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Abstract: The challenges of urban management grow as towns, vehicles, and people increase. Making cities smarter is one 

of the most effective strategies for overcoming urban problems. Today's "smart cities" are distinguished by the use of 

cutting-edge technology in their infrastructure and services. Smart cities make the most effective use of their resources 

through meticulous preparation. Smart cities provide their residents with more and better services by lowering costs and 

upgrading infrastructure. One of the vital municipal services that can be extremely beneficial in municipal administration is 

structural health monitoring (SHM). Essential urban infrastructure can last longer and operate more effectively by combining 

cutting-edge new technologies like the Internet of Things (IoT) with structural health monitoring. As a result, a thorough 

assessment of the latest developments in infrastructure SHM is essential. The construction, upkeep, and development of 

bridges are among the most important aspects of urban management, and they are one of the essential components of a city's 

infrastructure. The main goal of this study is to examine how artificial intelligence (AI) and certain technologies, such 3D 

printers and drone technology, may be used to improve the current state of bridge SHM systems, including conceptual 

frameworks, advantages and disadvantages, and existing methods. The future role of AI and other technologies in bridge 

SHM systems was covered in this study. In addition, a few cutting-edge research prospects that are made possible by 

technology are highlighted, discussed, and described. 

Keywords: Smart Cities; Structural Health Monitoring (SHM); Bridge Infrastructure; Internet of Things (IoT); Artificial 

Intelligence (AI); Unmanned Aerial Vehicles (UAVs); 3D Printing Technology. 

1. Introduction: 

In order to give accurate, real-time data on 

structural integrity by identifying fractures, stress, 

and material deterioration, structural health 

monitoring, or SHM, was initially implemented on 

long-span bridges in the early 2000s.  Although 

managing and maintaining sensor data presented 

difficulties for early systems, destructive and non-

destructive methods, such as image processing and 

core sampling, have significantly improved SHM 

applications.  This work suggests a data-driven 

approach to track the occurrence of cracks and 

forecast structural deterioration, especially as a 

result of environmental influences like 

precipitation, by utilizing embedded sensors and 

eddy current testing.  To inform maintenance 

choices, an AI program examines the spread of 

cracks in three dimensions and contrasts sensor 

data with models that have been trained. 

 As essential components of urban infrastructure, 

bridges are essential for removing geographic 

obstacles and enhancing connectivity.  Advanced 

SHM systems are critical to the durability and 

safety of smart cities.  Conventional monitoring 

techniques, such vibration analysis, magnetic 

detection, and technician visual inspections, are 

frequently constrained, arbitrary, and unable to 

identify internal or concealed damage.  

Furthermore, physical inspections may not be 

possible during times of high traffic and may 

interfere with bridge operations.  These drawbacks 

emphasize the necessity of more sophisticated, 

automated monitoring systems. 

 Recent developments in technology have brought 

about a change in SHM.  In order to facilitate 

smooth remote data collection and transfer, modern 
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systems today integrate wireless sensor networks 

(WSNs), optical fiber sensors (OFS), scanners, and 

electromagnetic technologies, all of which are 

supported by the Internet of Things (IoT).  In order 

to interpret this data and enable more precise 

evaluations and predictive maintenance, artificial 

intelligence is essential.  These developments 

promote effective, long-term infrastructure 

planning in addition to lowering the risk of 

structural failure.  Consequently, SHM is becoming 

a crucial part of smart urban management, 

improving the lifetime, safety, and dependability of 

bridges. 

 The objective of this study is to 

examine the potential advantages, challenges, 

existing techniques, and recent developments in 

SHM systems for bridges that make use of AI and 

new technologies. Another aim of this study is to 

give researchers the tools they need to learn more 

about the surveillance technologies now used on 

bridges. AI, drones, and 3D printing technology 

will be examined and debated in particular as part 

of the SHM system evaluation process for bridges. 

It should also be noted that some aspects of these 

technologies—3D printers, drone technology, AI, 

and SHM systems—need more research, while 

others have not been studied as thoroughly, and 

where the demand for more thorough research is 

evident. This research attempts to offer a 

comprehensive and complete picture of AI and 

current technologies in the SHM of bridges, as well 

as recent advancements and trends in this area, 

even though the literature on SHM has been 

extensively researched and paid attention to. A 

graphical depiction of the study's framework is 

shown in Figure 1. 

 

Figure 1. Flow chart of study.  

