

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-679921-679 9www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3475

Real-Time Performance Monitoring for Deep Learning Models in

Production

Ankush Jitendrakumar Tyagi1*

Submitted: 02/07/2024 Revised: 12/08/2024 Accepted: 22/08/2024

Abstract: Since deep learning models continue moving to production scenarios, it is becoming important to ensure that they

operate in a real-time setting. The latency of inference or throughput, and utilisation of system resources have a direct

implication on the user experience, reliability of service, and cost of operation. Practical operation presents inconsistencies in

the input data, the workload fluctuations, and the environment, and, therefore, to ensure the efficiency, quality, and integrity

of the system, real-time monitoring is important to track its performance and ensure it. The real-time monitoring tools give an

ongoing understanding of the behaviour of deep learning models when they are deployed in a wide variety of production

settings--cloud-hosted services, on-site data centres, or edge devices. Such tools measure the critical parameters of CPU and

GPU utilisation, memory usage, inference latency, and model response times. Beyond that, they facilitate anomaly detection

that can be used to detect deviation in the anticipated behaviour, thus may point to drift in a model, contention in resources, or

bottlenecks in systems. More contemporary technologies, such as Prometheus, Grafana, NVIDIA Triton Inference Server, and

proprietary observability tools, are becoming incorporated in ML pipelines to alert and visualize according to their on-demand

performance metrics. Such tools not only ease diagnosis but also guide automated scaling, load balancing, and model retraining

solutions. Real-time monitoring is additional in guaranteeing services are achieved according to service-level agreements

(SLAs), more specifically in the case of mission-critical applications, including medical diagnosis, securities, and virtual and

artificial machines. By integrating real-time monitoring of performance within the life cycle of deep learning deployment,

results in constant optimisation and increased visibility of operations, as well as proactive fault mitigation. This eventually

aids the delivery of scalable, reliable, cost-efficient AI services. Thus, this paper discusses how integrating workload modeling

and bottleneck feedback loops in hardware/software co-design helps manage design uncertainty and improve system

adaptability.

Keywords: Real-Time Monitoring, Deep Learning Inference, Performance Metrics, Production AI Systems, Model

Observability

1. Introduction

With all the revolutions that artificial intelligence

(AI) and deep learning technologies are making in

industries, it has been an increasing trend that the

deep learning models that had been kept as research

and experimentation environments are entering the

world of production. The shift is a turning point in

the machine learning (ML) pipeline, making the

models no longer a static experimental artefact, but

rather the working part of real-time systems. Various

healthcare diagnostics, autonomous vehicles, fraud

detection, and recommendation engines are some of

the missions that these systems tend to power. The

latent effect of deep learning models in this kind of

production situation can have a direct impact on end-

user actions, business continuity and business

regulatory provisions, and cost of operation. Figure

1 highlights how system and inference metrics,

supported by monitoring tools, drive alerts,

performance optimization, and scalability decisions.

Dynamic environments found in the real world-

inputs that have varying distributions of data,

systems resource contention, and changing

computational workloads imply a number of

problems that do not exist in a controlled laboratory

setting. Therefore, a model that works effectively in

a dev environment may not work as well in a

production environment. High latency, memory

errors, poor inference precision, or no response at all

may make an ostensibly well-trained model

unusable. Therefore, there exists an urgent necessity

to have real real-time monitoring mechanism that

constantly tallies the operating statistics of these

models to facilitate performance, integrity, and

reliability. The real-time monitoring is defined as the

1University of Texas at Arlington, Texas, USA

ankush8tyagi@gmail.com

mailto:ankush8tyagi@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3476

organised observation in run time the behaviour of a

particular system running and it provides feedback

and alerts in real time. Applied to deployed deep

learning models, this includes monitoring a variety

of metrics, e.g., inference latency, throughput,

system resource usage (CPU, GPU, memory), and

distributions of model predictions. The identified

metrics can assist not only in the identification of

performance bottlenecks, but also in the detection of

anomalies, including concept drift - the changing

statistical characteristics of the input data - thereby

assisting in proactive maintenance and retraining.

Besides, real-time monitoring is critical in service-

level agreements (SLAs) in large-scale AI systems

with a priority on the field of finance, defence, and

medicine as part of the system performance

measures that cannot be ignored due to their time

sensitivity and accuracy. As an example, in the case

of medical diagnostics that operate on convolutional

neural networks (CNNs), as the model inference

takes longer or its prediction accuracy drops, the

potential clinical outcomes are disastrous [1].

Likewise, neural net transaction analysis-based

fraud detection solutions require a severe hardware

limitation imposed by latency, regardless of whether

the solution is based on recurrent neural networks

(RNNs) or other forms of neural net [2].

Incorporation of real-time monitoring features in the

AI-production pipelines can offer more visibility in

operations, as well as allow engineers to correct the

mess by performing possible finishing actions in a

very short time. This involves both automated

horizontal/vertical scaling, dynamic load balancing,

as well as the ability to roll auto-generated model

retraining jobs when performance penalties are

detected. Furthermore, with the widespread

implementation of AI models on a wide variety of

platforms, including cloud platforms and on-

premises data centres or edge devices, monitoring

tools should be dynamic, platform-independent, and

designed to offer scalable solutions to cope with

high volumes of distributed implementations.

A number of real-time monitoring frameworks have

come up to capture such demands. System metrics

can be gathered and visualised using open-source

tools like Prometheus and Grafana to a large extent;

domain-specific solutions, such as NVIDIA Triton

Inference Server, offer model-serving capability

with in-built observability. These tools can be easily

combined with containerised deployments (e.g.

Docker, Kubernetes) and allow AI engineers to

monitor model metrics as well as the more common

application health metrics. Some customisation and

scaling opportunities are provided by proprietary

observability platforms, e.g., by Datadog, AWS

CloudWatch, and Google Operations Suite [3][4].

Nonetheless, despite these developments, some

serious issues still occur. Among the key issues is the

trade-off between the monitor granularity and

system overhead. In its turn, high-resolution

monitoring can give a detailed picture but might be

powerful enough to eat too many of the available

resources, thus impacting the activity it is supposed

to measure. Likewise, it can be quite tedious to

customise monitoring systems into legacy systems

or proprietary ML pipelines, which increases the

development complexity and hence the maintenance

costs. Moreover, the reporting of the performance

and the interpretation of the performance metrics

should be standardised so that there is consistency

between the teams and platforms [5].

Due to the multiple models or ensemble learning

constructions, the utility of real-time monitoring

increases even more. An example is that there could

be multiple recommendation systems, and that in

each one, collaborative filtering, content-based

filtering, and contextual bandits can run

simultaneously. These models may require different

resource requirements and patterns of failure; thus it

is necessary to individually and collectively monitor

the models. It becomes even more complicated when

models are updated dynamically by methods such as

online learning or reinforcement learning, where

monitoring strategies must also be adaptive,

continuous, and capable of responding to evolving

model behaviours in real time [6]. The following

sections examine the key metrics employed to

evaluate the performance of deep learning models,

followed by a review of tools and frameworks that

facilitate real-time observability of such models.

