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Abstract—Dust accumulation on photovoltaic (PV) panels reduces efficiency by 2–98%, necessitating effective 

cleaning strategies. This paper reviews current methodologies—manual, water-based, robotic, electrostatic, 

coating-based, and bio-inspired systems—evaluating their advantages, limitations, and sustainability. Using the 

Preference Selection Index (PSI) approach, waterless methods like electrostatic and coating-based cleaning rank 

highly for arid regions (Obeidat, 2020). However, high costs, maintenance complexity, and limited empirical 

data hinder scalability. Emerging IoT-integrated smart systems and machine learning (ML) for predictive 

maintenance show promise but require validation. Future directions include durable coatings, cost-effective 

automation and standardized metrics to enhance PV performance. This study provides a roadmap for optimizing 

cleaning strategies, addressing environmental and economic challenges in solar energy production. 

Keywords— Photovoltaic panels, dust accumulation, cleaning methodologies, self-cleaning coatings, 

automation, sustainability. 

I. INTRODUCTION 

Solar photovoltaic (PV) panels are highly dependent 

on the availability of unobstructed sunlight to 

generate electricity efficiently. However, in real-

world conditions, the accumulation of dust, dirt, bird 

droppings, pollen, and other environmental pollutants 

on the surface of panels reduces their ability to absorb 

solar radiation, leading to a decline in energy output. 

This issue, commonly referred to as soiling, is more 

severe in regions with arid climates, high dust levels, 

or limited rainfall. To ensure optimal performance 

and extend the lifespan of PV systems, regular 

cleaning and maintenance of solar panels are 

essential. The choice of cleaning methodology plays a 

crucial role, as improper techniques may damage 

panel surfaces, increase maintenance costs, or waste 

water resources. Cleaning methods generally include 

manual cleaning, automated systems, water-based 

cleaning, dry cleaning, robotic cleaning, and 

advanced methods such as electrostatic or 

nanocoating-based self-cleaning technologies. Each 

method has its advantages and limitations depending 

on climatic conditions, panel location, and scale of 

the PV installation. 

II. METHODOLOGY 

This study employs a systematic review and 

analytical approach to evaluate PV cleaning 

methodologies. Data Collection: Peer-reviewed 

articles from 1942–2024 were sourced from Scopus, 

Web of Science, and IOP science, covering dust 

impacts, cleaning technologies, and decision-making 

frameworks. References include Sarver et al. (2013), 

Obeidat (2020), and Nabti et al. (2022). Analysis 

Framework: Cleaning methods were categorized into 

manual, water-based, robotic, electrostatic, coating-

based, and bio-inspired systems. Each was assessed 

using Obeidat’s (2020) PSI criteria: cost, efficiency, 

resource use, and safety. Comparative Evaluation: 

Pros and cons were quantified based on efficiency 

gains (e.g., 10–49%) and limitations (e.g., high costs, 

water dependency) from references like Said et al. 

(2024) and Virtanen et al. (2023). Future Directions: 

Emerging technologies (IoT, ML, durable coatings) 

were analyzed for scalability and sustainability, 
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drawing on Nabti et al. (2022) and Geetha et al. 

(2024). MCDM principles were integrated to propose 

a decision-making framework for selecting optimal 

cleaning methods across diverse environments. 

 

 
 

Fig 1. Working of Solar Panel 

 

III. RESULTS AND DISCUSSION 

A. Current Cleaning Technologies 

This section evaluates six primary cleaning 

methodologies, providing detailed insights into their 

performance, cost-effectiveness, environmental 

impact, and applicability across diverse climatic 

conditions. Quantitative data and regional case 

studies are included to highlight practical 

implications. 

1) Manual Cleaning 

Pros: Manual cleaning is cost-effective in terms of 

initial investment, requiring minimal equipment (e.g., 

brushes, squeegees). It is widely accessible, 

particularly for small-scale PV installations in rural or 

developing regions (Obeidat, 2020).   

Cons: The process is highly labor-intensive, requiring 

frequent cleaning (weekly in high-soiling areas like 

deserts), which increases operational costs over time. 

Safety risks are significant, as workers must access 

elevated panels, leading to potential accidents. 

Inconsistent cleaning quality due to human error can 

result in uneven efficiency restoration (Maghami et 

al., 2016).   