As per the intended format, the remainder of this 

study is as follows: Section 2 introduces bridge 

structural health monitoring systems and 

conceptualizations, while Section 3 covers AI, 

drone technology, and the 3D printer. Section 4 

discusses the latest developments in AI and current 

bridge structural health monitoring (SHM) 

technology. Section 5 contains concluding remarks 

about recent advances in bridge structural health 

monitoring. 

2. Bridge Structural Health Monitoring (SHM) 

System 

2.1 Importance of SHM Systems 

Bridges are critical and costly infrastructure assets 

designed to last for decades. However, many are 

now handling traffic loads beyond their original 

design limits, which raises the risk of structural 

fatigue and failure. To ensure their safety and 

extend their lifespan, continuous monitoring of 

their condition is essential. SHM systems help in 
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tracking both static and dynamic responses of a 

bridge using sensors and data-processing 

technologies. They allow early detection of 

structural deterioration, enabling timely 

maintenance and enhancing performance and 

safety. 

How SHM Works 

SHM involves: 

1. Collecting data from sensors (e.g., strain, 

vibration). 

2. Processing the data using computer 

algorithms. 

3. Interpreting results to assess structural 

condition. 

This allows informed decision-making regarding 

bridge maintenance and management. 

Recent Developments in SHM 

Study / Author Key Contribution 

Ko & Ni New SHM tech: sensors, data mining, signal processing. 

Vazquez-Ontiveros et al. PPP-GNSS + probabilistic SHM = high accuracy monitoring. 

Mousa et al. Vision-based SHM (DIC): detects cracks, vibration, and damage in various bridge types. 

AlHamaydeh & Aswad Identified SHM limitations and future research needs. 

Kamal & Mansoor IoT in SHM: promising, but needs solutions for energy, security, and scalability. 

Enshaeian et al. Reviewed 20 years of SHM on U.S. bridges. 

Maroni et al. Real-time scour risk SHM system using probabilistic models. 

 

Current bridge infrastructure faces 

significant risks due to damage, inefficiency, and 

vulnerabilities exacerbated by natural or man-made 

disasters like earthquakes and explosions. Reliable 

public infrastructure, especially bridges, is vital for 

modern society, particularly for disaster response 

and recovery. To maintain and extend the service 

life of bridges, Structural Health Monitoring 

(SHM) is essential. SHM uses sensors, smart 

materials, data communication, and intelligent 

analysis to non-destructively evaluate and monitor 

bridge conditions, enabling early detection of 

damage, reducing maintenance costs, and 

preventing catastrophic failures. 

 

 

Historical bridge collapses, such as the 

2007 I-35W bridge in Minneapolis and the 2018 

Polcevera (Ponte Morandi) bridge in Genoa, 

highlighted the consequences of inadequate 

inspection and maintenance. These tragic incidents, 

which caused multiple fatalities, underscored the 

need for improved monitoring and infrastructure 

management. In response, engineers have 

increasingly adopted advanced technologies to 

monitor and maintain bridge safety, aiming to 

prevent future disasters and improve infrastructure 

reliability. 

A summary of the process of evaluating the 

performance of bridges under a SHM system is 

shown in Figure 2. 

 

Figure 2. A summary of the procedure of the SHM system to monitor the functioning of bridges. 
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2.2 Defining and Identifying Damage in Bridge 

Health Monitoring 

Traditional bridge damage identification relies on 

visual inspections, which allow local, direct 

observation but face limitations such as difficult 

access and inability to detect internal damage. 

Advances in Structural Health Monitoring (SHM) 

have been made through technologies like artificial 

intelligence (AI) and the Internet of Things (IoT), 

enhancing monitoring, control, assessment, and 

decision-making. 

SHM methods are broadly divided into diagnostic 

and prognostic approaches. Diagnostic methods 

locate and measure damage using techniques such 

as ultrasonic testing, radiography, and magnetic 

particle inspection. Prognostic methods use 

diagnostic data to predict the remaining service life 

of a structure, enabling preventive maintenance. 

Damage is any change that reduces a structure’s 

functionality. Detecting damage requires 

comparing the current condition to its original 

“initial state.” Damage identification often follows 

a hierarchical system with five levels: 

1. Damage detection – recognizing that damage has 

occurred. 

2. Damage location – determining the damage’s 

position and orientation. 

3. Damage typification – assessing damage severity 

and type. 