How these tools fit in the deployment infrastructure,

the place of anomaly detection and automated

scaling, and trends in AI observability will be

discussed in the next sections. The theoretical and

practical knowledge that this structured exploration

is meant to offer should be of help to engineers,

scientists, and administrators active in the process of

implementing deep learning models into a

production setting.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3477

When trying to comprehend how real-time

monitoring can change production AI in the way that

it actually is, it is essential to examine the specific

measures that can be regarded as the pointers to

model and system health at first. The values

produced by these metrics serve as a quantitative

foundation for evaluating performance and initiating

automated remediation processes, which are

examined in greater detail in the following section.

Figure 1: Real-time monitoring workflow in AI systems, linking inputs to metrics, tools, and optimization

outcomes.

2. Key Metrics for Deep Learning Model

Performance

The performance of the deep learning models cannot

be exhaustively interpreted based on their efficiency

and reliability when it comes to AI production

systems without the quantitative measurement of the

models. These metrics are also used as parameters of

a successful model operation that can be used as the

reason for the system-level intervention, i.e.,

resource reallocation, retraining, or even returning to

the early versions of the model. The monitoring of

these parameters in real time becomes critical when

it is used in critical missions where accuracy,

stability, and latency are closely related to the

success of the operation. The types of performance

calculations that may be made of deep learning

models in production can be reduced to two large

categories: inference-related metrics and system-

level operational metrics. Latency, throughput, and

accuracy can be used as inference metrics, and CPU

and GPU usage, memory and I/O performance, and

system availability are operational metrics.

Monitoring of these parameters in real-time allows

organisations to be fully aware of how the health of

their model and its efficiency are looking, and

therefore make sure that it functions within

identified performance boundaries.

Inference latency, which can be in milliseconds, is

the time a model needs to process a single input and

generate output. Such a measure is essential where a

fast reaction is paramount, e.g., in cases of online

fraud detection, voice assistants, or medical devices

providing diagnostic services. The latency increase

may indicate the model inefficiency, load on a

server, or problems with the data pipeline going

upstream. Throughput, however, evaluates how

many inferences the model can make in one second

and is important in a batch-processing system or in

high-traffic services. Finding a sweet spot between

latency and throughput is a fragile operation, and

there may be sacrifices on either side when one is

enhanced [7]. Accuracy, too, is another important

dimension of performance. Whereas accuracy tends

to get validated at the training and the evaluation

process, constant accuracy could be used as a

production metric and could identify concept drift,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3478

that is, a scenario where the statistical properties of

the input data will drift across time, which causes a

loss in performance. As an example, a model trained

on the data of tweets in 2020 might not be able to

parse the slang or use changing vernacular in 2025

appropriately. Monitoring real-time changes in

prediction distributions, overfit to classes, and

confidence scores can be used as an imperfect

surrogate to indicate such a shift, initiating retraining

workflows or inspections [8-10].

Besides inference metrics, resource utilisation

metrics are also necessary in real-time monitoring.

Direct measures of computational efficiency are

provided by the use of GPUs and CPUs.

Underutilisation may reflect the over-provisioning

of a model, and hence it can be downscaled to reduce

the cost, and conversely, high satisfaction may

indicate the presence of resource bottlenecks or

imminent system failure. In the case of deep learning

models, GPU parameters, like memory amounts,

core usage, and temperature, are of special

significance, since thermal throttling might cause

wild variations with abrupt performance decreases

[9]. Special tools used to track such parameters in a

production environment, such as NVIDIA System

Management Interface (nvidia-smi) or DCGM (Data

Center GPU Manager), can be utilized to give a

detailed monitor [10]. There should also be

watchfulness on the memory leaks and RAM

consumption. Large parameter models and deep data

pipelines may get starved of system-level memory

resources, particularly when working with large

batch sizes or high-resolution input operating on

large models. Real-time tracking aids in discovering

where memory overflow can occur to optimise the

same through the quantisation or pruning of models.

In addition, the growth of used memory over time

may be evidence of inappropriate garbage collection

or redundancy in the source code, in which case it

should be addressed by an engineer [11].

Another point, which is commonly ignored yet can

significantly influence the deep learning inference

times, is disk I/O performance in the systems that

require frequent access to large tracts of data or

intermediate files. As an illustration, deep learning

models that consume large word embeddings, 3D

imaging data, or high-definition video frames in

inference are vulnerable to disk latency. The disk

throughput and access latency monitoring tools can

be helpful in detecting such a bottleneck, which

would then serve as a guide to accommodate faster

storage systems such as SSDs or memory-mapping

replication strategies [12]. Less significant but

telling is model availability and uptime, which is

generally defined by a percentage of time that the

model is accessible and operational in production.

High availability is especially crucial in systems that

require running perpetually, e.g., in autonomous

vehicles or a high-frequency trading system.

Nevertheless, downtime does not only mean the

disruption of the service given, but also a financial

or reputational setback. Observing uptime

indicators, within related logs, gives an

understanding of how reliable systems are and how

to perform root cause analysis in the event of an

outage [13]. Inference serving systems should also

observe queue lengths and backlogs of requests in a

real-time manner. An increasing number of requests

in the queue could indicate that the model is unable

to match the incoming load, which indicates a

scalability problem. With microservices designs

where a model is utilised through APIs, the request

rate, error rate, and the response times provide very

general indicators of system health, commonly

visualized with RED (Rate, Error, Duration) rate

indicators [14].

More sophisticated measures are layer-by-layer

latency, activation distributions, and gradient norms,

though normally the purview of debugging and

performance optimization during development,

immediate real-time calculation of these measures in

production can offer fine-grained indicators when

failures occur. As an example, the unexpected rise of

activation sparsity or the disappearance of gradients

might be a sign of hidden problems with model

execution or corruption of input data [15]. The

problem with real-time collection and analysis of all

these metrics is that one has to deal with the trade-

off between observability and performance

overhead. The possibility of resource conflict and

the loss of important signals may occur via over-

monitoring and under-monitoring, respectively. This

is why it is worth designing the monitoring system

in a way that it works asynchronously, or

implements the non-blocking algorithm of

collecting telemetry data, shifting demanding

calculations to additional processes [16].

Different metrics would be gauged in the actual

environment with the help of diverse tools and

frameworks that fit in the deployment stack. As an

example, inference latency and model accuracy

could be observed through custom middleware,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3479

whereas GPUs and memory usage are commonly

used with vendor-specific APIs. The gathered

information may be saved in time-series databases

such as InfluxDB or Prometheus, and visualised

with a dashboard in Grafana or Kibana. Scheduling

Alert: It is possible to set alerts to alert

administrators on a system due to a breach in a

metric, enabling proactive remediation. Hence, it is

important to detect and actively track such

performance indicators for the health, scalability,

and reliability of deployed deep learning. The

following part is about the various tools and

frameworks that are available, which enable such

monitoring of activities on a larger scale and in a

more efficient manner in modern, containerised,

cloud-native environments. The diagram (Figure 2)

illustrates how CPU/GPU usage, memory I/O,

latency, throughput, and other factors contribute to

evaluating and maintaining model accuracy, drift

detection, and overall model health.

