

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-679921-679 9www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 420

A Comparative Analysis of Dimension Reduction Techniques for

High-Dimensional Classification Tasks

Fardeen NB, Sameer NB

Submitted: 05/08/2022 Revised: 17/11/2022 Accepted: 02/12/2022
Abstract

As machine learning datasets continue to grow in dimensionality, efficient dimension reduction techniques have

become essential for both computational efficiency and model performance. This study presents a comprehensive

evaluation of various dimension reduction methods—Principal Component Analysis (PCA), t-Distributed Stochastic

Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP)—for preprocessing

high-dimensional data prior to classification. We evaluate their impact on the performance of three widely used

classification algorithms: Random Forests, Support Vector Machines, and Neural Networks. Experiments conducted on

benchmark datasets (MNIST and Digits) reveal that while no dimension reduction yields the highest overall accuracy

(95.31%), specialized techniques can offer significant computational advantages with minimal performance

degradation. Our analysis provides empirical evidence that t-SNE offers an optimal balance between classification

performance and training efficiency, particularly for support vector machines. We further demonstrate that dimension

reduction techniques exhibit dataset-dependent effectiveness, suggesting the need for adaptive selection strategies based

on data characteristics. This work provides valuable insights for practitioners seeking to optimize machine learning

pipelines for high-dimensional classification tasks.

Introduction

High-dimensional data presents significant challenges

in machine learning, a phenomenon often referred to as

the "curse of dimensionality" . As the number of

dimensions increases, the volume of the space

increases exponentially, causing data to become sparse

and diminishing the effectiveness of distance-based

methods . Furthermore, high-dimensional data often

contains redundant or irrelevant features that can

degrade model performance and increase

computational requirements .

Dimension reduction techniques aim to address these

challenges by transforming data into a lower-

dimensional space while preserving important

structures and relationships . These methods can be

broadly categorized into linear approaches like

Principal Component Analysis (PCA) and nonlinear

approaches such as t-Distributed Stochastic Neighbor

Embedding (t-SNE) and Uniform Manifold

Approximation and Projection (UMAP) .

While dimension reduction is widely employed in

practice, there remains a need for systematic evaluation

of how these techniques impact the performance of

different classification algorithms across diverse

datasets . Understanding these interactions is crucial

for designing effective machine learning pipelines for

high-dimensional data analysis.

This paper makes the following contributions:

• A comprehensive evaluation of three prominent

dimension reduction techniques (PCA, t-SNE, and

UMAP) in conjunction with three widely used

classification algorithms (Random Forest, Support

Vector Machines, and Neural Networks)

• Quantitative analysis of the trade-offs between

classification performance (accuracy, precision, recall,

and F1 score) and computational efficiency (training

and inference time)

• Empirical evidence for the dataset-dependent

effectiveness of dimension reduction techniques, with

implications for adaptive selection strategies

• Practical guidelines for selecting appropriate

dimension reduction methods based on specific

requirements and constraints

The rest of the paper is organized as follows: Section 2

discusses related work in dimension reduction and

classification. Section 3 describes the mathematical

formulations of the techniques and our experimental

methodology. Section 4 presents our experimental

results and analysis. Section 5 discusses the

implications of our findings, and Section 6 concludes

the paper with recommendations for practitioners.

Related Work

Dimension Reduction Techniques

Principal Component Analysis (PCA), introduced by

and later developed by , has been a cornerstone

technique for linear dimension reduction. PCA

transforms data into a new coordinate system where

the greatest variance lies along the first principal

component, the second greatest variance along the

second component, and so on. provided a

comprehensive treatise on PCA, discussing its

applications and limitations. further demonstrated

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 421

PCA’s versatility across various domains, while

situated PCA within a probabilistic framework.

For complex, nonlinear data structures, techniques like

Multidimensional Scaling (MDS) and Isomap were

developed to capture intrinsic geometric structures.

introduced Locally Linear Embedding (LLE), which

preserves neighborhood relationships while projecting

to lower dimensions. proposed Laplacian Eigenmaps,

which use graph theory to preserve local proximity.