Efficiency: Restores 90–95% of original power 

output, but performance varies with operator skill and 

soiling severity. In a Saudi Arabian case study, 

Adinoyi and Said (2013) reported that manual 

cleaning restored 92% efficiency but required 10 

labor hours per 100 m².   

Suitability: Best suited for small-scale systems in 

low-soiling, water-abundant regions (e.g., parts of 

Europe). Impractical for large-scale installations in 

arid climates due to labor costs and safety concerns. 

 

Fig 2. Manual Cleaning 

2) Water-Based Cleaning 

Pros: Highly effective for removing heavy soiling, 

including sticky pollutants like pollen or bird 

droppings. Water jets or sprinklers restore near-full 

efficiency, making it a reliable method for urban 

environments with access to water (Said et al., 2024).   

Cons: High water consumption (10–20 liters/m² per 

cleaning) makes it unsustainable in arid regions like 

the Middle East, where water scarcity is a critical 

issue (Syafiq et al., 2018). Environmental impacts 

include wastewater runoff, which may contain 

cleaning agents harmful to soil ecosystems. 

Operational costs escalate in regions requiring water 

transport.   

Efficiency: Achieves up to 98% efficiency 

restoration, as demonstrated in a California study by 

Mejia and Kleissl (2013), where water-based cleaning 

restored 97% output in urban PV systems. However, 

frequent cleaning (bi-weekly in dusty areas) increases 

resource use.   

Suitability: Viable in water-abundant regions like 

Southeast Asia or coastal areas but impractical for 

desert environments. The environmental footprint 

limits its alignment with sustainability goals. 

 

Fig 3. Water Based Cleaning 

3) Robotic Cleaning 

Pros: Robotic systems automate cleaning, reducing 

labor costs and human safety risks. They ensure 

consistent cleaning quality, with efficiency gains of 

15–32% post-cleaning, as reported in desert 

installations (Sairaj et al., 2023; Al-Housani et al., 
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2019). Systems like brush-based robots (BCS) or 

tracked robots (RCS) are effective for large-scale PV 

farms.   

Cons: High initial costs (e.g., $10,000–$50,000 per 

unit) and maintenance expenses (e.g., battery 

replacements, mechanical repairs) limit adoption for 

small-scale systems. Slow operation speeds (1–2 

m²/min) and complex handling requirements increase 

downtime. In a UAE case study, Al-Housani et al. 

(2019) noted that robotic systems required bi-annual 

maintenance costing 5% of initial investment.   

Efficiency: Restores 90–95% efficiency, with 

consistent results across large arrays. Farrokhi 

Derakhshandeh et al. (2021) reported a 25% yield 

increase in a Saudi PV farm using robotic cleaners.   

Suitability: Ideal for large-scale desert installations 

(e.g., Middle East, Australia), but cost optimization is 

needed for broader adoption. Hybrid systems 

combining robots with IoT monitoring are emerging 

to enhance efficiency. 

 

Fig 4. Robotic Cleaning 

4) Electrostatic Cleaning 

Pros: Electrostatic cleaning systems (ECS) use 

electric fields to repel dust, eliminating water use and 

minimizing maintenance. They are highly effective in 

arid regions, with yield improvements of up to 32% 

(Said et al., 2024). Deb and Brahnam (2022) 

highlight their low operational costs once installed, as 

they require no moving parts.   

Cons: High voltage requirements (5–10 kV) pose 

safety risks and increase installation complexity. 

Scalability is limited by the need for specialized 

infrastructure, and performance in humid climates is 

reduced due to dust adhesion from moisture (Hu et 

al., 2021). A Chinese study reported a 20% efficiency 

drop in ECS performance during high-humidity 

seasons (Hu et al., 2021).   

Efficiency: Restores 85–90% efficiency, with optimal 

performance in dry climates. Said et al. (2024) 

documented a 30% yield increase in a Qatar PV plant 

using ECS.   

Suitability: Promising for arid regions like North 

Africa and the Middle East, but technological 

refinements (e.g., voltage optimization, humidity 

resistance) are needed to enhance scalability and 

safety. 

 

5) Self-Cleaning Coatings 

Pros: Superhydrophobic and photocatalytic coatings 

reduce dust adhesion, minimizing cleaning frequency 

and water use. They achieve 10–35% yield 

improvements compared to untreated panels, 

particularly in arid environments (Virtanen et al., 

2023; Geetha et al., 2024). Nano-coatings align with 

sustainability goals by reducing labor and resource 

consumption.   