To further place the role of such metrics in

perspective, it is useful to take a closer look at how

the various application areas weigh particular

performance indicators across the operational

parameters and thereby give specific attention to

situations with differing performance indicators.

Figure 2: Key performance and resource metrics involved in monitoring the health of a deep learning model.

Table 1: Importance of Key Performance Metrics by Application Domain

Application Domain
Latency

Sensitivity

Accuracy

Priority

Resource

Constraint

Observability

Complexity

Autonomous Vehicles Extremely High High Moderate Very High

Real-Time Fraud Detection High High Low High

Medical Imaging Diagnosis Moderate Very High Moderate High

E-commerce

Recommendations
Low Moderate Low Moderate

Voice Assistants High Moderate Moderate High

Industrial IoT Monitoring Moderate High Very High Very High

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3480

3. Tools and Frameworks for Real-Time

Monitoring

After determining the essential performance

indicators in the deep learning production systems,

the obvious next step is the system of tools and

frameworks that would aid in the monitoring of the

system in real time. These technologies form the

observability infrastructure of any model and enable

AI engineers and DevOps to consume performance

data by collecting it, storing it, visualizing it, and

making decisions. Effective monitoring tools serve

not only a critical role in diagnostics and debugging

but also ensure that AI systems operate within

defined service-level agreements (SLAs). This is

essential for cost control and for enabling

incremental improvements in deployed AI systems.

The diagram (Figure 3) categorizes commonly used

technologies like Prometheus, Grafana, Docker, and

PagerDuty under their respective roles in enabling

robust real-time monitoring systems. The currently

available line of machine learning (ML) operations

is filled with monitoring solutions that can be

divided, in general, into three groups, namely:

system observability, model-specific observability

platforms, and system-aware monitoring systems.

The different categories have various and mostly

overlapping functions in establishing resilient real-

time observability.

Prometheus is one of the most popular open-source

monitoring solutions at a system level. First created

by SoundCloud and cemented as an open-source

community today in the Cloud Native Computing

Foundation (CNCF), Prometheus is especially well

known due to its time-series database, pull-based

collection of metrics, and its powerful alerting

systems. It fits well in container orchestration such

as Kubernetes, facilitating auto-discovery of

services and sampling of metrics in real time at the

model-serving endpoints [17]. Prometheus was

frequently linked to Grafana, an open-source tool

used for querying and visualizing metrics over

customizable dashboards. Using Grafana, AI

engineers are able to visualise latency distributions,

GPU usage, memory consumption, and error rates

on various models and services [18]. The NVIDIA

Triton Inference Server is another important

instrument in the sphere. Triton is specifically

developed to serve deep learning models in

production and can serve multiple different model

frameworks (TensorFlow, PyTorch, ONNX, etc.).

Triton allows inspecting all inference requests with

extensive metrics, including overall latency of the

inference request, queue time and compute time per

model. It publishes these metrics through

Prometheus endpoints, which means that it is perfect

to incorporate into the wider observability pipelines.

Triton also implements dynamic batching and

concurrent model execution, which are the key

features of maintaining the high throughput and low

latency in the cloud and edges [19].

In GPU-centric deployments, a hardware-level

telemetry is available with NVIDIA DCGM (Data

Center GPU Manager) that can offer the level of

detail needed on GPU temperature, power, and

utilization, memory bandwidth, and memory

utilization. DCGM is particularly useful to data

centres with multiple models competing over GPU

resources as it allows the optimal use of hardware

and avoids thermal throttling or overutilization,

which may lead to worse model inference [20].

Within the domain of model-specific observability,

platforms such as Arize AI, Fiddler, and WhyLabs

are increasingly being adopted in industrial

applications. These tools are specific to data drift,

outliers, fairness, and performance decay. As an

example, Arize AI enables teams to examine the

NLP model embeddings and identify the changes in

language usage that can potentially impact the

model predictions. Likewise, Fiddler offers

explainable AI (XAI) information with model health

observability to support the adherence of ethical AI

frameworks and regulations [21]. The platforms

frequently include self-contained SDKs that can be

wrapped into code to serve models, allowing

arbitrary logging of model-specific metrics in real

time. Another prominent tool that promotes

standardizing observability in logs, metrics, and

traces is OpenTelemetry, an open-source project

listed under the CNCF. Although it was initially

created to be applied to performance monitoring of

a traditional application (APM), there is an effort to

extend it to the workflows of ML. The transition to

OpenTelemetry presents an opportunity for

organisations to consolidate the observability stack

and reduce the engineering effort required to

maintain diverse logging and metrics frameworks

[22].

The emergence of cloud-native ML pipelines has

also seen the emergence of monitoring solutions that

are built into common MLOps platforms, namely

Kubeflow, MLflow, and Triton Model Analyzer.

Telemetry comes natively to these tools at all points

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3481

of the model life cycle: training, experimentation,

inference, and retraining. An example is MLflow,

which can log model parameters, metrics, and

artifacts during training, and optionally be extended

with inference-time monitoring plugins. Kubeflow

Pipelines provide dashboards and a metadata

tracking tool to assist with debugging performance

regressions and pipeline blockers [23]. In

organisations running on big cloud systems, closed-

source observability solutions provide a high level

of interconnectivity with the deployment

infrastructure. Monitoring solutions specific to AI

workloads are available: AWS CloudWatch, Azure

Monitor, and Google Cloud Operations Suite

(previously Stackdriver). These services enable the

gathering of fine-grained metrics, the aggregation of

logs, and automatic alerting, typically with little

configuration. As an example, the Vertex AI solution

by Google is compatible with Operations Suite and

provides pre-built dashboards in addition to anomaly

detection specific to ML models, which require AI

Platform Prediction or Vertex Endpoints as a

solution [24]. In edge computing contexts,

connectivity can be an exploitable element in

situations where it might not be available at all

times, and the ability to exercise constraints on

available resources is a major consideration. The

need to tip the scales of manageability means giving

it lightweight monitoring frameworks. Such tools as

Telegraf, StatsD, and Fluent Bit are frequently

utilized at the edge to gather and send telemetry data

to the centralized servers or cloud dashboards. These

solutions are designed to minimise overhead and can

function effectively in constrained environments

with negligible impact on model inference

performance [25].

Adding to the standard tools, monitoring of the

model performance can also be done via tailoring

instrumentation. It entails the incorporation of

measuring collection directly into the inference

code. Custom metrics can be made, for example, the

distinction between correct and incorrect inferences

can be measured by counting successful and

unsuccessful time stamps before and after model

prediction or by time stamping itself, e.g., how many

times the developed trade is incorrectly as opposed

to correctly predicted. Such metrics may then be

published through APIs or message queues and read

by monitoring platforms. The other important issue

in monitoring tools is integration. The success of a

real-time monitoring instrument is based on its

capability of integrating into deployment pipes,

either by catering CI/CD platforms, such as Jenkins

and GitLab CI, or by utilizing container or container

orchestration platforms, such as Kubernetes. The

monitoring tools ought to provide APIs, webhooks,

and plugins that enable smooth importation of

automated retraining pipelining, scaling policies, or

even incident management tools like PagerDuty and

Opsgenie [26]. Monitoring is further complicated by

the increasing popularity of serverless inference,

made possible by AWS Lambda or Google Cloud

Functions, among others. As such services

dynamically scale, and are stateless, optimization,

often measured at instance-level metrics might not

be adequate. Methods used in these instances are

application performance monitors (APM) such as

New Relic or Dynatrace, which monitor

performance on a granular degree of function calls,

runtimes, and memory printouts [27].