A significant advancement came with t-Distributed

Stochastic Neighbor Embedding (t-SNE) by , which

excels at visualizing high-dimensional data by

modeling pairwise similarities as conditional

probabilities. later improved t-SNE’s computational

efficiency with the Barnes-Hut approximation. More

recently, introduced Uniform Manifold

Approximation and Projection (UMAP), which uses

concepts from manifold theory and topological data

analysis to create embeddings that better preserve both

local and global structures.

Comparative studies of dimension reduction

techniques include , who provided a survey of linear

and nonlinear methods, and , who benchmarked

techniques across various datasets. specifically

focused on linear dimension reduction techniques,

while compared nonlinear methods for visualization.

Classification Algorithms

Classification algorithms have been extensively

studied in machine learning literature. Decision Trees,

formalized by and , provide interpretable models but

often suffer from overfitting. Random Forests,

introduced by , address this limitation by combining

multiple decision trees trained on bootstrapped

samples with random feature selection, significantly

improving generalization performance.

Support Vector Machines (SVMs), proposed by ,

create optimal separating hyperplanes between classes

in a high-dimensional feature space. provided a

comprehensive introduction to SVMs, while extended

the approach through kernel methods. discussed the

theoretical foundations of SVMs within statistical

learning theory.

Neural Networks have undergone a renaissance with

the development of efficient training algorithms and

increased computational resources. introduced

backpropagation, a crucial algorithm for training multi-

layer networks. demonstrated the effectiveness of

convolutional neural networks for image recognition,

while provided a comprehensive overview of modern

deep learning approaches.

Dimension Reduction in Classification Pipelines

The integration of dimension reduction techniques

within classification pipelines has been explored by

several researchers. investigated the combination of

PCA with K-means clustering, while examined the

effectiveness of using LLE for face recognition.

proposed a dimensionality reduction method

specifically designed to maximize class separation.

 studied the effects of dimension reduction on

classification performance, noting that nonlinear

methods often outperform linear ones for complex

datasets. addressed theoretical aspects of feature

selection and extraction in pattern recognition,

providing early insights into optimal dimensionality.

More specific to our work, empirically demonstrated

that using too many features can degrade classifier

performance, highlighting the importance of

appropriate dimension reduction. specifically

examined the effect of PCA preprocessing on various

classifiers, while investigated dimension reduction for

nearest neighbor classification.

 provided a unifying framework for various dimension

reduction techniques based on kernel methods, while

proposed discriminative dimension reduction

specifically designed for classification tasks. offered a

survey on supervised dimension reduction techniques

for classification problems.

Despite this rich body of literature, systematic

comparative studies examining the interplay between

modern dimension reduction techniques and

classification algorithms remain limited. Our work

aims to address this gap by providing a comprehensive

evaluation across multiple techniques, classifiers, and

performance metrics.

Methodology

Dimension Reduction Techniques

Principal Component Analysis (PCA)

PCA is a linear dimension reduction technique that

identifies directions (principal components) along

which data varies the most. Mathematically, PCA

solves for the eigenvectors of the covariance matrix of

the data.

Given a data matrix X∈Rn×p containing n samples in p

dimensions, PCA first centers the data by subtracting

the mean of each feature. The covariance matrix

Σ∈Rp×p is computed as:

Σ=
1

n-1
XTX

PCA then finds the eigenvectors and eigenvalues of Σ:

Σwi=λiwi

where wi is the ith eigenvector and λi is the

corresponding eigenvalue. The objective function for

PCA can be formulated as:

max
w,∥w∥=1

wTΣw

The top k eigenvectors (those with the largest

eigenvalues) form the projection matrix W∈Rp×k. The

reduced data Xreduced∈Rn×k is obtained by:

Xreduced=XW

t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a nonlinear dimension reduction technique

that models pairwise similarities between points in

both high and low dimensional spaces as probability

distributions, then minimizes the Kullback-Leibler

(KL) divergence between these distributions.

