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Abstract: Diabetic Retinopathy is a leading cause of vision impairment and blindness among diabetic patients worldwide. 

Early detection and accurate classification of DR severity levels are essential for timely intervention and treatment. This 

study presents a deep learning-based framework for automated detection and classification of DR using high-resolution 

fundus images. The proposed approach leverages MobileNetV2 for lightweight feature extraction and employs three ResNet 

variants such as ResNet-18, ResNet-50, and ResNet-152 for classification of DR into five stages: No DR, Mild, Moderate, 

Severe, and Proliferative.The fundus images from the publicly available Kaggle DR dataset were pre-processed and 

segmented using Canny Edge Detection, enabling the model to focus on critical retinal structures such as blood vessels and 

lesions. Experimental results demonstrate that ResNet-152 achieves the best performance, with a validation accuracy of 

90.15%, F1-score of 90.01%, and ROC-AUC of 0.94, outperforming baseline models including InceptionV3 (82.00%) and 

GoogleNet (87.23%).This work demonstrates the effectiveness of combining edge-based segmentation with transfer learning 

for DR detection, offering a robust and scalable solution for clinical decision support systems, especially in resource-

constrained healthcare settings. 
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Introduction  

Diabetic Retinopathy (DR) is one of the 

most common and severe complications of 

diabetes, resulting from prolonged high blood 

glucose levels that damage the retinal blood vessels 

[1]. This damage can cause fluid leakage, 

microaneurysms, hemorrhages, and cotton wool 

spots in the retina, potentially leading to 

irreversible vision loss if not detected early. 

According to global health projections, the number 

of individuals affected by DR is expected to rise 

from 130 million in 2015 to over 200 million by 

2040 [2]. In India alone, the prevalence rate of DR 

is estimated between 45% and 49%, with Type 1 

and Type 2 diabetes accounting for 13% and 23% 

of DR cases, respectively [3].DR progresses 

through five clinically recognized stages: No DR, 

Mild, Moderate, Severe, and Proliferative DR [4]. 

Early identification of these stages is critical for 

timely treatment and preventing vision impairment. 

However, traditional DR screening methods rely 

heavily on manual interpretation of fundus images 

by trained ophthalmologists, which is time-

consuming, subjective, and often infeasible in 

resource-constrained settings such as rural hospitals 

or developing regions [5]-[6]. 

To address these challenges, recent 

advances in Artificial Intelligence (AI), particularly 

in deep learning, have shown significant promise in 

automating the detection and classification of DR 

from retinal images. Convolutional Neural 

Networks (CNNs), especially pre-trained models, 

have demonstrated the ability to learn hierarchical 

features directly from data, eliminating the need for 

manual feature engineering [7]-[8]-[9]. Among 

these models, ResNet architectures are well-

regarded for their ability to mitigate vanishing 

gradients and enable deeper networks with high 

performance [10]-[11]. 

This research proposes a deep learning-

based DR detection and classification framework 

using pre-trained CNN models, specifically 

MobileNetV2 for feature extraction and ResNet 

variants (ResNet-18, ResNet-50, ResNet-152) for 

classification. The study evaluates the models using 

a large-scale Kaggle DR dataset and incorporates 

advanced preprocessing and segmentation 

techniques to improve classification accuracy and 

generalizability. 
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Contributions of the Paper 

• Proposed a deep learning-based 

framework for automated DR 

classification using pre-trained models. 

• Utilized MobileNetV2 and ResNet 

variants for feature extraction and 

classification. 

• Incorporated advanced preprocessing 

techniques to enhance the precision of 

retinal image segmentation. 

• Evaluated the framework using a diverse 

Kaggle dataset of fundus retinal images. 