4. Damage extent – evaluating the potential to limit 

or delay damage progression. 

5. Damage prediction – estimating the remaining 

useful life or viability of the structure. 

This structured approach improves the accuracy 

and effectiveness of bridge health management. 

2.3 Challenges and Types of Structural Health 

Monitoring (SHM) Systems 

Structural Health Monitoring (SHM) of bridges 

faces several challenges, including inconsistent 

sensor accuracy, varied data analysis methods, and 

difficulties in accessing all bridge areas. Traditional 

visual inspections remain common but have 

limitations such as high inaccuracy, inability to 

detect internal damage, and missed localized 

failures. 

Recent technological advances—like optical 

sensors, lasers, image processing, affordable 

sensors, blockchain, 5G, and the Internet of Things 

(IoT)—have improved SHM performance by 

enabling real-time monitoring, early damage 

detection, reduced inspection time and costs, and 

minimized repair expenses. The ideal SHM system 

is low-cost, non-invasive, fully automated, and 

does not require bridge closures during installation 

or operation. 

SHM systems generally fall into two categories: 

1. Model-driven SHM: Uses system models 

(often via finite element analysis) to analyze 

vibration data and detect damage by comparing 

predicted and experimental results. While effective, 

it is time-consuming, complex, and relies on 

experimental validation. 

2. Data-driven SHM: Employs machine 

learning and artificial intelligence (AI) to manage 

uncertainties and improve damage detection. AI 

and computational intelligence have greatly 

enhanced SHM’s effectiveness, sometimes 

combining data-driven and model-driven 

approaches. 

The study emphasizes the growing role of AI and 

emerging technologies in improving data-driven 

SHM systems, setting the stage for further detailed 

exploration in subsequent sections. 

3. Structural Health Monitoring (SHM) of 

Bridges, AI, and Recent Technologies 

Industry 4.0, also called the Fourth Industrial 

Revolution, combines technologies from 

traditionally separate fields—biology, computing, 

and the physical world—leading to enhanced 

engineering capabilities. This integration has 

notably improved engineering projects, including 

the critical field of bridge SHM. 

Recent advances in artificial intelligence (AI), 

driven by more powerful processors and greater 

data availability, have significantly boosted SHM 

performance. Additionally, emerging technologies 

closely related to AI are further enhancing bridge 

monitoring systems. This study explores how AI 

and related new technologies work together to 

improve the effectiveness of SHM in bridges.  

Table1 indicates the summary of some of the most 

important recent research conducted on the 

structural health monitoring of bridges using new 

technologies.  
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Table1.Some recent studies on SHM of bridges vs.new technologies. 

Research ML Technique Sensors UAVs IoT 3D Printers 

Lin and Huang      + 

Escarcega et al.     + + 

Flah et al.  + + +   

Wang et al.  + + + +  

Civera et al.  + +    

Ghiasi et al.  + +    

Figueiredo et al.  + +    

Bud et al.  + +  +  

Gomez-Cabrera, and Escamilla-

Ambrosio  
+ +    

Delgadillo and Casas  + +    

Baba, and Kondoh  + +    

Zhang, and Yuen  + + + +  

Gordan et al.  + +    

Bono et al.   + +   

Zhuge et al.  +  +   

Modir, and Tansel  + +   + 

Overall + + + + + 

 

From Table 1 it is clear that sensors and machine 

learning methods were essential to current research. 

It is clear that there is a need for additional research 

on the use of technologies like the IoT, UAVs, and 

3D printers, even if other technologies were also 

considered. The following sections provide a more 

thorough explanation. 

3.1 SHM of Bridges and Artificial Intelligence 

(AI) 

Structural Health Monitoring (SHM) 

systems leverage innovative technologies such as 

the Internet of Things (IoT), sensors, and computer 

processing to provide an advanced, non-destructive 

way to evaluate bridge integrity. These 

technologies improve the accuracy of damage 

detection and reduce maintenance and repair costs. 

Traditional SHM methods often rely on 

finite element modeling and modal features, which 

require extensive computations and struggle to 

handle real-world uncertainties. In contrast, data-

driven SHM approaches, which do not depend on 

structural models, offer a practical alternative for 

damage detection. These can be used alone or 

combined with model-based methods. 

