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Abstract 

As machine learning datasets continue to grow in dimensionality, efficient dimension reduction techniques have 

become essential for both computational efficiency and model performance. This study presents a comprehensive 

evaluation of various dimension reduction methods—Principal Component Analysis (PCA), t-Distributed Stochastic 

Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP)—for preprocessing 

high-dimensional data prior to classification. We evaluate their impact on the performance of three widely used 

classification algorithms: Random Forests, Support Vector Machines, and Neural Networks. Experiments conducted on 

benchmark datasets (MNIST and Digits) reveal that while no dimension reduction yields the highest overall accuracy 

(95.31%), specialized techniques can offer significant computational advantages with minimal performance 

degradation. Our analysis provides empirical evidence that t-SNE offers an optimal balance between classification 

performance and training efficiency, particularly for support vector machines. We further demonstrate that dimension 

reduction techniques exhibit dataset-dependent effectiveness, suggesting the need for adaptive selection strategies based 

on data characteristics. This work provides valuable insights for practitioners seeking to optimize machine learning 

pipelines for high-dimensional classification tasks. 

 

Introduction 

High-dimensional data presents significant challenges 

in machine learning, a phenomenon often referred to as 

the "curse of dimensionality" . As the number of 

dimensions increases, the volume of the space 

increases exponentially, causing data to become sparse 

and diminishing the effectiveness of distance-based 

methods . Furthermore, high-dimensional data often 

contains redundant or irrelevant features that can 

degrade model performance and increase 

computational requirements . 

Dimension reduction techniques aim to address these 

challenges by transforming data into a lower-

dimensional space while preserving important 

structures and relationships . These methods can be 

broadly categorized into linear approaches like 

Principal Component Analysis (PCA)  and nonlinear 

approaches such as t-Distributed Stochastic Neighbor 

Embedding (t-SNE)  and Uniform Manifold 

Approximation and Projection (UMAP) . 

While dimension reduction is widely employed in 

practice, there remains a need for systematic evaluation 

of how these techniques impact the performance of 

different classification algorithms across diverse 

datasets . Understanding these interactions is crucial 

for designing effective machine learning pipelines for 

high-dimensional data analysis. 

This paper makes the following contributions: 

• A comprehensive evaluation of three prominent 

dimension reduction techniques (PCA, t-SNE, and 

UMAP) in conjunction with three widely used 

classification algorithms (Random Forest, Support 

Vector Machines, and Neural Networks) 

• Quantitative analysis of the trade-offs between 

classification performance (accuracy, precision, recall, 

and F1 score) and computational efficiency (training 

and inference time) 

• Empirical evidence for the dataset-dependent 

effectiveness of dimension reduction techniques, with 

implications for adaptive selection strategies 

• Practical guidelines for selecting appropriate 

dimension reduction methods based on specific 

requirements and constraints 

The rest of the paper is organized as follows: Section 2 

discusses related work in dimension reduction and 

classification. Section 3 describes the mathematical 

formulations of the techniques and our experimental 

methodology. Section 4 presents our experimental 

results and analysis. Section 5 discusses the 

implications of our findings, and Section 6 concludes 

the paper with recommendations for practitioners. 

 

Related Work 

Dimension Reduction Techniques 

Principal Component Analysis (PCA), introduced by  

and later developed by , has been a cornerstone 

technique for linear dimension reduction. PCA 

transforms data into a new coordinate system where 

the greatest variance lies along the first principal 

component, the second greatest variance along the 

second component, and so on.  provided a 

comprehensive treatise on PCA, discussing its 

applications and limitations.  further demonstrated 
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PCA’s versatility across various domains, while  

situated PCA within a probabilistic framework. 

For complex, nonlinear data structures, techniques like 

Multidimensional Scaling (MDS)  and Isomap  were 

developed to capture intrinsic geometric structures.  

introduced Locally Linear Embedding (LLE), which 

preserves neighborhood relationships while projecting 

to lower dimensions.  proposed Laplacian Eigenmaps, 

which use graph theory to preserve local proximity. 