In the high-dimensional space, the similarity between

points xi and xj is defined as a conditional probability

p
j|i

:

p
j|i

=
exp(-∥xi-xj∥

2/2σi
2)

∑ expk≠i (-∥xi-xk∥
2/2σi

2)

where σi is set through a binary search to achieve a

predefined perplexity value. The joint probability p
ij
 is

defined as:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 422

p
ij
=

p
j|i

+p
i|j

2n

In the low-dimensional space, the similarity between

corresponding points y
i
 and y

j
 is modeled using a

Student’s t-distribution:

q
ij
=

(1+∥y
i
-y

j
∥2)

-1

∑ (k≠l 1+∥y
k
-y

l
∥2)

-1

The objective function is the KL divergence between

distributions P and Q:

C=KL(P||Q)=∑ ∑ p
ij

ji

log
p

ij

q
ij

t-SNE minimizes this cost function using gradient

descent to find the optimal low-dimensional

representation.

Uniform Manifold Approximation and Projection

(UMAP)

UMAP is a dimension reduction technique based on

manifold learning and topological data analysis. It

constructs a high-dimensional graph representation and

then optimizes a low-dimensional graph to be as

structurally similar as possible.

UMAP first constructs a weighted graph in the high-

dimensional space, where edge weights vij represent

the likelihood that points i and j are connected:

vij=exp (
-d(xi,xj)-ρi

σi

)

where d(xi,xj) is the distance between points, ρ
i
 is the

distance to the nearest neighbor of i, and σi is a

normalization factor.

Similarly, in the low-dimensional space, edge weights

wij are defined as:

wij= (1+a⋅d(y
i
,y

j
)
2b)

-1

where a and b are parameters controlling the shape of

the curve.

UMAP’s objective function minimizes the cross-

entropy between these two graph representations:

min∑ [vijlog (
vij

wij

) +(1-vij)log(
1-vij

1-wij

)]

i,j

This optimization is performed using stochastic

gradient descent with negative sampling to find the

optimal low-dimensional embedding.

Classification Algorithms

Random Forest

Random Forest is an ensemble method that combines

multiple decision trees to improve generalization

performance. Each tree in the forest is trained on a

bootstrap sample of the original data, and at each node,

only a random subset of features is considered for

splitting.

For a classification task with C classes, each tree t in

the forest produces a probability distribution p
t
(c|x)

over the classes for a given input x. The final

prediction is obtained by averaging these probabilities

across all trees:

p(c|x)=
1

T
∑ p

t

T

t=1

(c|x)

where T is the total number of trees. The predicted

class is the one with the highest probability:

ŷ=arg max
c∈{1,...,C}

p(c|x)

Support Vector Machine (SVM)

SVM finds the optimal hyperplane that maximizes the

margin between classes. For linearly separable data,

the primal optimization problem is:

min
w,b

1

2
∥w∥2

subject to&y
i
(wTxi+b)≥1, ∀i

For non-separable data, slack variables ξi are

introduced:

min
w,b,ξ

1

2
∥w∥2+C∑ ξi

n

i=1

subject to&y
i
(wTxi+b)≥1-ξi, ξi≥0, ∀i

where C is a regularization parameter.

For nonlinear decision boundaries, kernel functions

K(xi,xj)=ϕ(xi)
T
ϕ(xj) implicitly map the data to a

higher-dimensional space. Our experiments use the

radial basis function (RBF) kernel:

K(xi,xj)=exp(-γ∥xi-xj∥
2)

Neural Network

We use a Multi-Layer Perceptron (MLP) with one

hidden layer containing 100 neurons. For an input

vector x, the output of the hidden layer is:

h=σ(W1x+b1)

where W1 is the weight matrix, b1 is the bias vector,

and σ is a nonlinear activation function (ReLU in our

case).

The output layer produces class probabilities:

p=softmax(W2h+b2)

The network is trained to minimize the cross-entropy

loss:

L=-∑∑ y
i,c

C

c=1

n

i=1

log(p
i,c

)

where y
i,c

 is 1 if sample i belongs to class c and 0

otherwise, and p
i,c

 is the predicted probability that

sample i belongs to class c.