Rest of the organization of the paper 

Section 2 presents a comprehensive overview of 

recent advances in DR detection, including 

preprocessing techniques, segmentation 

approaches, and deep learning-based classification 

methods.Section 3 details the architectural 

framework of the study, including dataset 

preparation, preprocessing, segmentation using 

Canny Edge, feature extraction using 

MobileNetV2, and classification using ResNet 

variants.Section 4 outlines the evaluation metrics, 

training setup, model performance across different 

DR stages, and comparative analysis with existing 

methods using accuracy, confusion matrices, and 

ROC curves.Section 5 summarizes key findings, 

discusses the study's limitations, and highlights 

potential directions for future work including real-

time deployment and integration with multimodal 

clinical data. 

Related work 

Automated detection and classification of 

DR from fundus images has gained considerable 

attention due to its potential to support early 

diagnosis and reduce dependency on manual 

screening. Various studies have addressed different 

stages of the DR detection pipeline, including 

preprocessing, segmentation, and classification. 

This section reviews the relevant contributions in 

each domain and highlights the limitations that 

motivate this study. 

1. Preprocessing and Image Enhancement 

Techniques 

Preprocessing plays a crucial role in 

standardizing retinal images and enhancing critical 

structures such as blood vessels and lesions. Zhao 

et al. [14] utilized hybrid region information with 

infinite perimeter active contour models to enhance 

vessel regions, while Savelli et al. [17] applied 

dehazing to improve illumination consistency in 

retinal images. Similarly, Sazak et al. [16] proposed 

the multiscale bowler-hat transform to enhance 

blood vessel visibility. More recently, Kurup et al. 

[26] emphasized image normalization and 

illumination correction for better deep learning 

performance.Despite these efforts, preprocessing 

techniques often lack robustness when applied to 

large and diverse datasets, leading to variable 

performance. 

 

2. Segmentation of Retinal Structures 

Effective segmentation of retinal 

structures, particularly blood vessels and lesions, is 

critical for accurate DR classification. Girard et al. 

[19] proposed a U-Net-based model for semantic 

segmentation of arteries and veins, while Hu et al. 

[20] employed a multiscale CNN coupled with 

conditional random fields (CRFs) for vessel 

segmentation. Fu et al. [21] introduced DeepVessel, 

combining deep learning with CRFs to improve 

vessel boundary precision. Soomro et al. [22] used 

PCA followed by CNNs to extract vessel features 

and segment retinal vessels.However, many of 

these approaches involve complex architectures 

and require high computational resources, limiting 

their deployment in real-time clinical settings. 

 

3. Deep Learning-Based DR Classification 

With the advancement of deep learning, 

CNNs have been extensively applied to DR 

classification. Valizadeh et al. [22] used a basic 

CNN model for classifying DR severity with 

moderate accuracy. Shi et al. [24] implemented 

GoogleNet for DR detection, achieving 87.23% 

accuracy. Chen et al. [23] utilized NASNet-Large 

for improved feature representation and reached 

87.50% accuracy. Kurup et al. [26] leveraged 

InceptionV3 with a performance of 82.00%. 

Recent work has shifted toward using pre-

trained deep networks due to their transfer learning 

capabilities and performance consistency. 

Nonetheless, many models still suffer from limited 

generalization across all five DR stages and lack 

end-to-end integration with segmentation 

techniques. 

While previous studies have explored various 

preprocessing, segmentation, and classification 

methods, several key limitations remain: 

• Many rely on handcrafted features or 

dataset-specific preprocessing, reducing 

adaptability. 

• Segmentation methods often require 

complex post-processing and lack real-

time feasibility. 

• Few studies provide a comparative 

evaluation of multiple ResNet variants to 
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assess the impact of network depth on 

classification performance. 

• Class-wise performance (especially on 

Mild, Severe, and Proliferative DR) is 

often not analyzed 

• Integration of segmentation with deep 

feature extraction remains underexplored. 

Table 1: Summary of Recent Related Works 

Study Dataset Method Technique 
Accuracy / 

AUC 
Limitations 

Valizadeh et al. 

(2021) [22] 
Private CNN Classification 83.30% 

Basic CNN, no 

segmentation 

Chen et al. 