A significant advancement came with t-Distributed 

Stochastic Neighbor Embedding (t-SNE) by , which 

excels at visualizing high-dimensional data by 

modeling pairwise similarities as conditional 

probabilities.  later improved t-SNE’s computational 

efficiency with the Barnes-Hut approximation. More 

recently,  introduced Uniform Manifold 

Approximation and Projection (UMAP), which uses 

concepts from manifold theory and topological data 

analysis to create embeddings that better preserve both 

local and global structures. 

Comparative studies of dimension reduction 

techniques include , who provided a survey of linear 

and nonlinear methods, and , who benchmarked 

techniques across various datasets.  specifically 

focused on linear dimension reduction techniques, 

while  compared nonlinear methods for visualization. 

Classification Algorithms 

Classification algorithms have been extensively 

studied in machine learning literature. Decision Trees, 

formalized by  and , provide interpretable models but 

often suffer from overfitting. Random Forests, 

introduced by , address this limitation by combining 

multiple decision trees trained on bootstrapped 

samples with random feature selection, significantly 

improving generalization performance. 

Support Vector Machines (SVMs), proposed by , 

create optimal separating hyperplanes between classes 

in a high-dimensional feature space.  provided a 

comprehensive introduction to SVMs, while  extended 

the approach through kernel methods.  discussed the 

theoretical foundations of SVMs within statistical 

learning theory. 

Neural Networks have undergone a renaissance with 

the development of efficient training algorithms and 

increased computational resources.  introduced 

backpropagation, a crucial algorithm for training multi-

layer networks.  demonstrated the effectiveness of 

convolutional neural networks for image recognition, 

while  provided a comprehensive overview of modern 

deep learning approaches. 

Dimension Reduction in Classification Pipelines 

The integration of dimension reduction techniques 

within classification pipelines has been explored by 

several researchers.  investigated the combination of 

PCA with K-means clustering, while  examined the 

effectiveness of using LLE for face recognition.  

proposed a dimensionality reduction method 

specifically designed to maximize class separation. 

 studied the effects of dimension reduction on 

classification performance, noting that nonlinear 

methods often outperform linear ones for complex 

datasets.  addressed theoretical aspects of feature 

selection and extraction in pattern recognition, 

providing early insights into optimal dimensionality. 

More specific to our work,  empirically demonstrated 

that using too many features can degrade classifier 

performance, highlighting the importance of 

appropriate dimension reduction.  specifically 

examined the effect of PCA preprocessing on various 

classifiers, while  investigated dimension reduction for 

nearest neighbor classification. 

 provided a unifying framework for various dimension 

reduction techniques based on kernel methods, while  

proposed discriminative dimension reduction 

specifically designed for classification tasks.  offered a 

survey on supervised dimension reduction techniques 

for classification problems. 

Despite this rich body of literature, systematic 

comparative studies examining the interplay between 

modern dimension reduction techniques and 

classification algorithms remain limited. Our work 

aims to address this gap by providing a comprehensive 

evaluation across multiple techniques, classifiers, and 

performance metrics. 

 

Methodology 

Dimension Reduction Techniques 

Principal Component Analysis (PCA) 

PCA is a linear dimension reduction technique that 

identifies directions (principal components) along 

which data varies the most. Mathematically, PCA 

solves for the eigenvectors of the covariance matrix of 

the data. 