Experimental Setup

Datasets

We conducted experiments on two benchmark

datasets:

• Digits: The Scikit-learn digits dataset, containing

1,797 8×8 grayscale images of handwritten digits (0-

9), resulting in 64 features.

• MNIST: A subset of 5,000 samples from the MNIST

dataset, containing 28×28 grayscale images of

handwritten digits (0-9), resulting in 784 features.

Preprocessing

For both datasets, we:

1. Split the data into training (75%) and testing (25%)

sets using stratified sampling to maintain class

proportions.

2. Standardized features by subtracting the mean and

scaling to unit variance.

Dimension Reduction

We applied four approaches to each dataset:

1. No dimension reduction (baseline)

2. PCA, reducing to 10 dimensions

3. t-SNE, reducing to 2 dimensions

4. UMAP, reducing to 10 dimensions

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 423

Classification

For each dimension-reduced dataset, we trained and

evaluated three classifiers:

1. Random Forest with 100 estimators

2. Support Vector Machine with RBF kernel

3. Neural Network (MLP) with one hidden layer (100

neurons)

Evaluation Metrics

We assessed performance using several metrics:

1. Accuracy: proportion of correctly classified

samples

2. Precision: proportion of positive identifications that

were actually correct

3. Recall: proportion of actual positives that were

correctly identified

4. F1 score: harmonic mean of precision and recall

5. Training time: time required to train the model

(seconds)

6. Inference time: time required to make predictions

on the test set (seconds)

Results

Overall Performance Comparison

Table 1 presents the average performance metrics for

each dimension reduction technique across both

datasets and all classifiers. The "None" approach (no

dimension reduction) achieved the highest average

accuracy (95.31%), followed by PCA (90.55%), t-SNE

(90.32%), and UMAP (90.28%). However, these

average figures mask important variations across

datasets and classifiers.

Average performance metrics by dimension reduction technique

Dimension Reduction Accuracy Precision Recall F1 Score

None 0.9531 0.9539 0.9531 0.9532

PCA 0.9055 0.9069 0.9055 0.9054

t-SNE 0.9032 0.9048 0.9032 0.9021

UMAP 0.9028 0.9055 0.9028 0.9023

Figure 1 shows the classification accuracy for each combination of dimension reduction technique and classifier across

both datasets. While no dimension reduction generally achieved the highest accuracy, the performance gap was notably

smaller for the Digits dataset compared to MNIST.

Classification accuracy by model and dimension reduction technique

Dataset-Specific Performance

Tables 2 and 3 present the performance metrics for the

Digits and MNIST datasets, respectively. For the

Digits dataset, SVM achieved the highest accuracy

(98.22%) with no dimension reduction, closely

followed by Neural Network (98.22%) with no

dimension reduction. For the MNIST dataset, Neural

Network with no dimension reduction performed best

(93.68%), followed by Random Forest (92.88%) with

no dimension reduction.