Figure 3: Tools and frameworks supporting real-time monitoring across key functionalities such as metric

collection, visualization, deployment, and alerting.

To demonstrate the actual functionality of these parts

as a whole, the following table describes the

common kinds of anomalies, their causes, and the

auto-remediation actions that are taken within real-

time AI systems in real-time.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3482

Table 2: Examples of Anomalies, Detection Triggers, and Automated Responses

Anomaly Type Trigger Metric(s) Detection Tool Automated Response

Latency Spike
Inference Time > 2x

baseline

Prometheus +

Alertmanager

Horizontal Pod Autoscaling

(Kubernetes)

Memory Leak
Gradual increase in RAM

usage

Grafana + Custom

Scripting

Container Restart (via K8s

Liveness Probe)

Concept Drift
Change in prediction

confidence stats
Arize AI / WhyLabs Trigger retraining pipeline

GPU

Overutilization
GPU usage > 90% sustained NVIDIA DCGM Scale-up GPU cluster

Input Distribution

Shift
PSI > 0.25

Custom Drift Detection

Model

Send alert + roll back to stable

model

Surge in 5xx Errors 5xx error rate exceeds 5% CloudWatch / Datadog
Trigger incident response + auto-

scaling

In conclusion, various monitoring tools exist to

monitor the real-time performance of deep learning

models in production, and the entire ecosystem is

rich in those tools. The selection of tools is based on

the amount of deployment, latency expectations,

compliance needs, and data center complexities. The

following section explores the integration of these

tools within modern deployment pipelines and

infrastructure, highlighting how they facilitate

comprehensive observability and monitoring of AI

systems in real-world environments.

4. Integration with Deployment Pipelines and

Infrastructure

Observability of deep learning models in production

should not be treated as a standalone capability, but

should instead be fully integrated with all the aspects

of machine learning operations (MLOps) and

deployment mechanisms. Monitoring, detecting,

and responding to model performance concerns is

possible only through the ability to fully embed

monitoring into the continuous integration and

deployment (CI/CD) pipelines, orchestrating

systems, and platforms of compute. This integration

turns observability into an agent of system health,

SLA compliance, and allows an iterative

optimisation.

CI/CD pipelines are addressing automating the

model training, validating, testing, deployment, and

rollback in modern AI implementations. Continuous

integration and delivery tools such as GitLab CI,

Jenkins, CircleCI, and GitHub Actions are popular

to automate such workflows so that every update in

code/data of the models goes through robust tests

and is deployed as quickly and automatically as

possible. By building real-time monitoring into such

pipelines, engineers can not only validate model

performance statically (on test data) but can also do

so during operation once a model is deployed, in

effect, creating a closed feedback loop between

experimentation and production [28]. As an

example, at the deployment time, synthetic inference

calls to the model serving endpoint could be

introduced in the pipeline in the form of integration

tests. One could be able to capture metrics like

latency, memory utilisation, and prediction accuracy

in real-time and analyse them to know whether the

new version of the model has sufficient

performance. Otherwise, it is possible to

automatically abort or roll back the deployment,

therefore, never exposing the faulty model to end

users. And, monitoring systems may record these

measures in a model registry like MLflow, Weights

& Biases, or SageMaker Model Registry, forming a

version-tracked history of performance variation

with time [29]. This can be made even more

powerful by being combined with containerisation

and orchestration tools like Docker and Kubernetes.

Model-serving applications are regularly used in

pods as microservices in a deployment that is

grounded on Kubernetes. Kubernetes provides built-

in support to probes, including liveness, readiness,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3483

and startup probing, but may be extended to

additional metrics that may be gathered using

Prometheus exporters. An example would be a

readiness probe that requests a model server to

reveal its current latency so that only those instances

that are performing well get added to the load

balancer. Similarly, horizontal pod autoscaling

(HPA) can be set to react to live CPU/GPU usage

information, by increasing and decreasing the

number of model-serving instances as required [30].

Moreover, Kubernetes can handle Custom Resource

Definitions (CRDs) and Operators that allow

developers to extend the functionality of Kubernetes

in order to handle complex AI workloads. Such parts

can be combined with monitoring tools to start

automated processes. As an illustration, when the

drift-detection tools are applied to the models will

reveal a concept drift in the model predictions, a

Kubernetes Operator will be able to start a retraining

pipeline with new datasets, redeploy the new model,

and refresh the related dashboards with metrics. This

level of automation changes model monitoring from

a reactive process to a proactive process. In the case

of cloud-based deployments, observability services,

like AWS SageMaker, Google Vertex AI, and Azure

ML, have their built-in features that are highly

integrated with deployment infrastructure. In

particular, SageMaker supports Model Monitor, a

feature that in real-time, gathers data about

prediction distributions, latency, and features. These

measurements may be piped into AWS CloudWatch,

and visualized, stored, and used to raise alarms or

retraining workflows. An analogous feature is

available in Google Vertex AI, which includes such

features as Drift Detection and Model Monitoring,

which feature visual interfaces to interpret model

performance over time and reveal anomalies [31].

The issues of integration are more complicated when

deploying to edge devices or hybrid architectures.

Under these conditions, models can be distributed on

heterogeneous hardware, some of them in the cloud,

some on-premises, or on mobile/embedded systems.

In order to make observability uniform, it is

common to use a centralised store of log records and

a centralised store of metrics. In order to either select

the logs and metrics or pass them onwards, the

process employs lightweight agents such as Fluent

Bit, Beats, or Vector, installed on every device,

which pass the data to centralised systems like

Elasticsearch, InfluxDB, or Datadog, where the data

will be analysed. Such systems commonly run a top

message queue such as Kafka or MQTT in order to

support asynchronous communications, allowing

fault tolerance when the connection is not constant

[32]. Integration is also done with the versioning of

models and experimentation frameworks. In cases

where several variants of a model under

consideration are simultaneously compared

(typically called A/B testing or canary

deployments), performance metrics in real time

must be isolated and compared between versions.

Existing platforms such as Seldon Core, KServe,

and Triton Inference Server provide model

versioning and routing so that traffic can be divided

among models. Then, real-time monitoring tools can

be applied, and checking which version works better

not only with the help of offline measures but also

with the help of live inference data, which is more

relevant to production conditions [33].

