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Abstract: This project addresses key challenges faced by commercial large language models (LLMs) in customer engagement, 

such as inconsistent responses, inaccuracies, hallucinations, and lack of follow-up questions. The goal was to develop a 

domain-specific LLM from scratch for small and medium enterprises (SMEs), capable of delivering relevant, consistent, and 

human-like responses. The methodology involved studying LLM architectures, preparing and expanding datasets, developing 

a base model, fine-tuning with larger domain-specific data, applying reinforcement learning, and evaluating model 

performance. The initial model, trained on 1.5 million tokens, lacked the language understanding needed for coherence. Scaling 

the dataset to 445 million tokens with general and domain-specific data improved training dynamics and model stability. Fine-

tuning with 550 million tokens enhanced relevance, consistency, and human-likeness, outperforming parameter-efficient 

methods such as LoRA. Reinforcement learning using Identity Preference Optimization (IPO) yielded mixed results. The 

Normal IPO approach maintained training stability and preserved response quality at both sentence and response levels. 

However, the Checkpoint and EMA strategies showed fluctuating training behavior and declines in response-level consistency, 

human-likeness, and relevance, likely due to the small reinforcement learning dataset and instability from evolving reference 

models. Despite these challenges, the project demonstrated the feasibility of building a domain-specific LLM tailored for SME 

customer engagement. Future directions include expanding the reinforcement learning dataset, exploring alternative 

optimization strategies, and incorporating human feedback to further refine performance. 
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1. Introduction 

1.1. Background 

Small and Medium-sized Enterprises (SMEs) in Malaysia 

have grown significantly in recent years, contributing 38.2% 

to the national GDP in 2020 [1]. Despite their economic 

importance, SMEs face major challenges, particularly 

human resource constraints. They often struggle to recruit 

and retain employees due to lower salaries, limited career 

growth, and reduced job stability compared to larger firms, 

leading to high turnover rates [2]. This shortage of staff 

directly impacts customer engagement. 

Financial constraints are another major issue. As noted by 

[3], SMEs generally have less access to capital than larger 

companies. This limits their ability to invest in tools like 

customer relationship management (CRM) software, which 

is expensive and requires expertise to operate effectively [4]. 

Without such tools, SMEs struggle to analyse customer 

behaviour and provide strategic service. 

To address these challenges, SMEs are increasingly 

adopting commercial large language models (LLMs) to 

support customer service. LLMs can automate responses to 

common queries, reducing the need for large customer 

support teams and easing HR pressure. Additionally, their 

ability to analyze customer interactions helps compensate 

for the lack of CRM software, offering a cost-effective 

alternative for improving customer engagement. 

1.2. Problem Statement 

According to our collaborator, a leading software company 

in Malaysia that provides versatile digital solutions, there are 

several problems that they face when using the commercial 

LLM where the general-purpose generative AI chatbot has 

the following challenges: 
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• Inability to provide consistent responses. 

• Failure to deliver correct answers, even when relevant 

knowledge is available. 

• Hallucination, leading to responses that combine inaccurate 

or unrelated information. 

• Lack of follow-up questions when faced with unclear or 

unanswerable customer queries. 

1.3. Objective 

This project aims to study, build and validate a domain-

specific LLM model from scratch for customer engagement 

for the selected SME companies that can provide relevant, 

consistent and human-like responses. 

2. Related Works 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Model development process workflow 

The integration of large language models (LLMs) into 

customer service has garnered significant attention, 

particularly for small and medium-sized enterprises (SMEs) 

seeking cost-effective solutions. [5] explored the application 

of LLMs like GPT-4 in technical customer support, 

demonstrating their potential to automate tasks such as text 

correction, summarization, and question answering. Their 

findings highlighted improvements in efficiency and quality 

of service, while also emphasizing the necessity for quality 

assurance and organizational adjustments to fully leverage 

these technologies. 

Fine-tuning pre-trained LLMs has emerged as a prevalent 

strategy to adapt these models for domain-specific tasks. [6] 

provided a comprehensive overview of methodologies for 

fine-tuning LLMs, outlining steps required for customizing 

models to specialized use cases. Their review underscored 

the benefits of fine-tuning in enhancing model performance 

for specific applications, while also discussing limitations 

such as potential overfitting and the need for substantial 

domain-specific data. 

In the context of SMEs, the adoption of LLMs is often 

hindered by resource constraints. [7] introduced CARE, a 

lightweight chatbot fine-tuned using QLoRA on minimal 

hardware, capable of handling queries in 

telecommunications, medical, and banking domains. Their 

approach demonstrated that effective domain-specific LLMs 

could be developed without extensive computational 

resources, making them accessible to SMEs. 

Despite these advancements, challenges persist in the 

deployment of commercial LLMs. [8] identified high 

development and training costs, lack of pricing transparency, 

and the impact of open-source alternatives as significant 

barriers for businesses. These factors contribute to the 

hesitancy among SMEs to fully adopt LLMs, highlighting 

the need for more affordable and transparent solutions. 

Collectively, these studies illustrate the potential of LLMs to 

transform customer service operations, especially for SMEs. 

However, they also underscore the importance of addressing 

technical and economic challenges to facilitate broader 

adoption and effective implementation of these 

technologies. 