Given a data matrix X∈Rn×p containing n samples in p 

dimensions, PCA first centers the data by subtracting 

the mean of each feature. The covariance matrix 

Σ∈Rp×p is computed as: 

Σ=
1

n-1
XTX 

PCA then finds the eigenvectors and eigenvalues of Σ: 

Σwi=λiwi 

where wi is the ith eigenvector and λi is the 

corresponding eigenvalue. The objective function for 

PCA can be formulated as: 

max
w,∥w∥=1

wTΣw 

The top k eigenvectors (those with the largest 

eigenvalues) form the projection matrix W∈Rp×k. The 

reduced data Xreduced∈Rn×k is obtained by: 

Xreduced=XW 

t-Distributed Stochastic Neighbor Embedding (t-SNE) 

t-SNE is a nonlinear dimension reduction technique 

that models pairwise similarities between points in 

both high and low dimensional spaces as probability 

distributions, then minimizes the Kullback-Leibler 

(KL) divergence between these distributions. 

In the high-dimensional space, the similarity between 

points xi and xj is defined as a conditional probability 

p
j|i

: 

p
j|i

=
exp(-∥xi-xj∥

2/2σi
2)

∑ expk≠i (-∥xi-xk∥
2/2σi

2)
 

where σi is set through a binary search to achieve a 

predefined perplexity value. The joint probability p
ij
 is 

defined as: 
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p
ij
=

p
j|i

+p
i|j

2n
 

In the low-dimensional space, the similarity between 

corresponding points y
i
 and y

j
 is modeled using a 

Student’s t-distribution: 

q
ij
=

(1+∥y
i
-y

j
∥2)

-1

∑ (k≠l 1+∥y
k
-y

l
∥2)

-1
 

The objective function is the KL divergence between 

distributions P and Q: 

C=KL(P||Q)=∑ ∑ p
ij

ji

log
p

ij

q
ij

 

t-SNE minimizes this cost function using gradient 

descent to find the optimal low-dimensional 

representation. 

Uniform Manifold Approximation and Projection 

(UMAP) 

UMAP is a dimension reduction technique based on 

manifold learning and topological data analysis. It 

constructs a high-dimensional graph representation and 

then optimizes a low-dimensional graph to be as 

structurally similar as possible. 

UMAP first constructs a weighted graph in the high-

dimensional space, where edge weights vij represent 

the likelihood that points i and j are connected: 

vij=exp (
-d(xi,xj)-ρi

σi

) 

where d(xi,xj) is the distance between points, ρ
i
 is the 

distance to the nearest neighbor of i, and σi is a 

normalization factor. 

Similarly, in the low-dimensional space, edge weights 

wij are defined as: 

wij= (1+a⋅d(y
i
,y

j
)
2b)

-1

 

where a and b are parameters controlling the shape of 

the curve. 

UMAP’s objective function minimizes the cross-

entropy between these two graph representations: 

min∑ [vijlog (
vij

wij

) +(1-vij)log(
1-vij

1-wij

)]

i,j

 

This optimization is performed using stochastic 

gradient descent with negative sampling to find the 

optimal low-dimensional embedding. 

Classification Algorithms 

Random Forest 

Random Forest is an ensemble method that combines 

multiple decision trees to improve generalization 

performance. Each tree in the forest is trained on a 

bootstrap sample of the original data, and at each node, 

only a random subset of features is considered for 

splitting. 

For a classification task with C classes, each tree t in 

the forest produces a probability distribution p
t
(c|x) 

over the classes for a given input x. The final 

prediction is obtained by averaging these probabilities 

across all trees: 

p(c|x)=
1

T
∑ p

t

T

t=1

(c|x) 

where T is the total number of trees. The predicted 

class is the one with the highest probability: 

ŷ=arg max
c∈{1,...,C}

p(c|x) 

Support Vector Machine (SVM) 

SVM finds the optimal hyperplane that maximizes the 

margin between classes. For linearly separable data, 

the primal optimization problem is: 

min
w,b

1

2
∥w∥2

subject to&y
i
(wTxi+b)≥1, ∀i

 

For non-separable data, slack variables ξi are 

introduced: 

min
w,b,ξ

1

2
∥w∥2+C∑ ξi

n

i=1

subject to&y
i
(wTxi+b)≥1-ξi, ξi≥0, ∀i

 

where C is a regularization parameter. 