 

Fig 5. Electrostatic Cleaning 

Cons: Limited durability (1–3 years) requires 

frequent reapplication, increasing long-term costs 

(estimated at $5–10/m² per application). Performance 

in humid climates is suboptimal, as moisture 

promotes dust adhesion (Syafiq et al., 2018). A 

Malaysian study showed a 15% performance drop in 

coated panels during rainy seasons (Sulaiman et al., 

2011).   

Efficiency: Reduces soiling rates by 50–70%, 

extending cleaning intervals. Geetha et al. (2024) 

reported a 20% yield increase in an Indian PV plant 

using nano-coatings.   

Suitability: Ideal for arid regions (e.g., Middle East, 

Australia), but cost reduction and durability 

improvements are critical for widespread adoption. 

Hybrid coatings combining hydrophobic and 

photocatalytic properties are under development. 

Self-cleaning coatings on solar panels are advanced 

surface treatments designed to minimize the 

accumulation of dust, dirt, bird droppings, and other 

contaminants that reduce panel efficiency. Since solar 

panels are typically exposed to outdoor environments 

for decades, soiling is one of the major issues that 

decreases their energy output. Self-cleaning coatings 

address this problem by using nanotechnology-based 

surface modifications that make the panel surface 

either superhydrophobic (water-repelling) or 

photocatalytic (self-degrading organic dirt). 



International Journal of Intelligent Systems and Applications in Engineering                              IJISAE, 2024, 12(1), 913–919  |916 

 

 

Fig 6. Schematic representation of self-cleaning 

processes on (a) a superhydrophilic and (b) a 

superhydrophobic surface [6] 

6) Bio-Inspired Vibration-Based Cleaning 

Pros: Mimics natural dust removal (e.g., tree leaf 

vibrations), offering a waterless, sustainable solution. 

Abd-Elhady et al. (2024) demonstrated a flexible 

fixation system that reduced efficiency losses to 5% 

after six weeks, compared to 25% for rigid panels, 

using wind-induced vibrations. This method aligns 

with environmental sustainability by eliminating 

resource use.   

Cons: Long-term durability is untested, with potential 

risks of mechanical fatigue or hot-spot formation due 

to continuous vibrations. Limited field data restricts 

scalability, and performance depends on wind 

availability, making it less effective in low-wind 

regions (Deb & Brahnam, 2022). An Egyptian pilot 

study showed inconsistent results during calm 

seasons (Abd-Elhady et al., 2024).   

Efficiency: Maintains 90–95% efficiency in windy 

conditions. Simulations using Ansys Fluent CFD 

predicted a 60% reduction in dust accumulation 

(Abd-Elhady et al., 2024).   

Suitability: Innovative for windy, arid regions (e.g., 

Sahara, Middle East), but requires validation for 

panel longevity and broader climatic applicability. 

Integration with smart sensors could enhance 

performance. 

 

Fig 7. Bio-Inspired Vibration-Based Cleaning 

B. Decision-Making Frameworks 

Obeidat’s (2020) PSI approach ranks cleaning 

methods based on weighted criteria: cost (30%), 

efficiency (30%), resource use (20%), and safety 

(20%). Waterless methods (electrostatic, coatings) 

score highest (0.85–0.90 on a 0–1 scale) due to low 

resource use and safety, while manual and water-

based methods score lower (0.60–0.70) due to labor 

and environmental drawbacks. MCDM methods like 

Analytic Hierarchy Process (AHP) and Fuzzy 

TOPSIS, as proposed by Sindhu et al. (2017), 

integrate quantitative and qualitative factors, enabling 

region-specific optimization. For example, AHP 

prioritizes electrostatic cleaning in Qatar (score: 0.88) 

but robotic cleaning in California (score: 0.82) based 

on water availability and installation size. However, 

empirical cost data are often inaccurate (e.g., robotic 

maintenance costs vary by 20–30%), and 

standardized performance metrics are absent, limiting 

MCDM adoption (Deb & Brahnam, 2022). 

Developing global standards for soiling loss 

measurement (e.g., daily efficiency drop %) and 

cleaning efficacy (e.g., % yield restored) is critical to 

enhance decision-making reliability. 