 

3. Methodology 

This section outlines the activities involved in designing and 

developing the customer engagement model. Fig. 1 

illustrates the complete workflow of this process. It begins 

with understanding project requirements, where 

collaboration with stakeholders defines both the technical 

and functional needs of the model to ensure it is resource-

efficient and suitable for real-world deployment. An in-

depth study of existing large language models (LLMs) 

follows, analysing core components such as tokenization, 

embeddings, and attention mechanisms to inform 

architectural and design decisions.  Data preparation then 

involves extracting, cleaning, and transforming diverse 

datasets into structured formats suitable for training. Based 

on these foundations, an appropriate model architecture is 

selected, considering scalability and domain-specific needs. 

This is followed by model development, where source code 

is implemented to realize the model's core functionalities. A 

study of model parameters is conducted to optimize 

performance. Using these insights, a base model is built and 

initially evaluated using metrics such as loss. The model is 

then refined through prompt design to enhance the 

relevance, consistency, and human-likeness of responses. 

Human evaluators then assess the generated outputs to 

identify strengths and improvement areas. Based on 

evaluation outcomes, the base model may undergo fine-

tuning, incorporating task-specific datasets and feedback to 

improve performance. This results in an accepted fine-tuned 

model if performance standards are met. To further improve 

alignment with human preferences and behaviour, 

reinforcement learning may be applied to the fine-tuned 

model. This phase uses preference dataset to guide 

optimization, culminating in an accepted reinforcement 

learning model if quality benchmarks are achieved. The 

process concludes with the selection of the most suitable 

model—whether base, fine-tuned, or reinforcement-

learned—balancing efficiency, accuracy, and user-centric 
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attributes, thereby establishing a robust foundation for future 

deployment. 

4. Results and Discussion on the Design and 

Implemented Models 

4.1. Base Model Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. LLaMA 3.2 model illustration. [9] 

The LLaMA 3.2 model, proposed by [10], is built on a 

decoder-only transformer architecture that integrates several 

advanced components to enhance performance and 

efficiency. It utilizes a Byte Pair Encoding (BPE) tokenizer 

with an expanded 128,000-token vocabulary, derived from 

Tiktoken and enhanced to support multiple languages, 

enabling precise and flexible text processing. For positional 

encoding, it employs Rotary Position Embedding (RoPE), 

which captures both absolute and relative token positions to 

improve contextual understanding, as proposed by [11]. The 

model's attention mechanism adopts grouped-query 

attention, reducing redundancy and improving memory 

efficiency without compromising output quality, as 

introduced by [12]. RMSNorm, proposed by [13], is used for 

layer normalization, offering a computationally lighter 

alternative to traditional methods by normalizing inputs 

based on root mean square values. Additionally, the feed-

forward network incorporates the SwiGLU activation 

function, which introduces a gating mechanism to capture 

complex, non-linear patterns, as proposed by [14]. These 

components—coupled with residual connections for stable 

gradient flow—enable LLaMA 3.2 to deliver high-quality 

results in tasks requiring deep language comprehension 

while remaining computationally efficient and scalable. 

 

 

 

4.2. Base Model Data Preparation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Conversational data format for base model 

The dataset comprises both general and domain-specific 

conversational data. The general portion includes large-scale 

multi-turn dialogues from the UltraChat dataset [15], which 

were filtered into two subsets: general-purpose 

conversations and customer engagement-related 

conversations based on relevant keyword presence. The 

domain-specific portion was developed from CRM books, 

scholarly articles, newly collected CRM magazines, 

property descriptions, and maintenance handbooks. These 

materials were collected in collaboration with our 

collaborator, a property management company focused on 

short- to medium-term rentals to better reflect the language 

and context of their operational domain. The collected 

content was then converted into multi-turn conversational 

format using the Ollama LLaMA 3.2 model. All dialogues 

follow a standardized structure, where each question-answer 

pair is separated by a <|eot_id|> token, and the entire multi-

turn interaction is wrapped with <|begin_of_text|> and 

<|end_of_text|> tokens as depicted in Fig. 3. Due to their 

high initial quality, no further cleaning was necessary. This 

dataset was stored in a SQLite database, with a total size of 

approximately 2.5 GB and an estimated 450 million tokens. 
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4.3. Base Model Training and Parameters Setting 

Table 1. Base model parameters 

Parameters 
Smaller 

Configuration 

Default 

Configuration 

Vocabulary Size 128,256 128,256 

Context Length 1,024 131,072 

Token Embedding Dimension 512 2,048 

Number of Attention Heads per 

Transformer Layer 

16 32 

Number of Transformer Layers 

(Model Depth) 

4 16 

Hidden Dimension of the 

Feedforward Neural Network 

4,096 8,192 

Number of Key-Value Groups in 

Grouped-Query Attention 

8 8 

Base Scaling Factor for Rotary 

Positional Embedding (RoPE) 

3,906.25 500,000.0 

Frequency Scaling Factor for 

RoPE 

32.0 32.0 

Low-Frequency Component 

Scaling Factor for RoPE 

1.0 1.0 

   

High-Frequency Component 

Scaling Factor for RoPE 

4.0 4.0 

 

We implement a smaller-parameter variant of the LLaMA 

3.2 model, derived from the default 1B setup described in 

[9], with key modifications to improve training efficiency 

while preserving learning capacity. 

The vocabulary size is kept at 128,256, identical to the 

default configuration. This ensures compatibility with the 

original tokenizer and maintains consistency in token 

representation and processing. The context length is reduced 

from 131,072 to 1,024 tokens. This significantly lowers 

memory consumption and speeds up training while still 

allowing the model to capture meaningful contextual 

information for most training sequences. 