For nonlinear decision boundaries, kernel functions 

K(xi,xj)=ϕ(xi)
T
ϕ(xj) implicitly map the data to a 

higher-dimensional space. Our experiments use the 

radial basis function (RBF) kernel: 

K(xi,xj)=exp(-γ∥xi-xj∥
2) 

Neural Network 

We use a Multi-Layer Perceptron (MLP) with one 

hidden layer containing 100 neurons. For an input 

vector x, the output of the hidden layer is: 

h=σ(W1x+b1) 

where W1 is the weight matrix, b1 is the bias vector, 

and σ is a nonlinear activation function (ReLU in our 

case). 

The output layer produces class probabilities: 

p=softmax(W2h+b2) 

The network is trained to minimize the cross-entropy 

loss: 

L=-∑∑ y
i,c

C

c=1

n

i=1

log(p
i,c

) 

where y
i,c

 is 1 if sample i belongs to class c and 0 

otherwise, and p
i,c

 is the predicted probability that 

sample i belongs to class c. 

Experimental Setup 

Datasets 

We conducted experiments on two benchmark 

datasets: 

• Digits: The Scikit-learn digits dataset, containing 

1,797 8×8 grayscale images of handwritten digits (0-

9), resulting in 64 features. 

• MNIST: A subset of 5,000 samples from the MNIST 

dataset, containing 28×28 grayscale images of 

handwritten digits (0-9), resulting in 784 features. 

Preprocessing 

For both datasets, we: 

1. Split the data into training (75%) and testing (25%) 

sets using stratified sampling to maintain class 

proportions. 

2. Standardized features by subtracting the mean and 

scaling to unit variance. 

Dimension Reduction 

We applied four approaches to each dataset: 

1. No dimension reduction (baseline) 

2. PCA, reducing to 10 dimensions 

3. t-SNE, reducing to 2 dimensions 

4. UMAP, reducing to 10 dimensions 
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Classification 

For each dimension-reduced dataset, we trained and 

evaluated three classifiers: 

1. Random Forest with 100 estimators 

2. Support Vector Machine with RBF kernel 

3. Neural Network (MLP) with one hidden layer (100 

neurons) 

Evaluation Metrics 

We assessed performance using several metrics: 

1. Accuracy: proportion of correctly classified 

samples 

2. Precision: proportion of positive identifications that 

were actually correct 

3. Recall: proportion of actual positives that were 

correctly identified 

4. F1 score: harmonic mean of precision and recall 

5. Training time: time required to train the model 

(seconds) 

6. Inference time: time required to make predictions 

on the test set (seconds) 

 

Results 

Overall Performance Comparison 

Table 1 presents the average performance metrics for 

each dimension reduction technique across both 

datasets and all classifiers. The "None" approach (no 

dimension reduction) achieved the highest average 

accuracy (95.31%), followed by PCA (90.55%), t-SNE 

(90.32%), and UMAP (90.28%). However, these 

average figures mask important variations across 

datasets and classifiers. 

 

Average performance metrics by dimension reduction technique 

Dimension Reduction Accuracy Precision Recall F1 Score 

None 0.9531 0.9539 0.9531 0.9532 

PCA 0.9055 0.9069 0.9055 0.9054 

t-SNE 0.9032 0.9048 0.9032 0.9021 

UMAP 0.9028 0.9055 0.9028 0.9023 

 

Figure 1 shows the classification accuracy for each combination of dimension reduction technique and classifier across 

both datasets. While no dimension reduction generally achieved the highest accuracy, the performance gap was notably 

smaller for the Digits dataset compared to MNIST. 