Due to challenges like limited information 

and signal processing difficulties, AI and machine 

learning (ML) methods are increasingly valuable in 

SHM. Research has identified eight stages within 

the SHM process where AI and ML techniques can 

play a significant role in enhancing system 

performance. 

Step No. Process Name Description 

1 Excitation 

It is necessary to arouse the existing structure in order to begin looking for signs of 

deterioration. When determining the technique of excitation, it's important to consider 

structural response in scenarios like earthquakes and to compare numerical models to actual 

measurements. 

2 Data Acquisition 
There may be differing requirements for monitoring dynamic vs static characteristics. It is 

vital to determine how the data may be gathered and used. 

3 
Data 

Normalization 

When data has a wide range of scales, normalization is helpful. This step brings all data 

points to a similar scale due to inconsistencies in data from different sensors. 
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Step No. Process Name Description 

4 Data Cleaning 

The quality of the data may be harmed by loosely positioned sensors or extraneous 

influences. Data cleaning involves identifying and removing errors and duplications to create 

a valid dataset for better decision-making. 

5 
Data 

Compression 

Encoding, rearranging, or altering data to minimize its size is known as data compression. 

This reduces the feature size and allows focus on statistically significant and damage-

sensitive aspects. 

6 
Feature 

Extraction 

Reduces the feature space by selecting a subset of the original features to minimize possible 

features. This step transforms data into a form suitable for machine learning algorithms. 

Important in detecting damage-sensitive characteristics. 

7 Data Fusion 
Combines information from multiple sources for higher accuracy, consistency, and usefulness 

than using data from a single source. 

8 

Pattern 

Recognition and 

Evaluation 

Automated identification of patterns using machine learning techniques. This is the final step 

in the SHM (Structural Health Monitoring) system using ML, helping to evaluate the health 

of the structure. 

Table 2. An outline of the eight stages required to implement a data-driven SHM system. 

3.2 SHM of Bridges Using AI and Drone 

Technology 

Artificial intelligence (AI) and drone (UAV/MAV) 

technology have greatly improved bridge structural 

health monitoring (SHM) in the modern era. 

Drones' mobility, maneuverability, and low power 

consumption make them perfect for checking 

difficult-to-reach places. They may gather real-time 

data using pictures, videos, and specialized sensors, 

such as vibration analysis sensors, and can be 

operated manually or automatically. 

 

In data analysis, pattern identification, and damage 

detection, artificial intelligence (AI), especially 

deep learning models like Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks, is essential. Deep learning, as 

opposed to conventional machine learning, makes 

it possible to automatically extract features from 

unprocessed data. For instance, by examining 

bridge deflection and temperature changes over 

time, LSTM models have been effectively applied 

to the detection of structural degradation. 

 

Numerous stationary sensors can be replaced by 

mobile, intelligent SHM devices when UAVs and 

AI are combined, according to research, providing 

a more effective, adaptable, and scalable method of 

bridge monitoring. 

 

Figure 3. The varied applications of UAVs in the field of damage assessment in SHM systems. 

Role of Artificial Intelligence in Drone-Based 

SHM 

Artificial intelligence (AI) plays a critical role in 

enhancing drone-based Structural Health 

Monitoring (SHM) systems from multiple 

perspectives: 

1. Navigation and Control: AI is used to 

develop software that enables semi-autonomous 

and fully autonomous drone navigation, 

improving efficiency and flight performance. 

2. Data Processing and Management: 

Drones collect vast amounts of data (e.g., images, 

videos), which are difficult to analyze manually. 

AI helps in automating the processing, analysis, 
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and transmission of this data, making it 

manageable and meaningful for SHM. 

3. Data Transfer: AI facilitates the 

conversion and transfer of drone-collected data to 

relevant sensors and systems, addressing one of 

the technical challenges in SHM workflows. 

4. Ground Systems and Airspace 

Monitoring: Ground-based systems responsible for 

safety, security, and airspace awareness also rely 

on AI due to the complexity of managing multiple 

UAV operations. 

5. Integration with Emerging 

Technologies: The use of drones in SHM is being 

accelerated by the convergence of AI with 

technologies like: 

o Advanced image processing 

o Next-gen deep learning algorithms 

o IoT devices 

o 5G and 6G networks 

o New sensor technologies 

This integration is leading to wider adoption of 

drone-based SHM systems, particularly in bridge 

monitoring. 