The token embedding dimension is decreased from 2,048 to 

512. This smaller embedding size reduces the number of 

parameters and computational complexity, making the 

model more suitable for smaller-scale training without 

drastically affecting its ability to learn semantic 

relationships. The number of attention heads per transformer 

layer is reduced from 32 to 16. While this simplifies the 

attention mechanism, it still provides sufficient diversity in 

attention perspectives to model contextual dependencies 

effectively. 

The number of transformer layers, or the model’s depth, is 

scaled down from 16 to 4. This reduction lowers training 

time and resource requirements while retaining enough 

capacity to model fundamental language structures. The 

hidden dimension of the feedforward neural network is 

halved from 8,192 to 4,096. This maintains a balance 

between model expressiveness and computational efficiency 

within each transformer block. 

The number of key-value groups used in grouped-query 

attention is kept at 8 in both configurations. This consistency 

ensures that the behaviour of the attention mechanism 

remains unchanged and stable. The RoPE (Rotary Positional 

Embedding) base scaling factor is decreased from 500,000.0 

to 3,906.25 to better align with the shorter context length. 

This adjustment ensures more precise positional encoding 

across shorter sequences. 

The RoPE frequency scaling factor remains at 32.0, 

preserving the original frequency encoding behaviour and 

ensuring consistency across configurations. Similarly, the 

low-frequency and high-frequency component scaling 

factors for RoPE are retained at 1.0 and 4.0, respectively. 

These values help maintain effective encoding of both long- 

and short-range positional dependencies, even within the 

smaller context window. 

Overall, these modifications create a lightweight and 

efficient version of the LLaMA 3.2 model that is well-suited 

for experimentation and resource-constrained environments, 

without significantly compromising its ability to model 

language effectively. 

 

Table 2. Base model training parameters 

Parameters Value 

Epoch 3 

Batch Size 25 

Optimizer AdamW with learning rate 0.0005 and 

weight decay 0.1 

Stride 512 

Warmup Steps 20% of the total steps 

Initial Learning Rate 0.00001 

Minimum Learning Rate 0.00001 

 

The base model was trained for 3 epochs using a batch size 

of 25. Training employed the AdamW optimizer with a 

maximum learning rate of 0.0005 and a weight decay of 0.1 

to promote generalization. The learning rate schedule 

followed a linear warmup, starting from an initial learning 

rate of 0.00001 and increasing to its peak over the first 20% 

of total training steps. Following warmup, the learning rate 

decayed linearly to a minimum of 0.00001. A stride size of 

512 was used to handle overlapping context windows 

efficiently during training. 
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4.4. Base Model Training Evaluation 

Fig. 4. Loss result from base model 

As shown in Fig. 4, both training and validation losses begin 

at approximately 12 at the start of the first epoch and drop 

sharply, indicating rapid initial learning. By the end of the 

first epoch, the losses stabilize around 2.5 and maintain this 

level throughout the remaining two epochs. This steady 

trend reflects a smooth and consistent training process. The 

close alignment between training and validation losses 

suggests strong generalization to unseen data, with no signs 

of overfitting—indicating a well-trained and effectively 

regularized model. 

4.5. Base Model Response Evaluation 

For response evaluation, no prompting techniques were 

applied to the base model. Evaluation focused on three 

primary criteria—human-likeness, consistency, and 

relevance—assessed at both the sentence and response 

levels. 

• Human-likeness evaluates fluency and naturalness within 

sentences and the coherence of full responses. 

• Consistency considers the logical structure, tone stability, 

and reliability of responses when identical queries are 

presented. 

• Relevance measures how directly and appropriately the 

content addresses the user's query while maintaining 

contextual alignment. 

The base model successfully meets all three evaluation 

criteria at both the sentence and response level. It generates 

responses that are fluent, polite, and natural-sounding, 

closely resembling human communication. The tone 

remains consistently helpful and professional, aligned with 

the system prompt. In terms of consistency, the base model 

maintains a coherent tone throughout each response and 

avoids contradicting earlier parts of the conversation. It also 

demonstrates a clear understanding of the user's intent and 

provides answers that align well with the query. Regarding 

relevance, the model produces contextually appropriate 

responses that directly address the user's questions without 

drifting off-topic or introducing unrelated information. The 

answers are concise yet informative, showcasing a strong 

grasp of the input prompt and overall conversation flow. 

4.6. Fine-tuning Design and Methods 

Fig. 5. Overview of the fine-tuned model training pipeline 

As illustrated in Fig. 5, the base model obtained in Section 

4.4 was further fine-tuned using two distinct methods: 

traditional fine-tuning and LoRA (Low-Rank Adaptation) 

fine-tuning. These approaches were implemented and 

evaluated to compare their performance, efficiency, and 

suitability for the target task. 

Traditional fine-tuning involves updating all parameters of 

the pretrained model to adapt it to a specific downstream 

task. The entire weight matrix is trainable, allowing the 

model to compute full-rank updates through standard 

backpropagation. This provides high flexibility and strong 

in-distribution performance, especially when the target task 

differs significantly from the original pretraining objective 

or when sufficient computational resources are available 

[16] [17]. However, this approach is computationally and 

memory intensive, which can be a limitation in resource-

constrained environments. Additionally, it may lead to 

overfitting on small datasets and can cause the model to lose 

generalization if fine-tuned too aggressively [18]. 