Monitoring integration also should take into account

security and compliance. The industries where the

performance is more regulated, industry as finance

and healthcare, it is not enough to simply monitor

the performance, and logs and metrics should be

stored in a secure manner, which has to be audited

and access-controlled. Use of security information

and event management (SIEM) such as Splunk,

QRadar, or Elastic SIEM includes integration so that

data in the management can be correlated with other

system logs to detect possible breaches,

abnormalities, or violations. In addition, the due

diligence audits due to the existence of the audit trail

because of the use of unceasing observing vehicles

can also have importance towards legal or regulatory

inspections [34]. Finally, monitoring can also be

combined with incident response systems, which

also increases operational preparedness. Monitoring

tools can use other platforms such as PagerDuty,

Opsgenie, or VictorOps to send notifications in real-

time when performance limits are reached. It can

also cause escalation policies, on-call engineers to

be alerted, and playbooks to automatically fix upon

such alerts. This allows the quicker mean time to

detection (MTTD) as well as the mean time to

resolution (MTTR) when combined with root-cause

analysis tools, both of which, in turn, reduce

downtimes and the reliability of AI services [35].

To sum up, deployment pipelines and infrastructure

integration with real-time monitoring are one of the

pillars of confident and resilient operations in AI. It

facilitates feedback, feeds, autonomous decision

making, and close response to anomalies. The next

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3484

section examines how these integrations contribute

to enhanced anomaly detection, alerting, and

automated scaling functions that are essential for

maintaining the performance and stability of

production AI systems.

5. Anomaly Detection, Alerting, and Automated

Scaling

The smooth unification of real-time monitoring into

deep learning model pipelines not only gives a peek

into the behaviour of a model and status of a system,

but also supports important functions like detecting

anomalies, setting up alerts, and automatic scaling.

These elements transform observability into an

active reporting system, rather than a passive one, by

enabling the identification, diagnosis, and resolution

of issues as they emerge. Such responsiveness is

critical to the reliability, safety, and compliance of

mission-critical AI systems, used, e.g., in healthcare

diagnostics, financial services, and autonomous

systems.

The concept of anomaly detection in the context of

deep learning production systems is to detect the

behaviour that does not conform to expectations

under the model performance, data coming to

models as input, or in the system response. The

anomalies can be an indication of any number of

problems, such as data drift, adversarial inputs,

hardware failures, or software bugs. As an example,

a sharp loss or a sharp increase in classification

accuracy, an unusual burst or deficit of model

latency, or offensively irregular usage of GPU

memory may all show that a model is encountering

an unexpected input distribution, system contention,

or internal instability [36]. Detection of anomalies in

real-time is usually based on statistical models or

machine learning approaches to report irregular

behaviour. In the validation or initial deployment

phase, the first step is to define the baselines, i.e.,

typical operating ranges in inference latency,

throughput, error rates, and resource usage. These

baselines are adapted to the system continuation, and

anomaly flags are raised when these deviations

exceed some established limits. More advanced

techniques involve time-series forecasting,

unsupervised learning (e.g., clustering, PCA), or

probabilistic models such as Hidden Markov Models

(HMMs), respectively, to detect more complex

multivariate anomalies [37]. Concept drift detection

is also applied in some of the frameworks, and it is

relevant to such models running in non-stationary

conditions. To compare the current distribution of

input data or probability predictions with past

baselines, such comparison techniques are employed

as Population Stability Index (PSI), Kullback-

Leibler divergence, and Wasserstein distance,

among others. In a simpler example, a change of

diction or email format can be an indicator of

malicious attempts to get past filters in an email

spam detection model. Diagnosis of such changes is

real-time, which allows activating retraining

pipelines or returning to more stable models [38].

The second step is to alert once an anomaly is

identified, and this entails informing interested

parties about a problem. Good alerting schemes take

into consideration responsiveness and noise

reduction. False alarms or too many of them may

also result in alert fatigue, where the vital ones are

ignored. To help deal with this, newer alerting

systems such as PagerDuty, Opsgenie, and

VictorOps incorporate smart alert routing, intelligent

escalation policies, and rate-limiting systems. Alerts

may be severity-based, i.e., warnings, critical errors,

or informational messages, and directed differently.

As an illustration, a slight change in latency could

cause a caution to the monitoring dashboard, but a

GPU or 503 response error would be sent out in the

form of an emergency message to the on-call

engineer [39]. The alerting can be specified using

fixed thresholds set (e.g., latency > 500ms), dynamic

baselines set (e.g., 3 standard deviations above the

mean), or specified in the monitoring system, such

as Prometheus Alertmanager, Datadog Monitors, or

AWS Cloudwatch alarms. The webhook integrations

are also supported on these platforms that allow

alerts to initiate automated remediation workflows,

including restarting a container, triggering a

rollback, or an increase in the number of model

replicas. As an example, a Kubernetes pod that

overflows its memory can be terminated

automatically, and a new pod can be deployed so that

the service provisioning is not interrupted [40].

Automated scaling, which synchronizes with

alerting, provides deep learning services with the

ability to auto-discover real-time changes in

workloads. This is essential in a setting where traffic

patterns are not predictable- e.g., in e-commerce

websites on the day of sales, or financial trading

systems during market turbulence. Scaling

Mechanisms can be divided into one of the

following subtypes: horizontal scaling

(addition/removal of instances) and vertical scaling

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3485

(addition/removal of resources assigned to an

instance).

Kubernetes Horizontal Pod Autoscalers (HPA)

allow on-demand scaling up and down of instances

depending on real-time usage of resources like

CPU/GPU utilisation, memory utilisation, or any

custom metric like queries per second (QPS). In the

case of deep learning models, the use of a GPU is

usually the main factor that drives scaling decisions.

As an example, at a defined time frame when GPU

utilization is more than 85%, HPA may

automatically spin up more model-serving pods to

start sharing the resources. On the contrary, pods that

are not occupied can be downsized to meet off-peak

demand, thus lowering the costs of operation [41].

Application-layer metrics can also form a basis for

scaling. As an example, it can be: scalable resources

are initiated when the queues at a certain point in an

inference, such as the model-level endpoint, reach a

certain level, or the level of failures reaches a certain

rate. These measures give a direct measure of

perceived performance by the users, which enables

the system to emphasise quality of service in the real

world in preference to crude hardware utilisation.

More sophisticated forms of autoscaling can be

controlled by frameworks such as KEDA

(Kubernetes-based Event Driven Autoscaling) with

events to scale based on things like Kafka topics,

RabbitMQ queues, or Prometheus queries [42].

Even more scaling is provided by cloud-native

platforms. An example of this is that AWS

SageMaker has support on multi-model endpoints

and automatic model scaling when using invocation

metrics. Google Vertex AI can deploy a model on a

serverless infrastructure, deploying with automatic

policies that scale according to real-time incoming

traffic. Such services shadow the intricacies of

resource management, making the latter oblivious to

the developers who only need to develop models

with the infrastructure dynamically scaling them

[43]. It is also interesting to add that there can be a

synergetic interaction between automated scaling

and anomaly detection. To take one example, an

anomaly detection system could identify that the

inference latency has abruptly spiked, and conclude

that this is caused by a spike in traffic volume. Such

situations can be resolved with the system

automatically increasing the amount of model-

serving replicas not without raising an alert. On the

other hand, it can be that the outlier is caused by

concept drift/ upstream data problem; in that case,

scaling can be useless or even harmful. In this way,

it becomes necessary that monitoring, alerting, and

scaling modules coordinate in an intelligent manner

to secure proper functioning of the AI system [44].