(2021) [23] 
BMC DR NASNet-Large Classification 87.50% 

Lacked lesion-

level 

segmentation 

Shi et al. 

(2022) [24] 
EyePACS GoogleNet Classification 87.23% 

No stage-wise 

metrics 

Kurup et al. 

(2021) [26] 
Kaggle InceptionV3 Classification 82.00% 

Lacked 

performance on 

Mild/Proliferative 

DR 

Hu et al. (2018) 

[20] 
DRIVE CNN + CRF Segmentation - 

High 

computational 

cost 

Fu et al. (2016) 

[21] 
STARE DeepVessel Segmentation - 

Limited to vessel 

detection 

 

Table 1 offers a concise comparative analysis of 

recent DR detection methods across several 

dimensions, including datasets, deep learning 

techniques, performance metrics, and limitations. It 

highlights how traditional CNN-based classifiers 

like those used by Valizadeh et al. and Sarobin et 

al. delivered moderate accuracy (75–83%), often 

lacking segmentation or class-wise performance 

analysis. More advanced models like NASNet-

Large and GoogleNet achieved higher accuracy 

(~87%) but did not integrate segmentation or 

multistage DR classification. Segmentation-specific 

methods like DeepVessel and CNN+CRF 

demonstrated technical depth but were limited to 

structural feature extraction rather than end-to-end 

classification. 

Proposed Methodology 

This section outlines the step-by-step 

approach adopted for DR detection and 

classification using a deep learning-based 

framework. The approach comprises five core 

stages: data preprocessing, segmentation, feature 

extraction, classification, and performance 

evaluation. Figure 1 presents the architectural 

overview of the proposed system, which integrates 

image segmentation and transfer learning to 

achieve accurate and robust DR classification. 

Figure 1 shows the architectural block diagram of 

the proposed DL model to effectively detect and 

classify the DR images. 

 

Figure 1: Architectural diagram of proposed Model 
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Dataset Description 

The study utilized a publicly available 

Kaggle DRdetection dataset, which contains 20,000 

high-resolution colored fundus images representing 

five DR stages: No DR, Mild, Moderate, Severe, 

and Proliferative DR. The dataset was split into 

training (80%) and validation (20%) subsets to 

evaluate model performance. All images were 

resized to 224×224 pixels to ensure compatibility 

with the input requirements of DL models. 

Table 2: Distribution of Dataset 

Dataset Size No of Images 

Training 35126 

Validation 3662 

 

Figure 2: Distribution of the dataset 

Data Preprocessing  

Fundus images varied significantly in size, 

illumination, and contrast. To address this 

variability, the following preprocessing steps were 

applied: 

• Resizing all images uniformly to 224×224 

pixels. 

• Color-to-grayscale conversion to 

emphasize blood vessel structures and 

reduce computational complexity. 

• Contrast enhancement using histogram 

equalization to highlight retinal 

abnormalities. 

• Image normalization to standardize pixel 

intensity distribution across samples. 

• Data augmentation techniques such as 

random rotations, flips, zoom, and 

brightness adjustment were applied to 

improve model generalization and reduce 

overfitting. 

Segmentation using Canny Edge 

For accurate identification of DR-affected regions, 

we employed Canny Edge Detection to segment 

blood vessels and lesions. This choice was made 

due to its computational simplicity, edge-preserving 

nature, and effectiveness in delineating retinal 

boundaries without requiring a large annotated 

dataset, unlike U-Net or other complex deep 

segmentation networks. 

Preprocessing: The input DR fundus image is 

preprocessed using like grayscale conversion and 

contrast enhancement to improve the visibility of 

features like blood vessels. 

Edge Detection: The Canny edge detection 

algorithms is used to compute gradients to detect 

edges in DR fundus images. Gradients are 

computed using partial derivatives as shown in 

equation 1. 

𝐺𝑥 =  
𝜕𝐼

𝜕𝑥
𝐺𝑦 =  

𝜕𝐼

𝜕𝑦
    

   (1) 

Where 𝐺𝑥 and 𝐺𝑦are the gradients in the 𝑥- and y-

directions, and 𝐼(𝑥, 𝑦) represents the intensity at a 

pixel. 