Performance metrics for the Digits dataset

Dimension Reduction Classifier Accuracy Precision Recall F1 Score

None Random Forest 0.9756 0.9758 0.9756 0.9755

None SVM 0.9822 0.9825 0.9822 0.9821

None Neural Network 0.9822 0.9825 0.9822 0.9822

PCA Random Forest 0.9244 0.9250 0.9244 0.9236

PCA SVM 0.9489 0.9510 0.9489 0.9486

PCA Neural Network 0.9467 0.9481 0.9467 0.9471

t-SNE Random Forest 0.9733 0.9735 0.9733 0.9732

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 424

Dimension Reduction Classifier Accuracy Precision Recall F1 Score

t-SNE SVM 0.9644 0.9658 0.9644 0.9644

t-SNE Neural Network 0.9711 0.9713 0.9711 0.9710

UMAP Random Forest 0.9689 0.9694 0.9689 0.9688

UMAP SVM 0.9311 0.9350 0.9311 0.9314

UMAP Neural Network 0.9600 0.9611 0.9600 0.9600

Performance metrics for the MNIST dataset

Dimension Reduction Classifier Accuracy Precision Recall F1 Score

None Random Forest 0.9288 0.9290 0.9288 0.9287

None SVM 0.9128 0.9154 0.9128 0.9132

None Neural Network 0.9368 0.9371 0.9368 0.9366

PCA Random Forest 0.8424 0.8449 0.8424 0.8423

PCA SVM 0.8848 0.8864 0.8848 0.8847

PCA Neural Network 0.8856 0.8862 0.8856 0.8852

t-SNE Random Forest 0.8816 0.8815 0.8816 0.8812

t-SNE SVM 0.8176 0.8262 0.8176 0.8145

t-SNE Neural Network 0.8112 0.8136 0.8112 0.8082

UMAP Random Forest 0.8528 0.8551 0.8528 0.8521

UMAP SVM 0.8464 0.8501 0.8464 0.8449

UMAP Neural Network 0.8576 0.8626 0.8576 0.8568

Notably, the performance degradation due to dimension reduction was more severe for the MNIST dataset compared to

Digits. For example, using t-SNE reduced the average accuracy by 2.5 percentage points for Digits but by 10.6

percentage points for MNIST. This suggests that the effectiveness of dimension reduction is highly dataset-dependent,

with larger, more complex datasets potentially requiring more dimensions to maintain performance.

Computational Efficiency

Figure 2 shows the training time for each classifier and dimension reduction technique. The combination of t-SNE with

SVM achieved the fastest training time (0.0103 seconds) for the Digits dataset, providing a compelling trade-off

between speed and accuracy (96.44%). However, the preprocessing time for dimension reduction must also be

considered: t-SNE required 11.45 seconds for Digits and 40.27 seconds for MNIST, while UMAP required 16.21

seconds for Digits and 26.69 seconds for MNIST.

Training time by model and dimension reduction technique (log scale)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 425

Figure 3 presents a radar chart comparing the four dimension reduction techniques across various performance metrics.

While "None" performed best in terms of accuracy-related metrics, the non-trivial preprocessing time of t-SNE and

UMAP must be balanced against their benefits in specific contexts.

Radar chart comparing dimension reduction techniques across performance metrics

Classifier Performance

Across all dimension reduction techniques, Neural Networks achieved the highest average accuracy (91.89%), followed

closely by Random Forests (91.85%) and SVMs (91.10%). Table 4 breaks down the average performance by classifier.

Average performance metrics by classifier

Classifier Accuracy Precision Recall F1 Score

Neural Network 0.9189 0.9200 0.9189 0.9185

Random Forest 0.9185 0.9193 0.9185 0.9180

SVM 0.9110 0.9140 0.9110 0.9105

The performance of classifiers varied significantly

depending on the dimension reduction technique

applied. Figure 4 shows a heatmap of classification

accuracy for each combination of classifier and

dimension reduction technique. The heatmap reveals

that Neural Networks maintained the most consistent

performance across different dimension reduction

techniques, suggesting greater robustness to changes in

data representation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 426

Heatmap of classification accuracy by model and dimension reduction technique

Visualization of Reduced Data

Figure 5 shows a t-SNE visualization of the Digits dataset, where the clear separation between clusters corresponding to

different digits indicates that t-SNE effectively preserved class structure in two dimensions. This visual separation

explains the relatively high accuracy achieved by classifiers on t-SNE-reduced data, despite the drastic dimension

reduction from 64 to just 2.

t-SNE visualization of the Digits dataset colored by class

Similarly, Figure 6 presents a t-SNE visualization of the MNIST dataset. While there is still visible class separation, the

boundaries are less distinct, corresponding to the lower classification accuracy observed for MNIST compared to Digits.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 427

t-SNE visualization of the MNIST dataset colored by class

Discussion

Trade-offs Between Performance and Efficiency

Our experimental results reveal important trade-offs

between classification performance and computational

efficiency. While using no dimension reduction

generally yielded the highest accuracy, the

performance gap varied considerably across datasets

and classifiers. For the Digits dataset, t-SNE with

Random Forest achieved 97.33% accuracy, only

slightly lower than the 98.22% achieved by SVM with

no dimension reduction, while offering substantially

faster training times.