LoRA fine-tuning, in contrast, offers a parameter-efficient 

alternative by inserting two small, trainable low-rank 

matrices into the model while keeping the pretrained weights 

frozen. These matrices perform a low-rank decomposition 

that adjusts the model’s output without altering its core 

parameters. LoRA significantly reduces the number of 

trainable parameters, enabling efficient fine-tuning even on 

large models with limited hardware [17]. It helps preserve 

the integrity of pretrained features, reducing the risk of 

catastrophic forgetting and improving generalization [19]. 

Nevertheless, LoRA’s performance is sensitive to the choice 

of the rank parameter, and it may struggle to adapt to 

complex tasks that require extensive parameter 

reconfiguration [16] [17]. 
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4.7. Fine-tuned Model Data Preparation 

Fig. 6. Conversational data format for fine-tuned model  

The dataset used for fine-tuning was constructed through a 

careful process of curation, augmentation, and refinement to 

ensure quality and alignment with the model’s intended use. 

It integrates three high-quality sources: (1) ChatGPT-

generated Q&A samples and (2) the Bitext Customer 

Service Tagged Training Dataset [20]—both of which are 

domain-specific and tailored to customer service—and (3) 

the LaMini-instruction dataset [21], which provides general-

purpose instruction-following data. 

All entries were reformatted into a unified single-turn 

conversational structure, as illustrated in Fig. 6. Each sample 

includes a system prompt, a user query, and a corresponding 

assistant response. To guide model behaviour, different 

system prompts were applied based on the data source. For 

LaMini entries, the following general-purpose prompt was 

used: 

“You are a thoughtful assistant. For every task, think step-

by-step before answering. Identify the goal, plan the steps, 

explain your reasoning briefly, then give the answer. Always 

prioritize clarity and logical thinking. If something is 

unclear, ask for clarification first.” 

For both ChatGPT-generated and Bitext entries, a customer 

service–oriented prompt was applied: 

“You are a helpful and professional customer service agent 

for a property rental company. Your job is to answer client 

inquiries politely, clearly, and in a friendly, human-like 

manner.” 

In all samples, the role was standardized as “user” to ensure 

structural consistency across datasets. The query is treated 

as the user's question, and the answer is treated as the 

response from the assistant. The final formatted dataset was 

stored in an SQLite database of approximately 2.9 GB, 

totalling around 550 million tokens. 

4.8. Fine-tuned Model Training and Parameters Setting 

For traditional fine-tuning, the model parameters used are 

identical to those of the smaller base model configuration 

described in Section 4.3, as the fine-tuning process builds 

directly on top of the pretrained base model without 

modifying its architecture. Likewise, the training parameters 

remain consistent with those outlined in Section 4.3. This 

consistency ensures that any observed improvements in 

performance can be attributed to the updated training data 

rather than changes in the training procedure. 

For LoRA fine-tuning, the model configuration largely 

mirrors that of the smaller base model in Section 4.3, with 

the addition of one LoRA-specific parameter: rank. This 

parameter determines the dimensionality of the low-rank 

adaptation matrices inserted into each attention layer. A 

higher rank enables the model to learn more task-specific 

patterns but also increases the number of trainable 

parameters. In our experiments, we explored rank values of 

8 and 16 to evaluate the trade-offs between model 

performance and computational efficiency. All other 

training parameters were kept consistent with Section 4.3 to 

ensure a fair and controlled comparison across different fine-

tuning strategies. 

4.9. Fine-tuned Model Training Evaluation 

 

 

 

 

 

 

 

 

 

Fig. 7. Loss result from traditional fine-tuned model 

As illustrated in Fig. 7, both training and validation losses 

start at approximately 6.0 at the beginning of the first epoch. 

They exhibit a sharp decline early on, indicating rapid 

learning progress. By the midpoint of the first epoch, the 

losses stabilize around 1.4 and maintain this level 

consistently through to the end of the third epoch. This 

steady trend reflects a stable and effective training process. 

The close alignment between the training and validation 

losses suggests strong generalization to unseen data, with no 

signs of overfitting—characteristic of a well-optimized and 

robust model. 

 

 

 

 

 

 

 

Fig. 8. Loss result from LoRA fine-tuned model of rank 8 
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In Fig. 8, the loss trajectory for the LoRA fine-tuned model 

with rank 8 begins at approximately 5.5 for both training and 

validation. The losses decrease rapidly during the initial 

training phase, eventually stabilizing at around 2.5 (training) 

and 1.5 (validation). Although the losses remain stable 

throughout the training, the consistent gap between the two 

curves indicates mild overfitting. Despite slightly higher 

final loss values compared to traditional fine-tuning, the 

convergence remains steady, demonstrating that the LoRA 

method at rank 8 enables effective and efficient adaptation, 

with some overfitting. 

Fig. 9. Loss result from LoRA fine-tuned model of rank 16 

Fig. 9 presents the loss curves for the LoRA fine-tuning 

configuration with rank 16. The training and validation 

losses, again starting around 5.5, drop sharply in the early 

stages and level off at approximately 2.5 and 1.5, 

respectively. This stable progression continues throughout 

the training process. Similar to the rank 8 setup, the 

persistent gap between the losses reflects slight overfitting. 

Nonetheless, the consistent convergence suggests that the 

rank 16 LoRA configuration remains capable of delivering 

successful fine-tuning outcomes, albeit with minor 

overfitting effects. 

