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Abstract: Predicting hospital readmission among diabetes patients is essential for improving patient outcomes, reducing healthcare costs, 

and optimizing the use of medical resources. However, this task is complex due to the intricate nature of healthcare data, high feature 

dimensionality, class imbalance issues, and the necessity of integrating both demographic and clinical variables. To address these 

challenges, a variety of machine learning models were developed and assessed, including traditional classifiers such as Decision Trees, 

Logistic Regression, and Random Forests, as well as more advanced approaches like XGBoost and Deep Neural Networks. To enhance 

model performance, we applied preprocessing techniques such as feature transformation, data balancing, and categorical encoding. 

Experiments were conducted on clinical datasets to predict patient readmission within 30 days, after 30 days, or not at all. Performance 

metrics included classification accuracy and the AUC-ROC score. Results showed that the Random Forest model achieved the highest 

performance in binary classification, with an accuracy of 94% and an AUC-ROC of 0.97, while a proposed Multi-Stage Classifier excelled 

in the multi-class task with 80% accuracy and an AUC-ROC of 0.89. Overall, the study highlights the potential of machine learning, 

particularly when coupled with effective preprocessing, to accurately predict hospital readmissions in diabetes care, thereby aiding clinical 

decisions and improving healthcare efficiency. 
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1. Introduction 

Diabetes is a highly prevalent chronic condition which affects 

millions of people across the world and significantly worsens 

healthcare issues. The population with diabetes is anticipated to 

rise to around 643 million by the year 2030, while up to 783 million 

can be expected to reach by the year 2045 [1]. Patients with 

diabetes experience repeated hospitalizations as a result of 

complications from poor disease management thereby resulting in 

increased costs, overloading the already struggling health care 

system, and resulting in poor patient outcomes [2], lacked the 

establishment of cost-effective programs for prevention. 

Maximizing care and avoiding unnecessary hospitalization in 

diabetic patients may constitute the process of predicting the 

readmission of diabetic patients. When clinicians identify the risk 

of readmission early, it can help reduce resource use, prevent the 

readmission itself, improve patient outcomes, and lower overall 

healthcare costs. 

Prediction of readmission of patients may have significant positive 

implications especially in patients with chronic condition like 

diabetes as it can contribute to better patient care and reduce 

unnecessary hospital admission. Early detection of likely 

readmissions by health providers facilitates the targeted 

distribution of resources and minimizes the potential of 

unnecessary readmissions, and consequently, leads to the 

enhancement of patient outcomes and reduction of costs in health 

care [3].  

But, predicting hospital readmission, especially for a complicated 

disease like diabetes is fraught with significant challenges. 

Patients' own clinical history, demographics, as well as lab tests 

and treatment interventions generate vast amounts of data [4]. In 

addition, some of the factors that complicate this task is the 

imbalance of classes, missing data, and irrelevant features. Good 

predictive modelling relies on combining different types of data 

such as quantitative and qualitative variables and understanding 

and addressing the key drivers of readmission. 

In this paper, both machine learning (ML) and deep learning (DL) 

models were trained to predict diabetic patient’s readmission rates. 

Many models (Decision Trees, Logistic Regression, Random 

Forest) and advanced techniques (XGBoost, Deep Neural 

Networks) were used for binary and multiclass classification tasks. 

Preprocessing steps involved feature transformation, data 

normalization, and handling class imbalance. The results imply the 

advantage of classical machine learning models over deep learning 

models for this task, due partly to effective feature selection and 

preprocessing techniques. 

This paper aims to improve the prediction of hospital readmissions 

in diabetic patients through several key contributions. It presents 

the development and evaluation of both machine learning (ML) 

and deep learning (DL) models specifically tailored to this task. 

The study addresses data preprocessing challenges such as 

handling missing values and correcting class imbalances. It 

involves training and testing various classifiers—both binary and 

multi-class—to predict early readmission (within 30 days), late 

readmission (after 30 days), or no readmission at all. Model 

performance is rigorously evaluated using metrics including 
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accuracy, precision, recall, and F1-score, providing a 

comprehensive assessment across both classification tasks. 

Finally, the results are benchmarked against existing studies, 

demonstrating improved performance and underscoring the 

effectiveness of the proposed methodology. 