The gradient magnitude G and direction θ are 

calculated: 

𝐺 =  √𝐺𝑥
2 + 𝐺𝑦

2            𝜃 = arctan (
𝐺𝑥

𝐺𝑦
) 

    (2) 
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Thresholding: Non-maximum suppression and 

double thresholding were applied to thin the edges 

and remove weak responses, leaving only strong 

edges. 

𝐸(𝑥, 𝑦) = { 1   𝑖𝑓 √(
𝜕𝐼

𝜕𝑥
)

2

+ (
𝜕𝐼

𝜕𝑥
)

2

0       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

> 𝑇

    (3) 

where T is the threshold value. 

Morphological operations such as dilation were 

used to refine the segmented edges, making them 

more connected and noise-free. It expands the 

boundaries of objects in an image, making them 

thicker and more connected. A structuring element 

(kernel) is slid over the DR image, and the 

maximum pixel value under the kernel replaces the 

pixel at the kernel's center. It effects the small gaps 

in edges of DR image are filled, and fine details are 

enlarged. 

𝐴 ⊕ 𝐵 = {𝑧 ∣ (𝐵)𝑧  ∩ 𝐴 ≠ ∅}  

    (4) 

Where, 𝐴 is the binary image, 𝐵 is the structuring 

element, and (𝐵)𝑧 is the structuring element 

translated to position 𝑧. 

    

Original Fundus 

Image 

Preprocessed Image Edge-Detected Image Final Segmentation 

Image 

Figure 2: steps of DR fundus segmentation 

Figure the segmentation process for diabetic 

retinopathy (DR) fundus images. The first image 

represents the original fundus image, showcasing 

the retina's raw structure. The second image shows 

the preprocessed image, where techniques like 

contrast enhancement and noise reduction are 

applied to improve feature visibility. The third 

image highlights the edge-detected image, 

generated using Canny edge detection algorithms to 

capture the boundaries of blood vessels and other 

retinal structures. Finally, the fourth image presents 

the final segmentation image, where post-

processing steps such as morphological operations 

refine the edges to produce a clear and accurate 

segmentation of blood vessels or lesions for further 

analysis. 

Features Extraction: MobileNetV-2 

MobileNetV2 is an efficient and lightweight deep 

convolutional neural network architecture designed 

for mobile and embedded vision applications. It is 

particularly well-suited for feature extraction in 

medical image analysis, including diabetic 

retinopathy (DR) fundus images, due to its ability 

to balance accuracy and computational efficiency. 

After segmenting DR fundus images, MobileNetV2 

can extract meaningful features from the segmented 

regions, which can then be used for classification. 

 

Figure 3: Architecture MobileNetV-2 model 
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Depthwise Separable Convolutions 

Reduces computation by breaking standard 

convolutions into two separate operations: 

DepthwiseConvolution: Applies a single 

convolutional filter per input channel. 

Pointwise Convolution: Combines the outputs of 

depthwise convolutions using 1 × 1 convolutions. 

Inverted Residuals: 

MobileNetV2 introduces inverted residual blocks, 

which expand the number of channels in the middle 

layers of the block and then project them back to a 

lower-dimensional space. 

This structure ensures efficient feature extraction 

while preserving critical spatial and semantic 

information. 

Linear Bottlenecks: 

The network uses a linear bottleneck at the end of 

each block to reduce feature dimensionality without 

losing information. This avoids introducing non-

linearity that can destroy useful information. 

ReLU6 Activation: 

Uses ReLU6 activation in certain layers to improve 

robustness to low-precision computation. 

Lightweight Architecture: 

Designed to be efficient for devices with limited 

hardware resources while still achieving high 

performance. 