Overall, the evaluation highlights a clear trade-off between 

traditional and LoRA-based fine-tuning methods. 

Traditional fine-tuning achieves the best loss performance, 

converging to approximately 1.4 for both training and 

validation, indicating strong generalization and full model 

optimization. In contrast, LoRA-based fine-tuning—while 

exhibiting slightly higher final losses around 2.5 (training) 

and 1.5 (validation)—still shows stable convergence and 

efficient adaptation with significantly fewer trainable 

parameters. 

Notably, the comparable results between LoRA rank 8 and 

rank 16 suggest diminishing returns from increasing rank for 

this specific task and dataset. These findings reinforce 

LoRA's effectiveness as a lightweight fine-tuning strategy, 

offering a balance between computational efficiency and 

performance, particularly when full model tuning is not 

feasible. 

4.10. Fine-tuned Model Response Evaluation 

Fig. 10. Prompt template for fine-tuned model 

For response evaluation, Fig. 10 illustrates the prompt 

template used during both traditional and LoRA fine-tuning. 

This format mirrors the instruction-style QnA structure 

introduced in Fig. 6, but excludes the response field, as the 

model is expected to generate it. The prompt begins with the 

system role, which is assigned the following instruction:  

“You are a helpful and professional customer service agent 

for a property rental company. Your job is to answer client 

inquiries politely, clearly, and in a friendly, human-like 

manner.” 

Next, the user's input is included. For consistency with the 

training setup described in Section 4.6, all user roles are 

unified under a single identifier, “user”. The assistant role 

follows, with the response left blank to allow the model to 

generate it during inference. Evaluation followed the same 

criteria outlined in Section 4.5: human-likeness, 

consistency, and relevance, assessed at both the sentence and 

response levels. 

Table 3. Fine-tuned model response evaluation 

Model Responses 

Traditional fine-tuned 

model 

sentence-level and response-level 

consistency, sentence-level and response 

level relevance, sentence-level and 

response-level human-likeness 

LoRA fine-tuned model 

(rank 8) 

sentence-level human-likeness 

LoRA fine-tuned model 

(rank 16) 

sentence-level human-likeness 

 

The traditional fine-tuned model demonstrates strong, well-

rounded performance across all evaluation criteria. It 

consistently produces fluent, natural, and stylistically 

appropriate responses that align with professional customer 

service standards. Its outputs exhibit a clear logical flow and 

coherence, with high relevance at both the sentence and 

response levels—making it the most effective among the 

evaluated models. 

In contrast, the LoRA fine-tuned model with rank 8 performs 

adequately at the sentence level, generating grammatically 
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correct and human-like sentences. However, it struggles to 

maintain global coherence and relevance throughout the full 

response, occasionally drifting from the query’s main intent. 

The rank 16 LoRA model follows a similar pattern: while it 

generates natural-sounding individual sentences, its overall 

response quality is hindered by a lack of consistency and 

focus. These results emphasize a clear performance 

distinction between fine-tuning approaches. Traditional 

fine-tuning, with its full-parameter updates, yields the most 

contextually accurate, coherent, and human-like 

responses—effectively capturing both granular and holistic 

aspects of dialogue. In contrast, LoRA-based fine-tuning 

offers a parameter-efficient solution but falls short in 

achieving full response-level consistency and relevance. 

Interestingly, increasing the LoRA rank from 8 to 16 

provides no measurable improvement in output quality, 

suggesting that higher rank alone does not resolve its 

architectural limitations. To bring LoRA-based models 

closer to the holistic capabilities of traditional fine-tuning, 

further refinement may be required. 

4.11. Best Fine-tuned Model Accepted 

Based on a comprehensive evaluation of both training 

dynamics and response quality, the traditional fine-tuned 

model emerges as the optimal choice. It achieves the lowest 

final loss (1.4) for both training and validation, reflecting 

superior learning efficiency compared to the LoRA variants, 

which converge at approximately 2.5 (training) and 1.5 

(validation). More importantly, the traditional model 

consistently generates responses that are human-like, 

coherent, and contextually relevant at both the sentence and 

response levels. In contrast, while the LoRA models (rank 8 

and 16) demonstrate parameter efficiency and stable training 

behaviour, their strengths are limited to sentence-level 

human-likeness. Their full responses lack both consistency 

and relevance, significantly affecting overall quality. 

Notably, increasing the LoRA rank from 8 to 16 offers no 

substantial improvement in loss reduction or output 

refinement, indicating diminishing returns for higher-rank 

configurations in this task. These findings highlight a clear 

trade-off: while LoRA offers resource efficiency, it comes at 

the expense of output quality. For applications where 

precision, coherence, and natural responsiveness are critical, 

the traditional fine-tuned model remains the most reliable 

and deployment-ready option. 

4.12. Reinforcement Learning Design and Methods 

 

 

 

 

 

 

 

 

Fig. 11. Overview of the reinforcement learning pipeline 

Following the development and evaluation of various fine-

tuned models, the traditional fine-tuning approach was 

identified as the best-performing method. To further 

enhance this model's alignment with domain-specific human 

preferences, we apply reinforcement learning, specifically 

Identity Preference Optimization (IPO) [22]. IPO is a direct 

preference-based learning framework that optimizes model 

outputs based on comparisons between preferred (chosen) 

and less preferred (rejected) responses. In addition to the 

standard IPO setup, we integrate two reinforcement learning 

strategies: Exponential Moving Average (EMA) and the 

Checkpointed Mentor Strategy, resulting in three distinct 

training variants: Normal IPO, EMA IPO, and Checkpoint 

IPO. 

