Purdue Univ., 1990. 

[25] A. Fatahi Baarzi, “Efficient service deployment 

on public cloud: A cost, performance, and security 

perspective,” 2022. 

[26] A. Bauer, M. Leucker, and C. Schallhart, 

“Monitoring of real-time properties,” in Proc. Int. 

Conf. Foundations Software Technology Theoretical 

Comput. Sci., 2006, pp. 260–272. 

[27] K. Alpernas, A. Panda, L. Ryzhyk, and M. 

Sagiv, “Cloud-scale runtime verification of 

serverless applications,” in Proc. ACM Symp. Cloud 

Comput., 2021, pp. 92–107. 

[28] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. 

Sculley, “The ML test score: A rubric for ML 

production readiness and technical debt reduction,” 

in Proc. IEEE Int. Conf. Big Data, 2017, pp. 1123–

1132. 

[29] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. 

Phillips, D. Ebner, et al., “Hidden technical debt in 

machine learning systems,” Adv. Neural Inf. 

Process. Syst., vol. 28, 2015. 

[30] B. Burns, Designing Distributed Systems: 

Patterns and Paradigms for Scalable, Reliable 

Services. O’Reilly Media, 2018. 

[31] P. Rangarajan and D. Bounds, Cloud Native AI 

and Machine Learning on AWS. BPB Publications, 

2023. 

[32] R. Santos Souza, T. Skluzacek, S. Wilkinson, 

M. Ziatdinov, and R. Ferreira Da Silva, “Towards 

lightweight data integration using multi-workflow 

provenance and data observability,” Oak Ridge 

National Lab (ORNL), 2023. 

[33] P. Lakarasu, “Operationalizing intelligence: A 

unified approach to MLOps and scalable AI 

workflows in hybrid cloud environments,” SSRN 

5236647, 2022. 

[34] S. Guduru, “AI-Enhanced Threat Detection 

Graph Convolutional Networks (GCNs) for Zeek 

Log Analysis in Splunk ES,” J. Sci. Eng. Res., vol. 

10, no. 8, pp. 166–173, 2023. 

[35] S. Tatineni, “A comprehensive overview of 

DevOps and its operational strategies,” Int. J. Inf. 

Technol. Manage. Inf. Syst., vol. 12, no. 1, pp. 15–

32, 2021. 

[36] C. C. Aggarwal, An Introduction to Outlier 

Analysis. Springer Int. Publ., 2017, pp. 1–34. 

[37] V. Chandola, A. Banerjee, and V. Kumar, 

“Anomaly detection: A survey,” ACM Comput. 

Surv., vol. 41, no. 3, pp. 1–58, 2009. 

[38] J. Lu, A. Liu, F. Dong, G. Gu, J. Gama, and G. 

Zhang, “Learning under concept drift: A review,” 

IEEE Trans. Knowl. Data Eng., vol. 31, no. 12, pp. 

2346–2363, 2018. 



 
International Journal of Intelligent Systems and Applications in Engineering                           IJISAE, 2024, 12(23s), 3475–3490 |  3490 

[39] H. Been, E. Staal, and E. Keiholz, Azure 

Infrastructure as Code: With ARM Templates and 

Bicep. Simon & Schuster, 2022. 

[40] R. Juntunen, “OpenShift from the enterprise 

fleet management context, comparison,” 2020. 

[41] T. T. Nguyen, Y. J. Yeom, T. Kim, D. H. Park, 

and S. Kim, “Horizontal pod autoscaling in 

Kubernetes for elastic container orchestration,” 

Sensors, vol. 20, no. 16, p. 4621, 2020. 

[42] J. Moses, “Resource auto-scaling in 

Kubernetes: Techniques and tools,”. 

[43] Y. J. Kim, M. Junczys-Dowmunt, H. Hassan, A. 

F. Aji, K. Heafield, R. Grundkiewicz, and N. 

Bogoychev, “From research to production and back: 

Ludicrously fast neural machine translation,” in 

Proc. 3rd Workshop Neural Generation Translation 

(EMNLP-IJCNLP), 2019, pp. 280–288. 

[44] R. Gaikwad, S. Deshpande, R. Vaidya, and M. 

Bhate, “A framework design for algorithmic IT 

operations (AIOps),” Design Eng., pp. 2037–2044, 

2021. 

[45] J. Dean and L. A. Barroso, “The tail at scale,” 

Commun. ACM, vol. 56, no. 2, pp. 74–80, 2013. 

[46] M. Barsalou, “Root cause analysis in quality 

4.0: a scoping review of current state and 

perspectives,” TEM J., vol. 12, no. 1, pp. 73–79, 

2023. 

[47] M. Onkamo and S. T. Rahman, Artificial 

Intelligence for IT Operations. 2023. 

[48] Z. Nishtar and J. Afzal, “A review of real-time 

monitoring of hybrid energy systems by using 

artificial intelligence and IoT,” Pak. J. Eng. 

Technol., vol. 6, no. 3, pp. 8–15, 2023. 

[49] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why 

should I trust you?’ Explaining the predictions of 

any classifier,” in Proc. 22nd ACM SIGKDD, 2016, 

pp. 1135–1144. 

[50] S. M. Lundberg and S. I. Lee, “A unified 

approach to interpreting model predictions,” Adv. 

Neural Inf. Process. Syst., vol. 30, 2017. 

 

 