Classification using ResNet Variants 

To evaluate the impact of model depth on DR 

classification performance, we used three pre-

trained ResNet models: ResNet-18, ResNet-50, and 

ResNet-152. These models were fine-tuned on the 

DR dataset by replacing the final fully connected 

layer to support five output classes. 

To mathematically represent the ResNet models, 

include the following equations. 

Building Block with Skip Connection: 

𝑦 = 𝐹(𝑥, {𝑊𝑖} + 𝑥 

where, x is the input to the residual block, 

𝐹(𝑥, {𝑊𝑖}is the Residual mapping, y is the output 

of the residual block 

Bottleneck Residual Block (used in ResNet-50 and 

ResNet-152) 

𝐹(𝑥, {𝑊𝑖}) = 𝑊3𝜎(𝑊2𝜎(𝑊1𝑥)) 

Where, 𝑊1, 𝑊2, 𝑊3 is the Weights of the 

1𝑥1, 3𝑥3, and 1𝑥1 convolution layers, 𝜎 is the 

Activation function ReLU. 

Stacked Residual Blocks: For a network with N 

layers and K residual blocks: 

𝑦𝑘 =  𝐹𝑘(𝑥𝑘−1) + 𝑥𝑘−1 

Where, 𝑥𝑘−1 is the input to the K-th block, and 𝐹𝑘is 

the operations of the K-th block. 

Output Classification Layer: For C classes: 

𝑧 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓𝑐  ℎ + 𝑏) 

Where, ℎ is the feature vector from the last 

convolutional layer, 𝑊𝑓𝑐, 𝑏 is the weights and 

biases of the fully connected layer, 𝑧 is the output 

probability distribution over 𝐶 classes. 

ResNet-18: ResNet-18 is a relatively shallow 

version of the ResNet family, 18 residual blocks 

with fewer parameters. It uses residual connections, 

which help mitigate issues like vanishing gradients 

during model training, making it efficient for 

detecting and classifying DR fundus image. By 

learning deeper representations, it captures both 

local and global features in fundus images, aiding 

in the identification of various stages of diabetic 

retinopathy, from mild to severe. 

ResNet-50: ResNet-50 is a deeper network with 50 

layers, uses 16 bottleneck blocks and is deeper than 

ResNet-18, designed to improve accuracy in 

complex tasks such as DR detection and 

classification. Its deeper architecture allows for 

better feature extraction, enabling precise 

identification of retinal abnormalities associated 

with diabetic retinopathy. ResNet-50’s ability to 

handle increased complexity makes it suitable for 

distinguishing between various stages of DR. 

ResNet-152: ResNet-152 is the deepest among the 

three, comprises 50 bottleneck blocks. Its extensive 

depth allows for advanced feature learning, making 

it particularly effective in detecting and classifying 

subtle changes in fundus images related to DR. 

With a higher capacity to capture intricate patterns, 

ResNet-152 provides high accuracy in 

distinguishing stages of DR, including detecting 

minor abnormalities that might be missed by 

shallower networks. 

Loss Function  

The Cross-Entropy Loss is to measure the 

difference between the predicted probability 
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distribution (𝑦^) and the true distribution (y) for a 

multi-class classification problem. 

The mathematical representation of the Cross-

Entropy Loss is: 

𝐿 =  − 
1

𝑁
∑ ∑ 𝑦𝑖,𝑗log (𝑦𝑖,𝑗̂)

𝐶

𝑗=1

𝑁

𝑖=1

 

Where, N: Number of samples in the batch, C: 

Number of classes.𝑦𝑖, : True label for sample  

𝑖 and class, 𝑗 (one-hot encoded, i.e., 𝑦𝑖,𝑗=1 for the 

correct class and 0 otherwise).𝑦^𝑖,𝑗: Predicted 

probability for sample, 𝑖 belonging to class j, 

obtained using the softmax function: 

𝑦𝑖,𝑗̂ =  
𝑒𝑧𝑖,𝑗

∑ 𝑒𝑧𝑖,𝑘𝐶
𝑘=1

 

Where,𝑧𝑖, 𝑗 is the raw output of the network for 

class 𝑗 and sample 𝑖. 