Normal IPO serves as the baseline reinforcement learning 

approach. It directly updates the policy model by comparing 

the log-likelihoods of chosen and rejected responses relative 

to a static reference model. The training objective maximizes 

the preference-aligned likelihood while constraining 

deviations from the reference, ensuring output stability. This 

method avoids the need for reward models or value 

estimators, making it both stable and interpretable [22]. 

EMA IPO introduces an Exponential Moving Average 

mechanism [23] to improve the stability and generalization 

of the training process. An EMA version of the policy model 

is maintained throughout training by averaging the model 

weights over time. This smoothed model, rather than the raw 

policy, is typically used for inference and evaluation, 

offering robustness against noisy gradient updates and 

preventing overfitting to volatile preference samples. 

Checkpoint IPO addresses the limitations of a static 

reference model by incorporating a Checkpointed Mentor 

Strategy [24]. In this method, the reference model is 

periodically updated with a snapshot of the current policy 

model. This dynamic update allows the optimization process 
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to evolve alongside the improving policy, avoiding both 

stagnation and over-regularization. As a result, the learning 

signal remains meaningful over time, supporting continued 

improvement in response quality. 

These three configurations allow us to explore how 

enhancements in stability and adaptivity influence the 

effectiveness of preference-based reinforcement learning in 

a domain-specific customer service setting. 

4.13. Reinforcement Learning Model Data Preparation 

To enable Identity Preference Optimization (IPO) training, 

we constructed a preference-based dataset composed of 

question–answer (Q&A) samples, each featuring a chosen 

and rejected response. The initial dataset was derived by 

paraphrasing GPT-generated Q&As from the instruction 

fine-tuning dataset, as described in Section 4.7. These Q&As 

were reformulated and evaluated using the Ollama model, 

which generated alternative answers for each prompt. 

For each prompt-response pair, if Ollama's response was 

deemed preferable to the original, it was labelled as chosen, 

and the original was labelled as rejected—and vice versa. 

This process produced approximately 20,000 Q&A samples. 

To further enhance the dataset and diversify domain 

coverage, we generated an additional 10,000 Q&A pairs 

using Ollama. These were contextually grounded in the 

domain of our collaborators, specifically covering three user 

roles: tenant, owner, and prospect. Each generated 

conversation included clearly marked preferred (chosen) and 

non-preferred (rejected) answers. 

All preference data were structured using a prompt-response 

format inspired by Figure 6, which includes a fixed system 

prompt: 

“You are a helpful and professional customer service agent 

for a property rental company. Your job is to answer client 

inquiries politely, clearly, and in a friendly, human-like 

manner.” 

In contrast to earlier instruction-tuning datasets where the 

role was always “user,” this dataset includes dynamic role 

assignments based on the specific conversational context 

(tenant, owner, or prospect). For every Q&A pair, two 

prompts were prepared—one with the chosen response and 

one with the rejected response—to enable direct preference 

learning during IPO training. The full dataset was stored in 

an SQLite database, totalling approximately 50MB and 

comprising around 10 million tokens.  

4.14. Reinforcement Learning Model Training and 

Parameters Setting 

The reinforcement learning process builds directly on the 

traditionally fine-tuned model without altering its 

architecture. Therefore, the model configuration remains 

consistent with the smaller base model setup previously 

described in Section 4.3. However, the training parameters 

used during the reinforcement learning phase are specifically 

tailored to suit the preference optimization framework and 

ensure stable convergence. 

Table 4. Reinforcement learning model training parameters 

Parameters Value 

Epoch 3 

Batch Size 20 

Optimizer AdamW with learning rate 0.00001 

and weight decay 0.01 

Warmup Steps 20% of the total steps 

Initial Learning Rate 0.000001 

Minimum Learning 

Rate 

0.000001 

Update Interval 

Percentage 

0.3 

EMA rate 0.99 

Beta 0.5 

 

Training was conducted for 3 epochs with a batch size of 20, 

ensuring sufficient iterations over the preference dataset 

without overfitting. The model was optimized using the 

AdamW optimizer, combining adaptive learning with L2 

regularization via a weight decay of 0.01, which helps 

maintain generalization. The learning rate was set to 1e-5 

(0.00001) for the main updates, while both the initial and 

minimum learning rates were fixed at 1e-6 (0.000001) to 

avoid vanishing gradients and support gradual convergence. 

A warmup phase was introduced over the first 20% of 

training steps, during which the learning rate increased 

linearly, allowing the optimizer to stabilize before reaching 

full-scale updates. This strategy helps reduce training 

volatility in early iterations, particularly when learning from 

noisy preference signals. 

For the EMA IPO variant, an Exponential Moving Average 

(EMA) rate of 0.99 was used to maintain a smoothed version 

of the policy weights. This averaged policy helps reduce 

variance from noisy updates and improves the stability of 

model predictions during inference. 

For the Checkpoint IPO variant, we employed an update 

interval percentage of 0.3, meaning the reference model is 

synchronized with the current policy every 30% of an epoch. 

This parameter controls how closely the reference model 

tracks the evolving policy.  

Finally, a β (beta) parameter of 0.5 was used in the IPO loss 

formulation to balance the strength of the preference signal 

and the KL-divergence constraint, ensuring the updated 

policy remains aligned with the reference model while 

favouring preferred responses. 