The paper is outlined into six sections. Section 2 presents an 

analysis of the related work, highlighting earlier research efforts 

that utilized machine learning methodologies. Section 3 presents 

the proposed methodology, including preprocessing of the dataset 

and application of the model. Section 4 presents the results, 

highlighting notable performance values. Section 5 compares the 

findings to current research and analyzes the results.  Section 6 

represents a conclusion for the whole paper and a suggestion for 

future improvements. 

2. Related Work 

Several studies have explored predicting hospital readmissions for 

diabetic patients using ML techniques. These studies generally 

focus on various classification models and preprocessing methods, 

aiming to improve predictive accuracy. Research has demonstrated 

that algorithms like Random Forest (RF), XGBoost, and DL 

methods are successful in identifying patients at high risk, pointing 

to the need to handle data imbalances and choose appropriate 

features to enhance predictive capability. 

Masoomeh Zeinalnezhad and Saman Shishehchi proposed an 

extensive methodology that combined meta-heuristic methods 

with data mining techniques to predict the likelihood of early 

readmission for diabetic patients within 30 days post-discharge. 

[5]. The study leveraged the "UC Irvine Machine Learning 

Repository" dataset that contained 101,765 samples along with 50 

relevant features of hospital and patient outcomes. A Chi-square 

analysis was conducted to identify the key factors associated with 

readmission risk, and various classification methods—including 

RF, Support Vector Machines (SVM), and Neural Networks—

were evaluated and compared. In addition, Genetic Algorithm was 

utilized to optimize the hyperparameters of SVM and thus increase 

its accuracy. Results showed that RF performed better than all 

examined approaches, having an accuracy of 74.04%, while GA-

SVM improved SVM by 1.12%. The research emphasized the 

capability of such techniques in minimizing hospital readmission, 

specifically in patients with diabetes, and demands additional 

studies on hybrid models, as well as other meta-heuristic 

approaches, to improve predictive accuracy. 

Mahmoud et al. proposed a research study with the purpose of 

predicting short-term and long-term readmissions of hospital 

patients who have uncontrolled diabetes based on ML techniques 

[6]. The objective of this study was to assist healthcare providers 

in enhancing patient care and minimizing readmission rates, which 

are a key indicator of hospital quality. On the basis of information 

gathered from the “Diabetes 130-US hospitals” dataset, authors 

applied different ML algorithms, i.e., RF, Naive Bayes (NB), 

SVM, etc., for predicting readmissions. The results indicated that 

SVM achieved the best accuracy (64.5%) in the prediction of all 

readmission episodes, while RF outperformed other models in the 

prediction of short-term readmission (86.38%). The study 

indicated the potential of ML for risk factor identification and 

facilitating timely intervention, thereby enhancing disease 

management and health cost reduction. 

Liu et al. presented a comparative study of different ML models 

for predicting 30-day hospital readmission rates for patients with 

diabetes, using the Grey Wolf Optimizer (GWO) for feature 

optimization [7]. A total of 11 different ML algorithms, including 

XGBoost, Decision Trees (DT), and SVM, were compared with 

DL approaches, specifically Long Short-Term Memory (LSTM). 

Based on data obtained from more than 100,000 patient visits to 

130 hospitals across the US, the results indicated that RF achieved 

the highest accuracy, F1 score, and precision. While XGBoost 

showed good performance, the DL models failed to outperform the 

traditional ML models in the framework of this research. These 

results highlight the effectiveness of using ML algorithms, 

specifically RF and XGBoost, and auxiliary feature optimization 

techniques like GWO, to enhance predictive accuracy for hospital 

readmissions among diabetic patients. 

Shang et al. developed 30-day diabetic patient hospital 

readmission risk prediction models using ML classifiers [8]. The 

test was carried on a "Health Facts Database" dataset containing 

over 100,000 diabetic patient records highlighting 23 risk factors 

such as age, sex, admission type, and drug use. The authors 

implemented some of the ML techniques, such as RF, NB, and DT 

ensemble techniques, to predict the patient readmission 

probability. The RF algorithm outperformed the other algorithms 

with the highest AUC, thereby proving effective for the prediction 

of short-term readmission. The research revealed significant 

readmission risk factors of prior hospitalization, age, and count of 

emergency admissions that were of great value to healthcare 

professionals in managing high-risk diabetic patients. 