Result Analysis 

This section presents the evaluation of the 
proposed DR classification framework using the 
Kaggle Diabetic Retinopathy dataset. Three ResNet 
variants like ResNet-18, ResNet-50, and ResNet-
152were fine-tuned and assessed based on 
classification performance across all five DR 
stages. All experiments were conducted using the 
Google Colab Pro platform, which provides a 
powerful cloud-based environment for training 
deep learning models. The implementation was 
carried out using Python 3.10 programming 
language with deep learning libraries and 
frameworks such as TensorFlow 2.11, Keras, 
OpenCV, NumPy, Matplotlib, Scikit-learn. The 
models were trained using a Tesla T4 GPU 
(NVIDIA, 16 GB VRAM), which enabled efficient 

parallel computation and significantly reduced 
training time. The cloud-based GPU environment 
allowed for training large-scale models such as 
ResNet-152 and managing the high-resolution 
fundus images without memory bottlenecks. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑦 =  
T P +  T N

T P +  T N +  F P +  F N
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
T P

T P +  F P
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
T P

T P +  F N
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × [ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

Hyperparameters settings 

To ensure optimal model performance during 
training and evaluation, a consistent set of 
hyperparameters was used across all three ResNet 
variants (ResNet-18, ResNet-50, and ResNet-152). 
These hyperparameters were selected based on 
empirical tuning and best practices in deep learning 
for medical image classification. 

The key hyperparameters are as follows: 

• Learning Rate: 0.0001 

• Optimizer: Adam optimizer 

• Batch Size: 32 

• Number of Epochs: 20 to 100 

• Loss Function: Categorical Cross-Entropy 

• Activation Function: ReLU (Rectified 
Linear Unit) 

• Output Layer Activation: Softmax (for 
multi-class classification) 

Table 3: Performance Analysis of ProposedModels 

Classifiers Training Accuracy Validation Accuracy 

ResNet-18 82.12 81.37 

ResNet-50 86.04 85.87 

ResNet-152 90.12 90.15 

 

Table 3 shows the comparative analysis of the 

performance of three pre-trained ResNet models—

ResNet-18, ResNet-50, and ResNet-152—for the 

detection and classification of DR. ResNet-18 

achieves a training accuracy of 82.12% and a 

validation accuracy of 81.37%, demonstrating a 

moderate ability to generalize to unseen data. 

ResNet-50, with its deeper architecture, improves 

performance, achieving a training accuracy of 

86.04% and a validation accuracy of 85.87%. 

ResNet-152, the deepest model among the three, 

achieves the highest accuracies with 90.12% for 

training and 90.15% for validation, indicating its 

superior capability to extract features and 

effectively classify DR stages. The results suggest 

that deeper architectures like ResNet-152 are more 

effective for DR detection and classification, 

delivering better accuracy and generalization with 

minimal overfitting. 
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Table 4: Class wise Performance Analysis of ResNet-18  

 Sensitivity Specificity Precision MCC 

No DR 81.54 89.12 75.55 0.7234 

Mild DR 79.57 88.56 89.12 0.6856 

Moderate DR 79.52 94.63 64.33 0.7045 

Severe DR 84.56 90.23 66.45 0.7456 

Proliferative DR 82.44 84.33 70.56 0.7326 

 

Table 5: Performance Analysis of ResNet-50  

Classes Sensitivity Specificity Precision MCC 

No DR 82.45 88.23 78.42 0.7346 

Mild DR 81.44 90.79 90.23 0.7165 

Moderate DR 82.32 96.78 66.38 0.7354 

Severe DR 83.98 91.35 68.47 0.7677 

Proliferative DR 81.22 88.44 72.77 0.7696 

 