 
Classification accuracy by model and dimension reduction technique 

 

Dataset-Specific Performance 

Tables 2 and 3 present the performance metrics for the 

Digits and MNIST datasets, respectively. For the 

Digits dataset, SVM achieved the highest accuracy 

(98.22%) with no dimension reduction, closely 

followed by Neural Network (98.22%) with no 

dimension reduction. For the MNIST dataset, Neural 

Network with no dimension reduction performed best 

(93.68%), followed by Random Forest (92.88%) with 

no dimension reduction. 

 

Performance metrics for the Digits dataset 

Dimension Reduction Classifier Accuracy Precision Recall F1 Score 

None Random Forest 0.9756 0.9758 0.9756 0.9755 

None SVM 0.9822 0.9825 0.9822 0.9821 

None Neural Network 0.9822 0.9825 0.9822 0.9822 

PCA Random Forest 0.9244 0.9250 0.9244 0.9236 

PCA SVM 0.9489 0.9510 0.9489 0.9486 

PCA Neural Network 0.9467 0.9481 0.9467 0.9471 

t-SNE Random Forest 0.9733 0.9735 0.9733 0.9732 
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Dimension Reduction Classifier Accuracy Precision Recall F1 Score 

t-SNE SVM 0.9644 0.9658 0.9644 0.9644 

t-SNE Neural Network 0.9711 0.9713 0.9711 0.9710 

UMAP Random Forest 0.9689 0.9694 0.9689 0.9688 

UMAP SVM 0.9311 0.9350 0.9311 0.9314 

UMAP Neural Network 0.9600 0.9611 0.9600 0.9600 

Performance metrics for the MNIST dataset 

Dimension Reduction Classifier Accuracy Precision Recall F1 Score 

None Random Forest 0.9288 0.9290 0.9288 0.9287 

None SVM 0.9128 0.9154 0.9128 0.9132 

None Neural Network 0.9368 0.9371 0.9368 0.9366 

PCA Random Forest 0.8424 0.8449 0.8424 0.8423 

PCA SVM 0.8848 0.8864 0.8848 0.8847 

PCA Neural Network 0.8856 0.8862 0.8856 0.8852 

t-SNE Random Forest 0.8816 0.8815 0.8816 0.8812 

t-SNE SVM 0.8176 0.8262 0.8176 0.8145 

t-SNE Neural Network 0.8112 0.8136 0.8112 0.8082 

UMAP Random Forest 0.8528 0.8551 0.8528 0.8521 

UMAP SVM 0.8464 0.8501 0.8464 0.8449 

UMAP Neural Network 0.8576 0.8626 0.8576 0.8568 

 

Notably, the performance degradation due to dimension reduction was more severe for the MNIST dataset compared to 

Digits. For example, using t-SNE reduced the average accuracy by 2.5 percentage points for Digits but by 10.6 

percentage points for MNIST. This suggests that the effectiveness of dimension reduction is highly dataset-dependent, 

with larger, more complex datasets potentially requiring more dimensions to maintain performance. 

Computational Efficiency 

Figure 2 shows the training time for each classifier and dimension reduction technique. The combination of t-SNE with 

SVM achieved the fastest training time (0.0103 seconds) for the Digits dataset, providing a compelling trade-off 

between speed and accuracy (96.44%). However, the preprocessing time for dimension reduction must also be 

considered: t-SNE required 11.45 seconds for Digits and 40.27 seconds for MNIST, while UMAP required 16.21 

seconds for Digits and 26.69 seconds for MNIST. 

 

 
Training time by model and dimension reduction technique (log scale) 
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Figure 3 presents a radar chart comparing the four dimension reduction techniques across various performance metrics. 

While "None" performed best in terms of accuracy-related metrics, the non-trivial preprocessing time of t-SNE and 

UMAP must be balanced against their benefits in specific contexts. 

 

 
Radar chart comparing dimension reduction techniques across performance metrics 

 

Classifier Performance 

Across all dimension reduction techniques, Neural Networks achieved the highest average accuracy (91.89%), followed 

closely by Random Forests (91.85%) and SVMs (91.10%). Table 4 breaks down the average performance by classifier. 