In order to increase resilience further, organisations

can use to implement fallback mechanisms or

graceful degradation. In case of disastrous model

failure, the system can cache the requests to a model

system with less complex heuristics, or merely do a

servicing of the responses. These concepts are

particularly useful in a sphere where continuous

service is essential, e.g., healthcare or self-driving.

The Monitoring System should be able to see when

such fallbacks occur, view their performance to

ensure that the user experience is not significantly

diminished [45]. Last but not least, the historical

data produced by the anomaly detection and alerting

systems can be successfully used in root cause

analysis (RCA) and continued improvements.

Comparing metrics of models, infrastructure, and

user behaviour can be used to diagnose system

vulnerabilities and help in long-term capacity

modeling. Observables can be stored in

observability platforms such as Elastic Stack,

Datadog, or Splunk, where engineers can do

advanced queries and create interactive dashboards

during live retrospectives and system health checks

[46].

Finally, to conclude, a triad of anomaly detection,

alerting, and automated scaling becomes the

foundation stone of a robust and self-adapting

ecosystem of AI deployment. Such features not only

alleviate failure and performance impact, but are

also used to increase the agility, cost-effectiveness,

and user Experience of deep learning systems in the

production environment. The following section

highlights emerging trends and developments in

real-time AI observability, which are poised to

elevate operational excellence within the field of

artificial intelligence.

6. Future Trends in Real-Time AI Observability

With artificial intelligence on the rise in the

business, where these systems are becoming central

to operations and making major decisions in the

business environment, the field of real-time

observability of deep learning models is truly

innovating. Even though the existing range of tools

gives the fundamental means of metric tracking,

anomaly detection, and alert/scale actions, the new

challenges of the development in AI (including

generative AI, federated learning, and autonomous

systems) will challenge what observability

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3486

technologies should accomplish. The direction of

development in this area is in the direction of

predictive, adaptive, and autonomous observability

in place of reactive monitoring, which is facilitated

by developments in systems engineering, machine

learning, as well as software architecture. Among

the most potentially promising tendencies, the

development of self-healing AI systems may be

listed. Control loops in such systems are highly

observable and automatically detect and fix the

problems even without human interaction. Self-

healing is a combination of detecting performance

degradation as well as the smart choice and

execution of the recovery options, including

redeployment of a model, restart of a failing node,

or exchange to a backup model. These are enabled

by the introduction of AI into the observability stack

itself, so-called AI for AI (AIOps), where meta-

models are used to analyse telemetry data to manage

the health of primary models in real time [47].

Associated very closely is the direction of predictive

observability. Unlike traditional monitoring, which

focuses on detecting anomalies after they have

occurred, predictive systems are designed to

anticipate potential failures or performance

degradation before such issues manifest. This is

arrived at through a time-series forecasting model

including Prophet, LSTM networks, or a

Transformer-based model, which looks at the past

metrics of the system and makes future predictive

analysis. As an example, a predictive observability

system could predict the occurrence of a memory

leak or GPU overheating hours before it actually

happens so that engineers or automated systems

could act in advance. Such a practice can

considerably lessen the downtime, enhance SLA,

and greatly lessen interference with end users [48].

The second thing that is a development in the future

focus is an augmenting involvement of semantic

monitoring and being alerted in a contextual focus.

Present systems mostly isolate metrics, but in the

future, it is likely to contextualise them on the basis

of the type of model, the characteristics of input data,

and the business process being facilitated. Take, as

an example, a loss in accuracy in a medical

diagnostic model would cause a more significant

alert than an equivalent loss in an automated

sentiment analysis model of social media. These

semantic observability frameworks align what is

monitored with business impact and can therefore

make alerts and monitoring more relevant and

interpretable, therefore reducing noise and

increasing the speed of problem resolution [49,50].

The other noticeable progress is the observability of

distributed and federated learning. Federated

systems allow training and reaching a conclusion

with the distribution of training and inference over

many devices or data silos, which can be controlled

separately and only occasionally communicate with

each other. Previous centralised monitoring systems

are ineffective in these kinds of cases because the

methods suffer in terms of latency, bandwidth, and

privacy. It is coming forward with new structures

that facilitate the decentralisation of metric

gathering, edge-local anomaly search, and federated

dashboard aggregations of metrics without

sacrificing information sovereignty. These

breakthroughs are essential to use cases like

personalised mobile assistants, predictive

maintenance using the IoT, and privacy-conserving

healthcare paradigms. The trend of multi-modal

observability is also seeing an increased role in

dealing with the increasing complexity of AI

workloads. Models are being deployed in production

environments that require multi-modal input, i.e, a

combination of text, audio, images, and tabular data.

It is necessary not only to monitor such systems

using standard indicators such as the latency, the

accuracy, but also by means of indicators specific to

a domain. To consider an example, within a vision-

language scheme, metrics of image quality (e.g.,

resolution, contrast, noise) and text (e.g., sentiment,

syntactic structure) should be tracked to determine

input integrity. The development of multi-modal

observability platforms is therefore shaping up

towards extractions, normalisation, and analysis of

various data streams in a consolidated way.

The other aspect that is on the rise is privacy-aware

monitoring. The wider the scope of sensitive input

on which the AI system is functioning (and, it may

be health records, financial transactions, or even

personal communications), the more observability

monitoring frameworks should not become the

source of data leakage. Solutions like differential

privacy, homomorphic encryption, or federated

logging are being investigated to facilitate secure

telemetry gathering. As an example, on-device

anonymisation and aggregation of telemetry data

can be performed, prior to the data being transmitted

to centralised servers, in order to protect user

privacy with maintainable insights sufficient to

inform action. A theme that is another important one

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3487

is observability/governance convergence. With

increasingly AI systems being used in organisations,

there is an urgent need to have a common system of

tracking, reporting, and auditing the performance of

models. Next-generation observability systems will

include governance capabilities, including lineage

tracking, compliance reporting, and policy

enforcement. As an example, dashboards can take on

such forms as having what are called a compliance

score that indicates how closely a model is behaving

according to its internal policies or external rules.

Auditors, risk managers, and regulators can

determine operational integrity and accountability

using these scores.

There is also the innovation of visual analytics on AI

observability. The old dashboards are turning into

interactive AI-enabled visual displays that facilitate

root-cause analysis, hypothesis testing, and anomaly

correlation on many layers of the stack. Such

environments employ data visualisation, human-

computer interaction, and augmented analytics

techniques to enable users to understand model

behaviour interactively. As an illustration, one may

visualise a cluster of anomalies in a 3D embedding

space, so that engineers could go back and identify

the origins of certain anomaly clusters in terms of a

particular dataset, hyperparameter regime, or other

infrastructure status. Last but not least, AI

observability will probably imply standardisation

and interoperability. The current state of

observability is patchy, and no single observability

enables uniformity in the tools, formats, and

protocols used by different teams. New principles,

like OpenTelemetry on metrics and traces, or ML

Schema on model metadata, attempt to introduce

these standard interfaces upon which tools can

effectively interoperate. It is especially significant

when large businesses and government

organizations have hybrid, multi-cloud

environments. A set of interoperable observability

tools will allow these organisations to use a “single

pane of glass” when it comes to monitoring, enhance

collaboration, and eliminate tooling overheads.