Table 6: Performance Analysis of ResNet-152  

Classes Sensitivity Specificity Precision MCC 

No DR 86.99 90.55 78.95 0.8284 

Mild DR 87.36 90.76 95.22 0.8876 

Moderate DR 90.29 96.33 89.73 0.8945 

Severe DR 89.86 95.13 90.65 0.8956 

Proliferative DR 86.94 91.23 91.86 0.8726 

 

Table 4, 5, 6 shows the class-wise performance 

analysis of the ResNet-18, ResNet-50, and ResNet-

152 model for DR detection and classification 

across five categories: No DR, Mild DR, Moderate 

DR, Severe DR, and Proliferative DR. The ResNet-

152 model achieves high sensitivity, ranging from 

86.94% (Proliferative DR) to 90.29% (Moderate 

DR), indicating its strong ability to identify true 

positive cases accurately. Specificity values are 

consistently above 90%, with a peak of 96.33% for 

Moderate DR, showcasing the model's robustness 

in minimizing false positives. Precision is also 

impressive, with the highest value of 95.22% for 

Mild DR, reflecting the model's accuracy in 

predicting true positive outcomes for this class. The 

Matthews Correlation Coefficient (MCC) values, 

ranging from 0.8284 (No DR) to 0.8956 (Severe 

DR), highlight the model's high reliability and 

overall classification quality. These results 

demonstrate that ResNet-152 excels in detecting 

and classifying DR stages with superior sensitivity, 

specificity, precision, and overall performance 

consistency compared to ResNet-18 and ResNet-

50. 
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Figure 4: Training and Validation Accuracy/Loss Curves for (a) ResNet-18, (b) ResNet-50, and (c) ResNet-152. 

Each plot includes epoch-wise accuracy and loss with clearly labeled axes and legends. 

Figure 4 shows the training and validation accuracy 

(left) and loss (right) curves for the ResNet-18, 

ResNet-50, and ResNet-152 models during the 

training process. The accuracy curves show a rapid 

increase in the initial epochs, with both training and 

validation accuracies stabilizing at high values. 

This indicates that the model effectively learns and 

generalizes well to unseen data. Similarly, the loss 

curves demonstrate a steady decrease, with the 

training and validation losses closely aligned 

throughout the process, reflecting minimal 

overfitting and consistent learning. The 

convergence and stability of these curves highlight 

the robustness of ResNet-152 for DR detection and 

classification, showcasing its ability to achieve 

high accuracy while maintaining generalization. 

 

 

Figure 5: Confusion Matrices for (a) ResNet-18, (b) ResNet-50, and (c) ResNet-152. Each axis represents the 

predicted and actual class labels (0: No DR, 1: Mild, 2: Moderate, 3: Severe, 4: Proliferative). Higher values on 

the diagonal indicate better performance. 

Figure 5 shows the confusion matrix to visualizes 

the performance of the ResNet-18, ResNet-50, and 

ResNet-152 models in classifying DR stages across 

five categories: No DR, Mild DR, Moderate DR, 
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Severe DR, and Proliferative DR. The diagonal 

elements represent correct classifications, with the 

highest value of 1801 for No DR, indicating the 

model’s strong ability to identify this class 

accurately. However, there are noticeable 

misclassifications, such as 305 Mild DR cases 

being predicted as No DR and 381 Moderate DR 

cases being misclassified as Mild DR. Additionally, 

some Severe DR and Proliferative DR cases are 

misclassified as other classes, reflecting the 

inherent difficulty in distinguishing these stages. 

The matrix indicates that while ResNet-152 

performs well in classifying No DR and Moderate 

DR. 