Sathyavathi D. and Mary Sowjanya A. proposed a diabetic patient 

readmission prediction model in hospitals using ML to cut down 

healthcare expenses and enhance patients' quality of care [9]. The 

researchers utilized decision trees, random forests, CATBoost, and 

XGBoost ML algorithms to develop a prediction model that 

yielded superior results compared to other algorithms with real-

time data used to test it. The model was created to predict high-risk 

patients for readmission within a 30-day period so that healthcare 

institutions can offer more care and prevent excessive 

readmissions. Data engineering methodologies, including feature 

transformation and feature selection, were also part of the study; 

the study additionally addressed problems related to imbalanced 

datasets and replicated records. A summary of the works 

mentioned earlier is presented in Table 1. 

Previous studies on diabetes-related readmission have made 

important advances, yet each leaves key gaps that our work will 

bridge. Zeinalnezhad and Shishehchi combine meta-heuristics 

with classical classifiers, but their best model still achieves only 

mid-70 percent accuracy and they explore early (≤30-day) 

readmission alone, leaving later readmissions unmodelled and 

class imbalance largely untreated [5]. Mahmoud et al. narrow their 

focus to “uncontrolled” diabetes and split the task into two single-

stage scenarios; their pipeline depends on manual feature selection 

and their results fluctuate between short- and long-term settings, 

suggesting instability when classes overlap [6]. Liu et al. introduce 

Grey-Wolf-Optimizer feature selection, yet their evaluation 

remains a binary 30-day task and relies on SMOTE alone to temper 

skewed data [7]. Shang et al. likewise restrict prediction to 30-day 

readmission; despite using down/over-sampling, their RF model’s 

AUC reveals room for improvement, and the study does not 

disentangle post-30-day risk factors [8]. Finally, Sathyavathi and 

Sowjanya demonstrate several tree-based learners, but they treat 

categorical encoding superficially and report no strategy for 

multiclass imbalance-limitations that hamper generalisation [9]. 

Our work will overcome these constraints by (i) tackling the full 

three-way outcome (early, late and no readmission) through a 

Multi-Stage classifier that decomposes the problem into sequential 

binary decisions; (ii) applying class-specific balancing schemes 

(SMOTENC for binary, targeted under-sampling for multiclass) to 
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curb skew without synthetic noise; (iii) standardising numerical 

features and one-hot-encoding categorical variables within a 

unified preprocessing pipeline rather than ad-hoc transformations; 

and (iv) benchmarking both traditional and deep architectures 

under identical folds, with comprehensive metrics beyond 

accuracy alone. By addressing imbalance, feature heterogeneity 

and outcome granularity in a single, integrated framework, our 

study will deliver a more stable and clinically actionable predictor 

than the earlier single-stage, binary-only or lightly-balanced 

approaches. 

3. Methods 

Predicting hospital readmissions among diabetic patients is a 

complex task due to data imbalance, heterogeneous feature types, 

and varying patient outcomes. The dataset is characterized by a 

high-class imbalance and a mix of numerical and categorical 

features, which required careful preprocessing. To handle the 

imbalance, Random Under-Sampling (RUS) was applied for multi-

class classification and SMOTENC for binary classification. Then 

a range of ML and DL models were trained and evaluated, 

including Logistic Regression, Decision Trees, RF, XGBoost, 

DNN, and a custom Multi-Stage Classifier, to assess their 

predictive performance. 

Fig. 1 illustrates the proposed methodology for predicting the 

readmission of diabetic patients in hospitals based on machine 

learning models. The process begins with the preprocessing of the 

dataset, covering data cleaning and transformation for quality and 

consistency. Data balancing is then applied to correct the class 

imbalance problem inherent in the dataset. 

Then followed by the application of different ML algorithms on 

two distinct classification tasks: binary and multi-class 

classification. The algorithms implemented on both these tasks are 

Logistic Regression, DT, RF, XGBoost, and DNN. Multi-Stage 

Classifier is also employed for the multi-class classification task to 

handle challenging cases by breaking down into numerous stages. 

The multi-class classification situation predicts three possible 

results depending on the readmission time: readmission within 30 

days (30>), after 30 days (30<), or no readmission. The binary 

classification problem is aimed at predicting if a patient will have 

early readmission within 30 days (Yes) or not (No). 