These parameter configurations collectively enabled a 

stable, effective reinforcement learning process across the 

different IPO strategies. 
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4.15. Reinforcement Learning Model Training 

Evaluation 

 

Fig. 12. Loss result from model with Normal IPO 

Fig. 12 shows the training and validation loss trends for the 

model trained with Normal IPO. Both losses decreased 

rapidly within the first half of the first epoch, dropping from 

approximately 1.0 to 0.7. After this initial decline, the losses 

stabilized around 0.7 and remained consistent through the 

end of the third epoch. There was no indication of 

overfitting, as the training and validation losses closely 

tracked each other throughout the training process. 

Fig. 13. Loss result from model with Checkpoint IPO 

Fig. 13 illustrates the loss progression during training with 

the Checkpoint IPO variant. Both training and validation 

losses initially dropped sharply in the early stages of the first 

epoch, falling from around 1.0 to approximately 0.86. 

However, after this decline, the losses increased back to 

around 0.96 and fluctuated slightly around 1.0 for the 

remainder of the training. Despite these fluctuations, there 

was no sign of overfitting, as the training and validation 

losses remained closely aligned throughout the three epochs. 

 

Fig. 14. Loss result from model with EMA IPO 

Fig. 14 presents the loss curves for the model trained using 

the EMA IPO approach. The training and validation losses 

initially dropped from around 1.0 to approximately 0.7 

during the first half of the first epoch. Following this initial 

improvement, the losses stabilized and fluctuated slightly 

around 0.75 for the remainder of the training. No signs of 

overfitting were observed, as the training and validation 

losses closely mirrored each other across all epochs. 

Across the three reinforcement learning strategies evaluated, 

all models demonstrated effective learning without evidence 

of overfitting, as training and validation losses remained 

closely aligned throughout training. The model trained with 

normal IPO showed the best performance, with a rapid initial 

drop in loss followed by smooth and stable convergence, 

indicating consistent and reliable optimization. The model 

trained with the Checkpointed Mentor Strategy exhibited 

early improvements but suffered from a rise and persistent 

fluctuations in loss, suggesting less stable training dynamics. 

Meanwhile, the model trained with Exponential Moving 

Average (EMA) achieved early convergence but showed 

slightly more variability compared to the normal IPO. Based 

on these observations, while all approaches are viable for 

IPO-based reinforcement learning, the normal IPO strategy 

achieved the most stable and reliable training performance 

overall. 

4.16. Reinforcement Learning Model Response 

Evaluation 

For response evaluation, the prompt format remained 

consistent with the structure described in Section 4.10, with 

one key modification: instead of a fixed role label “user,” the 

role field was dynamically assigned based on the contextual 

identity of the speaker—either tenant, owner, or prospect. 

This adjustment better reflects the diversity of real-world 

interactions and allows the model to tailor its responses more 

effectively to role-specific expectations. Evaluation was 

conducted using the criteria established in Section 4.5, 
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assessing human-likeness, consistency, and relevance at 

both the sentence and response levels. 

Table 5. Reinforcement learning model response evaluation 

Model Responses 

Model with Normal IPO sentence-level and response-level 

consistency, sentence-level and response-

level human-likeness, sentence-level and 

response level relevance 

Model with Checkpoint 

IPO 

sentence-level consistency, sentence-level 

and response-level human-likeness, 

sentence-level relevance 

Model with EMA IPO sentence-level and response-level 

consistency, sentence-level human-

likeness, sentence-level relevance 

 

The model trained with Normal IPO exhibits the strongest 

overall performance. It successfully mirrors the quality 

benchmarks established by the traditional fine-tuned model. 

Responses generated under this strategy are consistently 

human-like, contextually appropriate, and coherent at both 

sentence and full-response levels. The model demonstrates 

strong logical progression, role-awareness, and customer 

service tone, fulfilling the criteria of consistency and 

relevance across granular and holistic scopes. This makes it 

the most robust reinforcement learning configuration 

evaluated. 

The Checkpoint IPO model delivers mixed results. It retains 

sentence-level consistency and demonstrates strong human-

likeness at both the sentence and response levels. However, 

its performance begins to falter when considering full-

response structure and topical coherence. While individual 

sentences may sound natural and professional, the model 

sometimes fails to maintain alignment with the user's query 

across the entire response, leading to a noticeable drop in 

response-level relevance and consistency. This suggests 

instability in the reward signal due to less frequent reference 

model updates. 

The model using EMA IPO shows moderate success. It 

preserves sentence-level and response-level consistency, 

suggesting a stable structural output. Additionally, it 

maintains sentence-level human-likeness and relevance. 

However, it underperforms in achieving full response-level 

human-likeness and relevance, where responses 

occasionally veer off-topic or lack emotional nuance. This 

indicates that while EMA provides smoother guidance than 

the checkpoint strategy, it may dampen the distinctiveness 

of preferred behaviours in the reward signal. 

In conclusion, among the three reinforcement learning 

strategies tested, Standard IPO emerges as the most effective 

at maintaining the response quality achieved during fine-

tuning. It successfully carries forward the sentence- and 

response-level integrity necessary for high-quality customer 

service dialogue. In contrast, both Checkpoint IPO and EMA 

IPO reveal trade-offs between stability and adaptation, 

failing to fully preserve global response-level qualities. 