 

 

Figure 3: ROC Curves for (a) ResNet-18, (b) ResNet-50, and (c) ResNet-152. Each plot shows ROC curves for 

all 5 classes, along with micro-average and macro-average ROC 

Figure 6 shows the ROC curve and the 

classification performance of ResNet-18, ResNet-

50, and ResNet-152 across five classes for diabetic 

retinopathy detection and classification, each with 

its own ROC curve and AUC value. Class 0 (No 

DR) achieves the highest AUC of 0.98, indicating 

exceptional sensitivity and specificity in detecting 

non-diseased cases. Classes 1 (Mild DR), 3 (Severe 

DR), and 4 (Proliferative DR) each show strong 

performance with AUC values of 0.92, reflecting 

the ResNet-152 model's reliable classification of 

these stages. Class 2 (Moderate DR) has a slightly 

lower AUC of 0.89, indicating room for 

improvement in distinguishing it from adjacent 

classes. The micro-average ROC (AUC = 0.94) and 

macro-average ROC (AUC = 0.93) curves show the 

ResNet-152 model's overall effectiveness across all 

classes, showcasing its balanced and robust 

performance for multi-class diabetic retinopathy 

detection. The curves confirm the model's 

capability to generalize well across varying disease 

severities. 
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Table 7: Comparison with Existing DR Detection Models 

Authors Models Accuracy 

Amin Valizadeh et al. (2021) [22] CNN 83.30% 

Chen, PN. Et al. (2021) [23] NASNet-Large deep CNN 87.50% 

Shi B. et al. (2022) [24]  GoogleNet 87.23% 

R. Y. Sarobin et al. (2022) [25] CNN 75.61% 

Kurup, G. et al. (2021) [26] InceptionV-3 82.00% 

Proposed ResNet18 81.37 

Proposed ResNet50 85.87 

Proposed ResNet152 90.15 

 

Table 7 shows the comparative analysis of the 

proposed and existing DR detection and 

classification models based on their accuracy 

values. Amin Valizadeh et al. (2021) achieved an 

accuracy of 83.30% with CNN, while Chen et al. 

(2021) and Shi et al. (2022) employed NASNet-

Large deep CNN and GoogleNet, respectively, 

achieving higher accuracies of 87.50% and 

87.23%. R. Y. Sarobin et al. (2022) reported a 

lower accuracy of 75.61% using CNN, and Kurup 

et al. (2021) achieved 82.00% with InceptionV-3. 

In contrast, the proposed models—ResNet18, 

ResNet50, and ResNet152—demonstrated 

progressively higher accuracies of 81.37%, 

85.87%, and 90.15%, respectively, showcasing the 

improved performance of these advanced 

architectures over the existing models. 

Conclusion and Future scope 

Diabetic Retinopathy is a progressive 

retinal disorder caused by prolonged diabetes and 

remains one of the leading causes of preventable 

blindness worldwide. Timely and accurate 

classification of DR stages is critical to initiating 

early treatment and mitigating vision loss. 

However, manual screening methods are often 

labor-intensive, subjective, and inaccessible in rural 

or resource-limited regions. 

This study proposed a deep learning-based 

framework that integrates Canny Edge Detection 

for retinal structure segmentation, MobileNetV2 for 

lightweight feature extraction, and ResNet variants 

(ResNet-18, ResNet-50, ResNet-152) for 

classifying DR into five severity levels. The use of 

Canny Edge segmentation helped enhance vessel 

and lesion boundaries without relying on large 

manually annotated datasets, while MobileNetV2 

effectively extracted discriminative features with 

minimal computational overhead. Among the three 

ResNet architectures evaluated, ResNet-152 

demonstrated superior performance with a 

validation accuracy of 90.15%, F1-score of 

90.01%, and an ROC-AUC of 0.94, significantly 

outperforming traditional CNN models and other 

baseline approaches. Class-wise evaluation also 

revealed high sensitivity and specificity across all 

DR stages, especially for challenging categories 

like Moderate and Proliferative DR. 

The proposed Dl model can be extended to 

integrate real-time DR monitoring systems for 

clinical environments. Incorporating multi-modal 

data, such as patient history and genetic 

predispositions, could improve classification 

accuracy further. Exploring advanced deep learning 

techniques like attention mechanisms and 

transformer-based architectures may enhance the 

model's capability to identify subtle retinal 

abnormalities. Additionally, deploying the model 

on edge devices for remote screening in 

underserved regions could significantly improve 

healthcare accessibility. 
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