To conclude, augmented intelligence and

automation, contextual awareness, and regulatory

compliance will characterize the future of real-time

observability of deep learning models. Observability

capabilities need to develop hand in hand with

models that are increasingly complex and

omnipresent, delivering not only performance

visibility, but also intelligent actions, forecasting,

and governance functionality. This long article will

now be rounded off by drawing a conclusion that

will draw a connection between the need to have

real-time observability and a summary of its

usefulness in the provision of robust, ethical, as well

as high-performance Artificial Intelligence.

7. Conclusion

Deep learning models used in production are now

considered a hallmark of the modern artificial

intelligence system. Whether applied in medical

diagnostics, autonomous vehicles, financial

forecasting, or content recommendation, these

models are increasingly being deployed as mission-

critical systems, where performance, reliability, and

regulatory compliance are non-negotiable. In those

conditions, the real-time performance monitoring is

not a luxury anymore but a necessity. This paper has

analysed the critical role of real-time monitoring as

a foundation for the deployment, stability, and

overall health of AI systems. As a fundamental

requirement for managing dynamic and uncertain

production environments, continuous observability

has been highlighted as essential. Key performance

metrics such as latency, throughput, memory

consumption, accuracy, and system utilisation were

reviewed as standard indicators for characterising

machine learning models in operational contexts.

The metrics form a quantitative basis of measuring

the system behaviour, finding bottle necks, and

taking proactive actions. An extensive range of

frameworks and tools supporting real-time

observability has also been reviewed, highlighting

their roles in enhancing the monitoring and

operational management of AI systems. The

observability universe is quickly expanding,

comprising of system level monitoring instruments

such as Prometheus and Grafana, to dedicated AI

observability devices such as NVIDIA Triton, Arize

AI and WhyLabs. The tools are not just suitable to

collect metrics and visualise them but also to

integrate them into container orchestration

platforms, cloud services as well as continuous

deployment pipelines. These systems are

interoperable, so dynamic scaling, health checks,

and automated failover are provided and ensure

robustness and elasticity of the AI infrastructure.

An important part of this ecosystem is a triad of

anomaly detection, alerting, and automatic scaling.

Such abilities help AI systems to act on their own

when other performance, system failure, and

changes of data distribution conditions occur.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3488

Anomaly detection systems apply statistical and

machine learning algorithms to detect outliers in

performance data, and alert systems take care of

ensuring that those anomalies are reported to

stakeholders, or auto-initiated steps are taken to

remediate them. Kubernetes and cloud-native

platforms in particular feature automated scaling, so

that there is no decrease in performance and costs as

demand changes. Several emerging trends are poised

to significantly transform the landscape of AI

observability. Notable developments include the rise

of predictive and self-healing observability systems,

the advancement of semantic and explainable

monitoring approaches, and the broader adaptation

of observability tools to accommodate federated,

multi-modal, and privacy-sensitive environments.

These innovations are expected to revolutionise how

monitoring and diagnostics are conducted across

diverse AI applications. Regulatory and ethical

requirements of AI are increasing at the same rate,

which means observability platforms will soon

consider governance, compliance, and auditability

as first-class features. To sum it up, real-time

monitoring would be one of the keystones to

successful AI operations. It empowers organisations

to make the leap of faith between experimentation

and production securely, avoiding both technical

defaults, as well as user confidence. Through holistic

observability, AI teams are able to assure themselves

that their models pay off consistently, ethically, and

superhigh-impact, notwithstanding the obscurity of

deployment or field of use. The systems that

observe, maintain, and optimise the deployment of

deep learning in the real world must also scale as this

technology matures and scales.

References

[1] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M.

Swetter, H. M. Blau, et al., “Dermatologist-level

classification of skin cancer with deep neural

networks,” Nature, vol. 542, no. 7639, pp. 115–118,

2017.

[2] A. C. Bahnsen, D. Aouada, A. Stojanovic, and B.

Ottersten, “Feature engineering strategies for credit

card fraud detection,” Expert Syst. Appl., vol. 51, pp.

134–142, 2016.

[3] D. Nigenda, Z. Karnin, M. B. Zafar, R. Ramesha,

A. Tan, M. Donini, et al., “Amazon SageMaker

Model Monitor: A system for real-time insights into

deployed machine learning models,” in Proc. 28th

ACM SIGKDD Conf. Knowledge Discovery Data

Mining, 2022, pp. 3671–3681.

[4] Y. C. Wang, J. Xue, C. Wei, and C. C. J. Kuo,

“An overview on generative AI at scale with edge–

cloud computing,” IEEE Open J. Commun. Soc.,

vol. 4, pp. 2952–2971, 2023.

[5] S. Amershi, A. Begel, C. Bird, R. DeLine, H.

Gall, E. Kamar, et al., “Software engineering for

machine learning: A case study,” in Proc. 41st

IEEE/ACM Int. Conf. Software Engineering (SEIP),

2019, pp. 291–300.

[6] A. Swaminathan and T. Joachims, “Batch

learning from logged bandit feedback through

counterfactual risk minimization,” J. Mach. Learn.

Res., vol. 16, no. 1, pp. 1731–1755, 2015.

[7] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin,

J. E. Gonzalez, and I. Stoica, “Clipper: A low-

latency online prediction serving system,” in Proc.

14th USENIX Symp. Networked Syst. Design

Implementation (NSDI), 2017, pp. 613–627.

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy,

and A. Bouchachia, “A survey on concept drift

adaptation,” ACM Comput. Surv., vol. 46, no. 4, pp.

1–37, 2014.

[9] C. C. Yang and G. Cong, “Accelerating data

loading in deep neural network training,” in Proc.

26th IEEE Int. Conf. High Perform. Comput., Data,

Analytics (HiPC), Dec. 2019, pp. 235–245.

[10] L. Wesolowski, B. Acun, V. Andrei, A. Aziz, G.

Dankel, C. Gregg, et al., “Datacenter-scale analysis

and optimization of GPU machine learning

workloads,” IEEE Micro, vol. 41, no. 5, pp. 101–

112, 2021.

[11] M. Jegorova, C. Kaul, C. Mayor, A. Q. O’Neil,

A. Weir, R. Murray-Smith, et al., “Survey: Leakage

and privacy at inference time,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 45, no. 7, pp. 9090–9108,

2022.

[12] Y. Fu, T. M. Nguyen, and D. Wentzlaff,

“Coherence domain restriction on large scale

systems,” in Proc. 48th Int. Symp.

Microarchitecture, 2015, pp. 686–698.

[13] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M.

Armbrust, A. Dave, et al., “Apache Spark: A unified

engine for big data processing,” Commun. ACM, vol.

59, no. 11, pp. 56–65, 2016.

[14] B. Burns, B. Grant, D. Oppenheimer, E.

Brewer, and J. Wilkes, “Borg, Omega, and

Kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 50–

57, 2016.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3489

[15] Y. Zhou and K. Yang, “Exploring TensorRT to

improve real-time inference for deep learning,” in

Proc. 24th IEEE Int. Conf. High Perform. Comput.