 

Average performance metrics by classifier 

Classifier Accuracy Precision Recall F1 Score 

Neural Network 0.9189 0.9200 0.9189 0.9185 

Random Forest 0.9185 0.9193 0.9185 0.9180 

SVM 0.9110 0.9140 0.9110 0.9105 

 

The performance of classifiers varied significantly 

depending on the dimension reduction technique 

applied. Figure 4 shows a heatmap of classification 

accuracy for each combination of classifier and 

dimension reduction technique. The heatmap reveals 

that Neural Networks maintained the most consistent 

performance across different dimension reduction 

techniques, suggesting greater robustness to changes in 

data representation. 
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Heatmap of classification accuracy by model and dimension reduction technique 

 

Visualization of Reduced Data 

Figure 5 shows a t-SNE visualization of the Digits dataset, where the clear separation between clusters corresponding to 

different digits indicates that t-SNE effectively preserved class structure in two dimensions. This visual separation 

explains the relatively high accuracy achieved by classifiers on t-SNE-reduced data, despite the drastic dimension 

reduction from 64 to just 2. 

 
t-SNE visualization of the Digits dataset colored by class 

 

Similarly, Figure 6 presents a t-SNE visualization of the MNIST dataset. While there is still visible class separation, the 

boundaries are less distinct, corresponding to the lower classification accuracy observed for MNIST compared to Digits. 
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t-SNE visualization of the MNIST dataset colored by class 

 

Discussion 

Trade-offs Between Performance and Efficiency 

Our experimental results reveal important trade-offs 

between classification performance and computational 

efficiency. While using no dimension reduction 

generally yielded the highest accuracy, the 

performance gap varied considerably across datasets 

and classifiers. For the Digits dataset, t-SNE with 

Random Forest achieved 97.33% accuracy, only 

slightly lower than the 98.22% achieved by SVM with 

no dimension reduction, while offering substantially 

faster training times. 

The decision whether to apply dimension reduction 

should therefore consider both the specific 

characteristics of the dataset and the computational 

constraints of the application. For large, complex 

datasets where computation is a bottleneck, dimension 

reduction can provide substantial efficiency gains with 

only moderate performance degradation. Conversely, 

for smaller datasets or applications where accuracy is 

paramount, using the original high-dimensional 

representation may be preferable. 

 

Dataset-Dependent Effectiveness 

A key finding of our study is the dataset-dependent 

effectiveness of dimension reduction techniques. For 

the Digits dataset, t-SNE maintained high classification 

performance despite reducing the dimensionality from 

64 to just 2, likely because the intrinsic dimensionality 

of this dataset is low. In contrast, for the MNIST 

dataset, all dimension reduction techniques led to more 

substantial performance degradation, suggesting that 

more dimensions are needed to capture the relevant 

structure of this dataset. 

This observation aligns with the manifold hypothesis , 

which posits that high-dimensional data often lies on 

or near a lower-dimensional manifold. The 

effectiveness of a dimension reduction technique 

depends on how well it can approximate this manifold, 

which varies across datasets. 

 

Relative Performance of Dimension Reduction 

Techniques 

Among the dimension reduction techniques compared, 

PCA performed well on the MNIST dataset, 

particularly in conjunction with SVM and Neural 

Network classifiers. This suggests that for complex 

datasets, the linear transformations of PCA may 

capture a significant portion of the relevant variance, 

especially when the reduced dimensionality is 

sufficiently high (10 dimensions in our case). 

t-SNE showed impressive performance on the Digits 

dataset, particularly with Random Forest and Neural 

Network classifiers. This aligns with previous research 

showing that t-SNE’s emphasis on preserving local 

structure can be beneficial for classification tasks 

where class boundaries are locally defined . 