C. Emerging Technologies 

IoT and machine learning (ML) technologies 

revolutionize PV maintenance by enabling predictive 

and real-time cleaning. Nabti et al. (2022) 

demonstrated ML models (Random Forest, SVM) 

predicting dust levels with R² > 0.99, using inputs 

like humidity, wind speed, and particulate matter. In a 

Moroccan case study, ML-driven cleaning schedules 

reduced water use by 40% and costs by 25% 

compared to fixed schedules. IoT sensors, as 

proposed by Olorunfemi et al. (2022), monitor soiling 

in real-time, triggering cleaning only when efficiency 

drops below 10%. A UAE pilot project reported a 

15% yield increase using IoT-integrated robotic 

cleaners (Olorunfemi et al., 2022). However, 

scalability is limited by high sensor costs ($100–

500/unit) and data quality issues in diverse climates 

(e.g., tropical vs. arid). Farrokhi Derakhshandeh et al. 

(2021) highlight hybrid systems combining IoT with 

electrostatic cleaning, achieving 30% efficiency gains 

in desert environments, but standardization of sensor 

protocols is needed to ensure interoperability and 

cost-effectiveness across regions. 

D. Comparative Analysis 

Waterless methods (electrostatic, coatings, vibration-

based) outperform traditional systems in arid regions 

due to sustainability and low maintenance, with PSI 

scores of 0.85–0.90 (Obeidat, 2020). For example, 

electrostatic cleaning in Qatar restored 32% yield 

with zero water use, compared to 98% restoration but 

15 liters/m² for water-based cleaning (Said et al., 

2024). Robotic systems are efficient (15–32% gains) 

but economically viable only for large installations 

(>1 MW), with payback periods of 5–7 years (Al-

Housani et al., 2019). Manual and water-based 

methods remain prevalent in water-abundant regions 

(e.g., Southeast Asia), but their global sustainability 

is limited, with water-based systems consuming 10–

20 liters/m² per cleaning cycle (Syafiq et al., 2018). 
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Emerging technologies like ML and IoT enhance all 

methods by optimizing schedules, but their high 

initial costs (e.g., $10,000 for IoT setups) restrict 

adoption to large-scale projects. Regional factors, 

such as dust composition (e.g., CaCO3 in China) and 

humidity, necessitate tailored solutions (Hu et al., 

2021). Comparative analysis of different methods is 

done in reference of different seasons. Comparison of 

different methods is as follows: 

 
TABLE 1.  COMPARISON OF DIFFERENT  METHODS 

Study Findings Gaps 

Sarver et 

al., 2013 

Dust causes 1–80% 

monthly energy 

losses; influenced 

by wind, humidity, 

dust properties. 

Lack of predictive 

models and 

scalable waterless 

cleaning 

technologies. 

Maghami 

et al., 

2016 

Dust causes 30% 

efficiency loss; 

site-specific factors 

(dust, rainfall) 

critical in arid 

regions. 

Gaps in 

standardized 

cleaning protocols 

and long-term 

coating durability. 

Obeidat, 

2020 

PSI ranks waterless 

methods 

(electrostatic, 

coatings) high for 

cost, efficiency, 

resource use, 

safety. 

Inaccurate cost 

data; limited 

empirical 

validation for 

scalability. 

Hu et al., 

2021 

Dust (nano, micro, 

coarse particles, 

CaCO3) reduces 

efficiency by 30% 

in Wuhan, China. 

Lack of field-

validated cost 

data and scaling 

mechanisms for 

diverse climates. 

Deb & 

Brahnam, 

2022 

Categorizes 

methods into 

preventive 

(coatings) and 

restorative 

(robotic, 

electrostatic); IoT 

promising. 

Limited field 

data, high costs 

hinder scalability; 

need for 

standardized 

metrics. 

Nabti et 

al., 2022 

ML models 

(Random Forest, 

SVM) predict dust 

with R² > 0.99; 

reduces costs, 

water use. 

Scalability limited 

by data quality 

and diverse 

climate 

adaptability. 

Khalid et 

al., 2023 

Power losses of 7–

98.13% under 

severe soiling; 

Eco-friendly, 

cost-effective 

waterless 

robotic cleaning 

improves 

efficiency by 

49.53%. 

solutions needed 

for arid regions. 