The decision whether to apply dimension reduction

should therefore consider both the specific

characteristics of the dataset and the computational

constraints of the application. For large, complex

datasets where computation is a bottleneck, dimension

reduction can provide substantial efficiency gains with

only moderate performance degradation. Conversely,

for smaller datasets or applications where accuracy is

paramount, using the original high-dimensional

representation may be preferable.

Dataset-Dependent Effectiveness

A key finding of our study is the dataset-dependent

effectiveness of dimension reduction techniques. For

the Digits dataset, t-SNE maintained high classification

performance despite reducing the dimensionality from

64 to just 2, likely because the intrinsic dimensionality

of this dataset is low. In contrast, for the MNIST

dataset, all dimension reduction techniques led to more

substantial performance degradation, suggesting that

more dimensions are needed to capture the relevant

structure of this dataset.

This observation aligns with the manifold hypothesis ,

which posits that high-dimensional data often lies on

or near a lower-dimensional manifold. The

effectiveness of a dimension reduction technique

depends on how well it can approximate this manifold,

which varies across datasets.

Relative Performance of Dimension Reduction

Techniques

Among the dimension reduction techniques compared,

PCA performed well on the MNIST dataset,

particularly in conjunction with SVM and Neural

Network classifiers. This suggests that for complex

datasets, the linear transformations of PCA may

capture a significant portion of the relevant variance,

especially when the reduced dimensionality is

sufficiently high (10 dimensions in our case).

t-SNE showed impressive performance on the Digits

dataset, particularly with Random Forest and Neural

Network classifiers. This aligns with previous research

showing that t-SNE’s emphasis on preserving local

structure can be beneficial for classification tasks

where class boundaries are locally defined .

UMAP performed comparably to t-SNE but with

greater variance across classifiers. It worked

particularly well with Random Forest and Neural

Network on the Digits dataset but less effectively with

SVM. This suggests that UMAP’s preservation of both

local and global structure may be more compatible

with certain classification algorithms, making the

choice of both dimension reduction technique and

classifier important.

Implications for Classification Pipelines

Our results have several implications for designing

effective classification pipelines for high-dimensional

data:

1. Adaptive selection: The choice of dimension

reduction technique should be adapted to the specific

dataset characteristics. For smaller datasets with clear

class separation (like Digits), nonlinear methods like t-

SNE can effectively reduce dimensions with minimal

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 428

performance loss. For larger, more complex datasets

(like MNIST), preserving more dimensions or using no

dimension reduction may be necessary.

2. Classifier compatibility: Certain combinations of

dimension reduction techniques and classifiers work

better than others. Random Forest and Neural Network

showed greater robustness to dimension reduction

compared to SVM, particularly with nonlinear

techniques like t-SNE and UMAP.

3. Computational considerations: While dimension

reduction introduces preprocessing overhead, it can

significantly reduce classifier training and inference

times. For applications requiring real-time predictions

or frequent retraining, this trade-off may favor

dimension reduction even with slight accuracy

penalties.

4. Visualization benefits: Beyond performance

considerations, techniques like t-SNE and UMAP

provide valuable visualizations that can aid in

understanding dataset structure and debugging

classification issues, offering additional qualitative

benefits.

Conclusion

This study presented a comprehensive evaluation of

dimension reduction techniques for high-dimensional

classification tasks. We compared PCA, t-SNE, and

UMAP in conjunction with Random Forest, SVM, and

Neural Network classifiers on two benchmark datasets.

Our results provide empirical evidence for several key

findings:

1. No dimension reduction generally achieves the

highest classification accuracy, but the gap can be

small for datasets with low intrinsic dimensionality.