Commun. (HPCC), 2022, pp. 2011–2018.

[16] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini,

A. Khreishah, I. Khalil, M. Guizani, et al., “Smart

cities: A survey on data management, security, and

enabling technologies,” IEEE Commun. Surv. Tutor.,

vol. 19, no. 4, pp. 2456–2501, 2017.

[17] T. Schlossnagle, J. Sheehy, and C. McCubbin,

“Always-on time-series database: Keeping up where

there’s no way to catch up,” Commun. ACM, vol. 64,

no. 7, pp. 50–56, 2021.

[18] N. Bhawsinka, “Change tracking and

observability for complex software development,”

M.S. thesis, 2023.

[19] S. Liang, Y. Wang, C. Liu, L. He, H. Li, D. Xu,

and X. Li, “EnGN: A high-throughput and energy-

efficient accelerator for large graph neural

networks,” IEEE Trans. Comput., vol. 70, no. 9, pp.

1511–1525, 2020.

[20] T. Gajger, “NVIDIA GPU performance

monitoring using an extension for Dynatrace

OneAgent,” Scalable Comput. Pract. Exp., vol. 21,

no. 4, pp. 689–699, 2020.

[21] Z. Xu, R. Wang, G. Balaji, M. Bundele, X. Liu,

L. Liu, et al., “Alertiger: Deep learning for AI model

health monitoring at LinkedIn,” in Proc. 29th ACM

SIGKDD Conf., 2023, pp. 5350–5359.

[22] D. G. Blanco, Practical OpenTelemetry.

Apress, 2023.

[23] B. Hutchinson, A. Smart, R. Hanna, R. Denton,

C. Greer, O. Kjartansson, et al., “Towards

accountability for machine learning datasets:

Practices from software engineering and

infrastructure,” in Proc. ACM Conf. Fairness,

Accountability, Transparency (FAccT), Mar. 2021,

pp. 560–575.

[24] P. Dewan, “A guide to Suite,” Tech. Rep.

SERC-TR-60-P, Purdue Univ., 1990.

[25] A. Fatahi Baarzi, “Efficient service deployment

on public cloud: A cost, performance, and security

perspective,” 2022.

[26] A. Bauer, M. Leucker, and C. Schallhart,

“Monitoring of real-time properties,” in Proc. Int.

Conf. Foundations Software Technology Theoretical

Comput. Sci., 2006, pp. 260–272.

[27] K. Alpernas, A. Panda, L. Ryzhyk, and M.

Sagiv, “Cloud-scale runtime verification of

serverless applications,” in Proc. ACM Symp. Cloud

Comput., 2021, pp. 92–107.

[28] E. Breck, S. Cai, E. Nielsen, M. Salib, and D.

Sculley, “The ML test score: A rubric for ML

production readiness and technical debt reduction,”

in Proc. IEEE Int. Conf. Big Data, 2017, pp. 1123–

1132.

[29] D. Sculley, G. Holt, D. Golovin, E. Davydov, T.

Phillips, D. Ebner, et al., “Hidden technical debt in

machine learning systems,” Adv. Neural Inf.

Process. Syst., vol. 28, 2015.

[30] B. Burns, Designing Distributed Systems:

Patterns and Paradigms for Scalable, Reliable

Services. O’Reilly Media, 2018.

[31] P. Rangarajan and D. Bounds, Cloud Native AI

and Machine Learning on AWS. BPB Publications,

2023.

[32] R. Santos Souza, T. Skluzacek, S. Wilkinson,

M. Ziatdinov, and R. Ferreira Da Silva, “Towards

lightweight data integration using multi-workflow

provenance and data observability,” Oak Ridge

National Lab (ORNL), 2023.

[33] P. Lakarasu, “Operationalizing intelligence: A

unified approach to MLOps and scalable AI

workflows in hybrid cloud environments,” SSRN

5236647, 2022.

[34] S. Guduru, “AI-Enhanced Threat Detection

Graph Convolutional Networks (GCNs) for Zeek

Log Analysis in Splunk ES,” J. Sci. Eng. Res., vol.

10, no. 8, pp. 166–173, 2023.

[35] S. Tatineni, “A comprehensive overview of

DevOps and its operational strategies,” Int. J. Inf.

Technol. Manage. Inf. Syst., vol. 12, no. 1, pp. 15–

32, 2021.

[36] C. C. Aggarwal, An Introduction to Outlier

Analysis. Springer Int. Publ., 2017, pp. 1–34.

[37] V. Chandola, A. Banerjee, and V. Kumar,

“Anomaly detection: A survey,” ACM Comput.

Surv., vol. 41, no. 3, pp. 1–58, 2009.

[38] J. Lu, A. Liu, F. Dong, G. Gu, J. Gama, and G.

Zhang, “Learning under concept drift: A review,”

IEEE Trans. Knowl. Data Eng., vol. 31, no. 12, pp.

2346–2363, 2018.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3475–3490 | 3490

[39] H. Been, E. Staal, and E. Keiholz, Azure

Infrastructure as Code: With ARM Templates and

Bicep. Simon & Schuster, 2022.

[40] R. Juntunen, “OpenShift from the enterprise

fleet management context, comparison,” 2020.

[41] T. T. Nguyen, Y. J. Yeom, T. Kim, D. H. Park,

and S. Kim, “Horizontal pod autoscaling in

Kubernetes for elastic container orchestration,”

Sensors, vol. 20, no. 16, p. 4621, 2020.

[42] J. Moses, “Resource auto-scaling in

Kubernetes: Techniques and tools,”.

[43] Y. J. Kim, M. Junczys-Dowmunt, H. Hassan, A.

F. Aji, K. Heafield, R. Grundkiewicz, and N.

Bogoychev, “From research to production and back:

Ludicrously fast neural machine translation,” in

Proc. 3rd Workshop Neural Generation Translation

(EMNLP-IJCNLP), 2019, pp. 280–288.

[44] R. Gaikwad, S. Deshpande, R. Vaidya, and M.

Bhate, “A framework design for algorithmic IT

operations (AIOps),” Design Eng., pp. 2037–2044,

2021.

[45] J. Dean and L. A. Barroso, “The tail at scale,”

Commun. ACM, vol. 56, no. 2, pp. 74–80, 2013.

[46] M. Barsalou, “Root cause analysis in quality

4.0: a scoping review of current state and

perspectives,” TEM J., vol. 12, no. 1, pp. 73–79,

2023.

[47] M. Onkamo and S. T. Rahman, Artificial

Intelligence for IT Operations. 2023.

[48] Z. Nishtar and J. Afzal, “A review of real-time

monitoring of hybrid energy systems by using

artificial intelligence and IoT,” Pak. J. Eng.

Technol., vol. 6, no. 3, pp. 8–15, 2023.

[49] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why

should I trust you?’ Explaining the predictions of

any classifier,” in Proc. 22nd ACM SIGKDD, 2016,

pp. 1135–1144.

[50] S. M. Lundberg and S. I. Lee, “A unified

approach to interpreting model predictions,” Adv.

Neural Inf. Process. Syst., vol. 30, 2017.