Said et al., 

2024 

Daily energy losses 

of 2.8–50%; 

electrostatic and 

self-cleaning 

systems boost yield 

by 32.27%. 

Scalable waterless 

solutions and 

dynamic 

optimization 

models for 

cleaning 

schedules lacking. 

Geetha et 

al., 2024 

Self-cleaning 

(electrostatic, 

nano-coatings) 

reduces losses by 

15–20%, aligns 

with sustainability. 

Limited field 

testing and 

scalability 

challenges for 

self-cleaning 

systems. 

Abd-

Elhady et 

al., 2024 

Bio-inspired 

vibration reduces 

efficiency loss to 

5% vs. 25% for 

rigid panels in 6 

weeks. 

Long-term 

durability and 

hot-spot 

prevention data 

lacking for 

vibration-based 

systems. 

II. FUTURE DIRECTIONS 

To address the limitations of current PV cleaning 

methodologies, the following detailed strategies are 

proposed, focusing on technological advancements, 

cost optimization, and global applicability: 

Durable Self-Cleaning Coatings: Develop next-

generation superhydrophobic and photocatalytic 

coatings with lifespans exceeding 5 years, reducing 

reapplication costs (currently $5–10/m² every 1–3 

years). Research should focus on hybrid coatings 

combining hydrophobic properties (to repel dust) and 

photocatalytic activity (to degrade organic 

pollutants), as suggested by Virtanen et al. (2023). 

Field testing in diverse climates—arid (e.g., Saudi 

Arabia), tropical (e.g., Malaysia), and temperate (e.g., 

Germany)—is essential to validate performance 

under varying humidity and dust conditions. For 

example, Syafiq et al. (2018) reported a 50% 

reduction in soiling rates with nano-coatings in arid 

environments, but only 20% in humid climates. Cost-

effective materials, such as silica-based nanoparticles, 

could lower production costs by 30%, making 

coatings viable for small-scale systems. 

Cost-Effective Automation: Reduce the cost of 

robotic and electrostatic cleaning systems through 

modular designs and localized manufacturing. 

Current robotic systems cost $10,000–$50,000 per 

unit, with maintenance expenses adding 5–10% 

annually (Al-Housani et al., 2019). Modular robots 

with replaceable components (e.g., brushes, batteries) 

could reduce maintenance costs by 20%, while local 

production in regions like India or China could cut 

initial costs by 15–25%. Farrokhi Derakhshandeh et 

al. (2021) suggest integrating solar-powered robots to 

eliminate external energy costs, potentially saving 
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10% in operational expenses. Electrostatic systems 

should optimize voltage requirements (e.g., reducing 

from 10 kV to 5 kV) to enhance safety and 

scalability, particularly for small-scale installations. 

IoT and Machine Learning Integration: Advance ML 

models, such as deep learning neural networks, to 

predict soiling with greater accuracy across diverse 

climates, building on Nabti et al.’s (2022) Random 

Forest and SVM models (R² > 0.99). Incorporating 

dynamic environmental factors (e.g., seasonal dust 

storms, rainfall patterns) could improve prediction 

accuracy by 10–15%. IoT sensor networks should be 

standardized to ensure interoperability, with low-cost 

sensors ($50–100/unit) enabling adoption in 

developing regions. A pilot project in Australia 

integrating IoT with robotic cleaning reduced 

cleaning frequency by 30%, saving $5,000 annually 

per MW (Olorunfemi et al., 2022). Cloud-based 

platforms for real-time data analysis could further 

optimize schedules, reducing water and energy use by 

20–40%. 

Bio-Inspired Solutions: Validate bio-inspired 

cleaning, such as vibration-based systems, for long-

term durability and hot-spot prevention. Abd-Elhady 

et al. (2024) reported a 60% reduction in dust 

accumulation, but mechanical fatigue risks require 

testing over 5–10 years. Hybrid systems combining 

vibrations with coatings could enhance efficacy, 

reducing soiling by 70–80%. For example, a hybrid 

system in Egypt could integrate wind-induced 

vibrations with superhydrophobic coatings, extending 

cleaning intervals from weekly to monthly. Research 

should explore adaptive vibration frequencies based 

on wind speed, using IoT sensors to optimize 

performance and minimize panel stress. 