 

Fig. 1.  Proposed Method 

3.1. Handling Imbalanced Data: 

Data imbalance happens when the class distribution of a training 

dataset for a prediction model is imbalanced. Typically, one class 

of samples (e.g., the positive class) is significantly smaller 

compared to the other classes. The reason behind this imbalance is 

that disease-related samples usually only account for a small 

percentage in the whole population, which results in an imbalanced 

Table 1. Summary of Related Work 

Authors Title Year Model Dataset Accuracy 

Zeinalnezhad and 

Shishehchi [5] 

“An integrated data mining algorithms and 

meta-heuristic technique to predict the 

readmission risk of diabetic patients” 

2024 RF, GA-SVM, 

SVM, NN 

“Diabetes 130-US 

Hospitals for Years 

1999–2008” 

RF: 74.04 %, GA-SVM: 

73.52 %, SVM: 72.40 

%, NN: 70.44 % 

Mahmoud et al. [6] “Short-Term and Long-Term Readmission 
Prediction in Uncontrolled Diabetic Patients 

using Machine Learning Techniques” 

2023 RF, NB, SVM, 
AdaBoost, 

KNN, NN 

“Diabetes 130-US 
Hospitals for Years 

1999–2008” 

RF: 63.03%, NB: 
61.7%, SVM: 64.2%, 

AdaBoost: 62.3%, 

KNN: 57.7%, NN: 

59.5% 

Liu et al. [7] “Comparison of machine learning models for 

predicting 30-day readmission rates for 

patients with diabetes” 

2024 MLP, 

XGBoost, DT, 

RF, LR, SVM 
linear kernel, 

SVM RBF 

kernel, KNN, 

NB, AdaBoost, 

LSTM 

“Diabetes 130-US 

Hospitals for Years 

1999–2008” 

MLP: 0.77, XGBoost: 

0.88, DT: 0.79, RF: 

0.88, LR: 0.64, SVM 
linear kernel: 0.63, 

SVM RBF kernel: 0.69, 

KNN: 0.63, NB: 0.12, 

AdaBoost: 0.86, 

LSTM: 0.77 

Shang et al. [8] “The 30-days hospital readmission risk 

in diabetic patients: predictive modeling 
with machine learning classifiers” 

2020 RF, NB, TE “Diabetes 130-US 

Hospitals for Years 
1999–2008” 

N/A  

Sathyavathi and 
Sowjanya [9] 

“Predicting Hospital Readmission for 
Diabetes Patients Using Machine Learning” 

2020 DT, RF, 
CATBoost, 

XGBoost 

“Diabetes 130-US 
Hospitals for Years 

1999–2008” 

RF: 84.59% 
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class distribution. Modeling on imbalanced data is an issue since 

most of the algorithms are frequency-biased, paying more attention 

to the majority class instances [10]. As a result, class imbalance 

may cause the classifier to predict most of the instances as normal 

in a bid to reduce classification error and meet the objective 

function [11]. In this paper, Random Under Sampler was used for 

multi-classification and SMOTENC for binary classification. 

Random Under Sampler works by randomly reducing the number 

of samples in the majority class to balance the dataset, which can 

prevent overfitting towards the majority class [12]. After applying 

under sampling, the dataset became 8,853 for every class in multi-

classification. On the other hand, SMOTENC is an extension of 

SMOTE that generates synthetic samples for the minority class, 

specifically handling datasets with categorical features [13]. After 

applying SMOTENC, the dataset became 86,986 for every class in 

binary classification.  

3.2. Model Development: 

3.2.1. Decision Tree: 

DT is widely used for tasks such as classification, regression, and 

feature selection. It is a tree-like structure that has a root, leaves, 

and branches. It starts at the root node and goes all the way down 

to the leaves. Attribute selection in Decision Tree is usually done 

using entropy and information gain. Entropy calculates the 

randomness or uncertainty of data, and information gain calculates 

how much reduction in entropy is achieved by choosing a specific 

attribute. By doing this, it generates high-quality decisions by 

putting the attribute with highest information gain at the root of the 

tree, which leads to a smaller model [14] [15]. 