UMAP performed comparably to t-SNE but with 

greater variance across classifiers. It worked 

particularly well with Random Forest and Neural 

Network on the Digits dataset but less effectively with 

SVM. This suggests that UMAP’s preservation of both 

local and global structure may be more compatible 

with certain classification algorithms, making the 

choice of both dimension reduction technique and 

classifier important. 

 

Implications for Classification Pipelines 

Our results have several implications for designing 

effective classification pipelines for high-dimensional 

data: 

1. Adaptive selection: The choice of dimension 

reduction technique should be adapted to the specific 

dataset characteristics. For smaller datasets with clear 

class separation (like Digits), nonlinear methods like t-

SNE can effectively reduce dimensions with minimal 
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performance loss. For larger, more complex datasets 

(like MNIST), preserving more dimensions or using no 

dimension reduction may be necessary. 

2. Classifier compatibility: Certain combinations of 

dimension reduction techniques and classifiers work 

better than others. Random Forest and Neural Network 

showed greater robustness to dimension reduction 

compared to SVM, particularly with nonlinear 

techniques like t-SNE and UMAP. 

3. Computational considerations: While dimension 

reduction introduces preprocessing overhead, it can 

significantly reduce classifier training and inference 

times. For applications requiring real-time predictions 

or frequent retraining, this trade-off may favor 

dimension reduction even with slight accuracy 

penalties. 

4. Visualization benefits: Beyond performance 

considerations, techniques like t-SNE and UMAP 

provide valuable visualizations that can aid in 

understanding dataset structure and debugging 

classification issues, offering additional qualitative 

benefits. 

 

Conclusion 

This study presented a comprehensive evaluation of 

dimension reduction techniques for high-dimensional 

classification tasks. We compared PCA, t-SNE, and 

UMAP in conjunction with Random Forest, SVM, and 

Neural Network classifiers on two benchmark datasets. 

Our results provide empirical evidence for several key 

findings: 

1. No dimension reduction generally achieves the 

highest classification accuracy, but the gap can be 

small for datasets with low intrinsic dimensionality. 

2. t-SNE offers an excellent trade-off between 

classification performance and training efficiency, 

particularly for the Digits dataset and in combination 

with Random Forest. 

3. Neural Networks demonstrate the most consistent 

performance across dimension reduction techniques, 

suggesting greater robustness to changes in data 

representation. 

4. The effectiveness of dimension reduction is highly 

dataset-dependent, with larger performance 

degradation observed for the more complex MNIST 

dataset. 

These findings have important implications for 

practitioners. First, the choice of dimension reduction 

technique should be adapted to the specific dataset and 

application requirements. Second, the computational 

benefits of dimension reduction should be weighed 

against potential performance degradation. Finally, 

certain combinations of dimension reduction 

techniques and classifiers offer particularly favorable 

trade-offs and should be considered as starting points 

for high-dimensional classification tasks. 

Future work could extend this analysis to a broader 

range of datasets across different domains, investigate 

the impact of the reduced dimensionality (e.g., 

comparing 2, 10, and 20 dimensions), and explore 

adaptive approaches that automatically select the 

optimal dimension reduction technique based on 

dataset characteristics. Additionally, examining how 

these findings translate to other tasks beyond 

classification, such as regression or clustering, would 

provide a more comprehensive understanding of 

dimension reduction in machine learning pipelines. 

 

Limitations 

This study has several limitations that should be 

acknowledged. First, we examined only a subset of 

available dimension reduction techniques and 

classification algorithms. Second, we used default or 

common parameter settings for all methods, whereas 

performance might be improved through extensive 

hyperparameter tuning. Third, our analysis focused on 

two benchmark datasets, and findings may not 

generalize to all domains and data types. Finally, we 

evaluated only on tabular data represented as grayscale 

images; performance characteristics might differ for 

other data modalities such as text, time series, or 

graph-structured data. 

Despite these limitations, our systematic comparison 

provides valuable insights into the interplay between 

dimension reduction and classification, offering 

practical guidelines for practitioners working with 

high-dimensional data. 
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