2. t-SNE offers an excellent trade-off between

classification performance and training efficiency,

particularly for the Digits dataset and in combination

with Random Forest.

3. Neural Networks demonstrate the most consistent

performance across dimension reduction techniques,

suggesting greater robustness to changes in data

representation.

4. The effectiveness of dimension reduction is highly

dataset-dependent, with larger performance

degradation observed for the more complex MNIST

dataset.

These findings have important implications for

practitioners. First, the choice of dimension reduction

technique should be adapted to the specific dataset and

application requirements. Second, the computational

benefits of dimension reduction should be weighed

against potential performance degradation. Finally,

certain combinations of dimension reduction

techniques and classifiers offer particularly favorable

trade-offs and should be considered as starting points

for high-dimensional classification tasks.

Future work could extend this analysis to a broader

range of datasets across different domains, investigate

the impact of the reduced dimensionality (e.g.,

comparing 2, 10, and 20 dimensions), and explore

adaptive approaches that automatically select the

optimal dimension reduction technique based on

dataset characteristics. Additionally, examining how

these findings translate to other tasks beyond

classification, such as regression or clustering, would

provide a more comprehensive understanding of

dimension reduction in machine learning pipelines.

Limitations

This study has several limitations that should be

acknowledged. First, we examined only a subset of

available dimension reduction techniques and

classification algorithms. Second, we used default or

common parameter settings for all methods, whereas

performance might be improved through extensive

hyperparameter tuning. Third, our analysis focused on

two benchmark datasets, and findings may not

generalize to all domains and data types. Finally, we

evaluated only on tabular data represented as grayscale

images; performance characteristics might differ for

other data modalities such as text, time series, or

graph-structured data.

Despite these limitations, our systematic comparison

provides valuable insights into the interplay between

dimension reduction and classification, offering

practical guidelines for practitioners working with

high-dimensional data.

References

[1] Abdi, H. and Williams, L. J. (2010). Principal

component analysis. , 2(4):433–459.

[2] Belkin, M. and Niyogi, P. (2003). Laplacian

eigenmaps for dimensionality reduction and data

representation. , 15(6):1373–1396.

[3] Bellman, R. E. (1966). Dynamic programming. ,

153(3731):34–37.

[4] Bengio, Y., Courville, A., and Vincent, P. (2013).

Representation learning: A review and new

perspectives. , 35(8):1798–1828.

[5] Bishop, C. M. (2006). . Springer.

[6] Breiman, L. (2001). Random forests. , 45(1):5–32.

[7] Breiman, L., Friedman, J., Stone, C. J., and

Olshen, R. A. (1984). . CRC press.

[8] Cortes, C. and Vapnik, V. (1995). Support-vector

networks. , 20(3):273–297.

[9] Cristianini, N. and Shawe-Taylor, J. (2000). .

Cambridge university press.

[10] Cunningham, J. P. and Ghahramani, Z. (2015).

Linear dimensionality reduction: Survey, insights,

and generalizations. , 16(1):2859–2900.

[11] Deegalla, S. and Bostrom, H. (2006). Reducing

high-dimensional data by principal component

analysis vs. random projection for nearest

neighbor classification. In 5th International

Conference on Machine Learning and

Applications (ICMLA’06), pages 245–250. IEEE.

[12] Ding, C. and He, X. (2004). K-means clustering

via principal component analysis. In Proceedings

of the twenty-first international conference on

Machine learning, page 29.

[13] Espadoto, M., Martins, R. M., Kerren, A., Hirata,

N. S., and Telea, A. C. (2019). Toward a

quantitative survey of dimension reduction

techniques. , 27(3):2153–2173.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 420–429 | 429

[14] Friedman, J. H. (1997). On bias, variance, 0/1—

loss, and the curse-of-dimensionality. , 1(1):55–

77.

[15] Ghodsi, A. (2006). Dimensionality reduction a

short tutorial. , 37(38):39.

[16] Goodfellow, I., Bengio, Y., and Courville, A.

(2016). . MIT press.