These findings highlight that while reinforcement learning 

adds potential for further customization and preference 

alignment, careful selection and tuning of the reward 

strategy is crucial to avoid degradation in output quality. 

4.17. Best Reinforcement Learning Model Accepted 

Based on a comprehensive assessment of both training 

dynamics and response quality, the model trained with 

Normal IPO emerges as the most effective and reliable 

reinforcement learning configuration. It demonstrated a 

smooth and stable loss trajectory, with a rapid initial drop 

followed by consistent convergence, and maintained strong 

performance across all evaluation metrics—achieving 

sentence-level and response-level consistency, human-

likeness, and relevance comparable to the original fine-tuned 

baseline. In contrast, the Checkpoint IPO model exhibited 

unstable training behaviour, marked by early loss reduction 

followed by fluctuations, and struggled to preserve 

response-level consistency and topical relevance. The EMA 

IPO model showed more stable training than the 

checkpointed approach and retained local coherence and 

stylistic fluency, but still underperformed at the full-

response level. These findings highlight Normal IPO as the 

only strategy capable of preserving the nuanced, high-

quality outputs of the fine-tuned model while benefiting 

from reinforcement learning, making it the best-performing 

and most deployment-ready option among the 

configurations tested. 

5. Conclusion 

5.1. Achievement 

This objective was successfully achieved. We developed a 

domain-specific LLM from scratch that demonstrated strong 

capabilities in producing coherent and engaging customer 

support responses. Notably, the traditionally fine-tuned 

model and Normal IPO reinforcement learning model stood 

out in terms of response quality. It consistently met all 

evaluation criteria—relevance, consistency, and human-

likeness—at both the sentence and full-response levels, 

making them the most effective model in our study. 

5.2. Discussion 

Despite utilizing a relatively small base model and a modest 

pretraining dataset of only 450 million tokens, the model 

delivered strong foundational performance. This can likely 

be attributed to the conversational format of the data, which 

provides structural consistency and dialogue patterns. Such 

structured inputs may offer more efficient learning signals 

than traditional pretraining corpora, which are often 

heterogeneous in format and content. 

In the instruction tuning phase, we expanded the training 

data significantly to approximately 550 million tokens. 

Here, traditional fine-tuning clearly outperformed 

parameter-efficient LoRA fine-tuning. While LoRA offers 

advantages in terms of memory and compute efficiency, our 
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results suggest that its lightweight adapter architecture was 

insufficient to fully capture the richness and diversity of the 

instruction dataset. Traditional fine-tuning, which updates 

all model parameters, allowed for deeper integration of 

instruction-following behavior, resulting in superior 

response quality across multiple evaluation dimensions. 

During the reinforcement learning phase, Identity 

Preference Optimization (IPO) was applied using a more 

targeted, domain-specific dataset of around 10 million 

tokens. Among the three strategies tested—Normal IPO, 

Checkpoint IPO, and EMA IPO—only Normal IPO was able 

to preserve the high response quality achieved by the 

original fine-tuned model. It maintained stable loss 

convergence and consistently produced outputs that were 

coherent, relevant, and human-like at both the sentence and 

response levels. 

In contrast, the Checkpoint and EMA variants struggled to 

maintain training stability and output quality. Both methods 

showed increased loss fluctuations and failed to preserve 

full-response coherence and topical alignment. A likely 

explanation lies in the combination of limited reinforcement 

learning data and the destabilizing effects of an evolving 

reference model. In the case of Checkpoint IPO, infrequent 

updates may have caused the reference to drift too far from 

the policy, while in EMA IPO, the overly tight coupling may 

have diluted the learning signal. These outcomes underscore 

the importance of carefully balancing reference stability and 

learning dynamics in preference-based reinforcement 

learning. 

5.3. Future Works 

One of the crucial directions for future work is to 

significantly increase the size of the datasets used across all 

stages—pretraining, fine-tuning, and reinforcement 

learning. A larger and more diverse dataset would improve 

language fluency, domain understanding, and the ability to 

capture subtle user preferences, ultimately leading to more 

capable and contextually aware models. 

Another promising avenue is to explore alternative 

reinforcement learning strategies beyond Identity Preference 

Optimization (IPO). While Normal IPO demonstrated an 

ability to preserve response quality in this project, the 

Checkpoint and EMA variants highlighted potential pitfalls 

in reinforcement learning design. Techniques such as 

Reinforcement Learning with Human Feedback (RLHF), 

Direct Preference Optimization (DPO), or reward modelling 

based on human-annotated quality scores could offer more 

flexible and adaptive methods for improving conversational 

abilities. These alternatives may better balance optimization 

stability with the capacity to learn nuanced conversational 

behaviours, helping models generalize to diverse and 

realistic user interactions. 

In addition to expanding data and revisiting learning 

strategies, future work should consider integrating human-

in-the-loop feedback during training. Real-time or post-hoc 

evaluations by human annotators can provide more accurate 

and granular assessments of response quality, including 

tone, helpfulness, and user satisfaction. This feedback can 

be used to refine reward functions or guide policy updates in 

a more targeted manner, improving alignment with actual 

user expectations. 

Lastly, applying more advanced fine-tuning techniques—

such as QLoRA, AdaLoRA, or other parameter-efficient 

methods—could offer a middle ground between 

computational efficiency and training effectiveness. These 

methods may help retain the benefits of full fine-tuning 

while reducing resource demands, particularly when scaling 

up model sizes or incorporating continual learning pipelines. 
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