Standardized Metrics: Establish global standards for 

soiling measurement (e.g., % transmittance loss/day) 

and cleaning performance (e.g., % efficiency 

restored, cost/m²). Mani and Pillai (2010) highlight 

the absence of standardized protocols, leading to 

inconsistent data across studies (e.g., efficiency losses 

reported as 2–98%). A universal metric, such as 

“Soiling Impact Factor” (SIF), could quantify daily 

efficiency loss based on dust density (mg/m²) and 

environmental factors. Cleaning efficacy standards 

should include metrics like water use (liters/m²), 

energy consumption (kWh/m²), and durability 

(years). International collaboration, led by 

organizations like IRENA, could develop these 

standards within 3–5 years, enabling consistent 

evaluation and adoption. 

Site-Specific Strategies: Tailor cleaning methods to 

regional dust properties and climatic conditions using 

MCDM frameworks like PSI, AHP, or FTOPSIS 

(Obeidat, 2020; Said et al., 2024). For example, 

electrostatic cleaning is optimal in Qatar (PSI score: 

0.90) due to low humidity, while robotic cleaning 

suits California (PSI score: 0.82) due to large-scale 

installations. Dust characterization studies, as 

conducted by Hu et al. (2021), should be expanded to 

regions like India, Africa, and South America to 

inform method selection. Automated decision-support 

tools integrating regional data (e.g., dust composition, 

water availability) could reduce maintenance costs by 

15–20% by selecting the most cost-effective method 

for each site. 

III. CONCLUSION 

Dust accumulation on photovoltaic (PV) panels 

remains a critical challenge, reducing efficiency by 

2–98% and necessitating robust cleaning 

methodologies to ensure optimal performance. 

Manual and water-based cleaning methods, while 

effective in restoring 90–98% efficiency, are 

resource-intensive and unsustainable in water-scarce 

regions, with water-based systems consuming 10–20 

liters/m² per cleaning cycle (Syafiq et al., 2018). In 

contrast, waterless methods—robotic, electrostatic, 

self-cleaning coatings, and bio-inspired vibration-

based systems—offer sustainable alternatives, 

particularly in arid environments like the Middle East 

and North Africa. Robotic cleaners achieve 15–32% 

efficiency gains but are limited by high costs 

($10,000–$50,000/unit) and maintenance complexity 

(Al-Housani et al., 2019). Electrostatic systems 

restore up to 32% yield with minimal resource use, 

though high voltage requirements pose safety 

challenges (Said et al., 2024). Self-cleaning coatings 

reduce soiling by 50–70% but require durability 

improvements to extend lifespans beyond 1–3 years 

(Virtanen et al., 2023). Bio-inspired vibration-based 

cleaning, with a 5% efficiency loss compared to 25% 

for rigid panels, is promising but untested for long-

term reliability (Abd-Elhady et al., 2024). 

Obeidat’s (2020) Preference Selection Index (PSI) 

approach underscores the superiority of waterless 

methods, assigning high scores (0.85–0.90) for 

sustainability and safety, while manual and water-

based methods score lower (0.60–0.70) due to 

environmental and labor drawbacks. Emerging 

technologies, such as IoT-integrated sensors and 

machine learning (ML) models, optimize cleaning 

schedules, reducing costs by 25% and water use by 

40% in pilot studies (Nabti et al., 2022; Olorunfemi et 

al., 2022). However, scalability remains a barrier, 

with high sensor costs ($100–500/unit) and limited 

data quality in diverse climates hindering widespread 

adoption. Multi-criteria decision-making (MCDM) 

frameworks, including AHP and FTOPSIS, enhance 

method selection but lack standardized metrics and 

accurate cost data, as noted by Sindhu et al. (2017) 

and Deb and Brahnam (2022). 

Future research must prioritize durable coatings with 

lifespans exceeding 5 years, cost-effective automation 

through modular designs, and IoT-ML integration for 

global scalability. Bio-inspired solutions require long-

term validation to ensure panel longevity, while 

standardized metrics, such as a “Soiling Impact 

Factor,” could unify performance evaluation. Site-

specific strategies tailored to regional dust properties 
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and climatic conditions, supported by automated 

decision-support tools, are essential to maximize 

efficiency and economic viability. By addressing 

these challenges, the solar industry can enhance PV 

performance, reduce maintenance costs, and align 

with global sustainability goals, ensuring solar 

energy’s critical role in the renewable energy 

landscape. 
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