[17] Guyon, I. and Elisseeff, A. (2003). An

introduction to variable and feature selection. ,

3(Mar):1157–1182.

[18] Hotelling, H. (1933). Analysis of a complex of

statistical variables into principal components. ,

24(6):417.

[19] Jolliffe, I. T. (2002). . Springer.

[20] Kittler, J. (1978). Feature selection and extraction.

, 59:81.

[21] Krijthe, J. H. and van der Maaten, L. (2017).

Comparing dimensionality reduction techniques

using structure preserving assessment. In

European Symposium on Artificial Neural

Networks, Computational Intelligence and

Machine Learning.

[22] Kruskal, J. B. (1964). Multidimensional scaling by

optimizing goodness of fit to a nonmetric

hypothesis. , 29(1):1–27.

[23] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.

(1998). Gradient-based learning applied to

document recognition. , 86(11):2278–2324.

[24] Linderman, G. C., Rachh, M., Hoskins, J. G.,

Steinerberger, S., and Kluger, Y. (2019). Fast

interpolation-based t-SNE for improved

visualization of single-cell RNA-seq data. ,

16(3):243–245.

[25] van der Maaten, L. and Hinton, G. (2008).

Visualizing data using t-SNE. , 9(Nov):2579–

2605.

[26] McInnes, L., Healy, J., and Melville, J. (2018).

UMAP: Uniform manifold approximation and

projection for dimension reduction. .

[27] Pearson, K. (1901). LIII. On lines and planes of

closest fit to systems of points in space. ,

2(11):559–572.

[28] Pechenizkiy, M., Tsymbal, A., and Puuronen, S.

(2004). PCA-based feature transformation for

classification: issues in medical diagnostics. In

Proceedings. 17th IEEE Symposium on Computer-

Based Medical Systems, pages 535–540. IEEE.

[29] Quinlan, J. R. (1986). Induction of decision trees. ,

1(1):81–106.

[30] Roweis, S. T. and Saul, L. K. (2000). Nonlinear

dimensionality reduction by locally linear

embedding. , 290(5500):2323–2326.

[31] Rumelhart, D. E., Hinton, G. E., and Williams,

R. J. (1986). Learning representations by back-

propagating errors. , 323(6088):533–536.

[32] Schölkopf, B., Smola, A. J., Bach, F., et al. (2002).

. MIT press.

[33] Sugiyama, M. (2007). Dimensionality reduction of

multimodal labeled data by local fisher

discriminant analysis. , 8(May):1027–1061.

[34] Tenenbaum, J. B., De Silva, V., and Langford,

J. C. (2000). A global geometric framework for

nonlinear dimensionality reduction. ,

290(5500):2319–2323.

[35] Trunk, G. V. (1979). A problem of dimensionality:

A simple example. , (3):306–307.

[36] van der Maaten, L. (2014). Accelerating t-SNE

using tree-based algorithms. , 15(1):3221–3245.

[37] van der Maaten, L., Postma, E., and van den

Herik, J. (2009). Dimensionality reduction: a

comparative review. , 10:66–71.

[38] van der Maaten, L. J., Postma, E. O., and

Van Den Herik, H. J. (2007). Dimensionality

reduction: A comparative review. .

[39] Vapnik, V. N. (1999). An overview of statistical

learning theory. , 10(5):988–999.

[40] Xanthopoulos, P., Pardalos, P. M., and Trafalis,

T. B. (2013). A survey of dimensionality reduction

approaches for high-dimensional data sets. In

Linear and Nonlinear Dimensionality Reduction,

pages 59–90. Springer.

[41] Yang, Y. and Nataliani, Y. (2017). Dimension

reduction methods for microarray data: a review.

In AIP Conference Proceedings, volume 1862,

page 030128. AIP Publishing LLC.

[42] Yang, Y., Xu, D., Nie, F., Yan, S., and Zhuang, Y.

(2005). Local and nonlocal preserving projection

for dimensionality reduction. In 2005 IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05), volume 2,

pages 1059–1065. IEEE.