3.3 SHM of Bridges Using AI and 3D Printing 

The integration of 3D printing (additive 

manufacturing) with Artificial Intelligence (AI) is 

emerging as a promising advancement in 

automated structural maintenance, especially in 

bridge Structural Health Monitoring (SHM) 

systems. 

• Since the early 1990s, institutions like 

Carnegie Mellon University (CMU), University 

of Texas at Austin, and UC Davis have explored 

automated pavement crack sealing platforms. 

• Recent progress in 3D printing has led to 

its application in automated crack repair, making 

pavement maintenance—a key indicator of bridge 

traffic condition—more efficient. 

• Two primary types of 3D printing 

platforms have been developed: 

o Cartesian table-based platforms 

o Robot arm-based platforms 

• Both platforms continue to evolve, contributing to 

the automation of bridge maintenance tasks. 

• These technologies, when combined with AI, 

enable smart, automated repair processes, 

reducing manual labor and improving response 

times in bridge SHM systems. 

4. Discussion and Remarks 

1. Role of Artificial Intelligence (AI) in SHM 

• AI has significantly enhanced Structural Health 

Monitoring (SHM) by reducing reliance on human 

interpretation, increasing system efficiency, 

speeding up monitoring processes, and lowering 

costs. 

• Machine Learning (ML) and Deep Learning 

(DL) algorithms are particularly effective for 

pattern recognition, damage detection, and data 

analysis, outperforming traditional methods. 

• Deep learning models improve as more data is 

introduced, making them well-suited for analyzing 

the large datasets generated by SHM systems. 

• Data-driven approaches identify patterns in 

bridge behavior and detect anomalies or failures 

through statistical methods and AI-enhanced 

models. 

2. Use of Big Data and Cloud Computing 

• The challenges of handling massive SHM 

datasets are being addressed through cloud 

computing and advanced algorithms. 

• AI enables automated pattern recognition, 

creation of decision boundaries between damaged 

and undamaged states, and real-time analysis of 

bridge data. 

3. Sensor Optimization and Placement 

• Sensors are vital for accurate and long-term bridge 

health monitoring. 

• Proper selection and placement of sensors are 

critical due to environmental factors and cost. 

• Optimization algorithms like genetic algorithms, 

particle swarm optimization, and harmony search 

are recommended to find the most effective sensor 

configurations. 

4. Visual Inspection vs. Drones 

• Traditional human-based visual inspections are 

time-consuming, costly, and prone to error, though 

human senses offer certain advantages. 

• Drones (UAVs) offer a highly effective 

alternative, capable of: 
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o Inspecting from any angle, 

o Operating in diverse weather conditions, 

o Being equipped with high-tech cameras, 

o Providing real-time condition monitoring. 

• Drones reduce inspection time and cost and 

increase precision, especially when integrated with 

AI, IoT, and 5G/6G technologies. 

5. AI and 3D Printing in Bridge Maintenance 

• 3D printing is playing an increasingly important 

role in automated bridge repair, especially in 

pavement crack sealing. 

• Combined with AI, 3D printing systems: 

o Use machine learning and imaging (ultrasound, 

X-ray) to identify damage type and severity. 

o Automatically generate custom 3D repair models 

and convert them into G-code for printing. 

o Select and apply appropriate materials based on 

damage characteristics. 

• In the Fourth Industrial Revolution, AI-driven 

3D printing is becoming a key tool in predictive 

and responsive bridge maintenance. 

5 Conclusions  

This study provides a comprehensive review of 

how Artificial Intelligence (AI)particularly 

Machine Learning (ML)along with drones and 

3D printing, is transforming data-driven 

Structural Health Monitoring (SHM) systems for 

bridges. 

• ML algorithms significantly enhance pattern 

recognition in SHM, though each approach comes 

with its own challenges. 

• Drones and 3D printers have become integral to 

data collection, monitoring, and automated 

maintenance within SHM systems. 

• The integration of AI with these technologies has 

led to major improvements in system 

performance, efficiency, and reliability. 

• These technologies represent intelligent, 

autonomous tools that are opening up new 

opportunities for bridge engineers and researchers. 

• The study highlights the growing importance of 

AI in SHM research and encourages further 

exploration in this domain. 

Future Research Needs: 

• There is a notable gap in understanding how 

environmental and operational variations 

(EOV) impact AI-enhanced SHM system 

performance. 

• More in-depth studies are recommended to 

address this limitation and strengthen the reliability 

of SHM under varying real-world conditions. 
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