Equation (1) illustrates how to calculate entropy, where H(S) is the 

entropy: 

𝐻(𝑆) = ∑  𝑥∈𝑋 𝑝(x) log2 𝑝(x)  (1) 

Where 𝑝(x) represent the probability of 𝑥. where 𝑋 denotes the 

attributes in the dataset, including the target class. Information gain 

is determined using the following formula, where IG(S, A) 

represents the information gain: 

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑  𝑛
𝑖=0 𝑝(x) ∗ H( S, X)  (2) 

Here, H(S) is the target attribute entropy, and H (S, X) is the 

attribute entropy conditional on the target class. 

3.2.2. Random Forest 

RF is a supervised learning method that can be applied for 

classification or regression. Random Forest chooses the best 

features from a random subset of features in splitting nodes, unlike 

conventional decision trees that seek the most effective features in 

splitting nodes. In comparison to the DT algorithm, RF picks 

observations randomly, constructs a number of trees with diverse 

subsets of features, and averages the result [16]. One of the 

significant advantages of RF is that it has the capability to prevent 

overfitting through the formation of random sub-trees and 

developing smaller trees, which are further combined together in 

the final model [17]. 

 

3.2.3. XGBoost 

Extreme Gradient Boosting (XGBoost) is a sparsity-aware when 

faced with sparse data and applies weighted quantile sketch to 

perform approximated tree learning. XGBoost is optimized for 

performance and speed, but is a regular gradient-boosted decision 

tree implementation. Boosting works on the idea of assigning each 

data observation a weight. The models are constructed iteratively 

and weights are boosted whenever an observation gets mis-

classified by a model. The ultimate ensemble model is created by 

integrating those decision trees [18] [19]. 

3.2.4. Logistic Regression: 

Logistic Regression is both a classification and regression 

statistical method on the basis of the maximum-likelihood 

estimation method. Logistic regression, also known as the logit 

model, makes use of the sigmoid function. Logistic regression 

predicts the probability of the event occurring based on a linear 

combination of the observed values of the explanatory variables. 

Logistic regression has the benefit of having a clear probabilistic 

interpretation in the case of classification. However, one drawback 

of linear regression models is that they cannot solve nonlinear 

problems. Training the model comprises choosing parameters that 

specify the function to maximize the posterior likelihood function 

[20] [21]. 
For instance, if C is the number of classes as 𝐶 ∈
{1,2, … , 𝐶} is the feature vector of dimension 𝑛. 

The following equation is the probability that X is in one of the C 

classes. The vectors 𝛽1 , 𝛽2, … , 𝛽𝑘 are the parameter 

vectors that specify the regression coefficients, and ⟨𝛽𝑘 , 𝑋⟩ is the 

inner product of the vectors. 

P( 𝑌 = 𝑘 ∣ 𝑥 ) =
𝑒⟨𝛽𝑘,𝑋⟩

∑  𝐾
𝑖=1  𝑒⟨𝛽𝑖,𝑋⟩

 for 𝑘 = 1,2, … , 𝑘 (3) 

Where p is the probability of success, K is the class label, and k ∣ x 

indicates that x is in the k th class label. βk coefficients are learned 

during training. Equation (4) below will be used to predict the 

result for the feature vector X. 

   
𝑘∗ ∈ argmax Pr( 𝑌 = 𝑘 ∣ 𝑋 ) , 𝑘 ∈ {1,2, … , 𝐾}

𝑘∗ ∈ argmax⟨𝛽𝑥 , 𝑋⟩ , 𝑘 ∈ {1,2, … , 𝐾}
 (4) 

3.2.5. Deep Neural Network (DNN) 

An Artificial Neural Network (ANN) is designed to mimic the 

structure and functioning of the human brain. Since neural 

networks (NN) are powerful nonlinear discriminators in the event 

of problems in classification, because they are able to describe any 

decision boundary in the feature space. In recent years, Deep 

Neural Networks (DNNs) gained significant interest in medical 

research and evolved from Shallow Neural Networks (SNNs). The 

feature abstraction ability in DNNs and the ability to represent 

highly complex patterns make them extremely useful in 

applications in DL. Because of their ability to represent data in a 

good way, DNNs are in high demand in order to design efficient 

and robust solutions [22] [23].  

The results are produced in a DNN based on the connection 

weights and activation functions in the neurons. The DNN is 

composed of multiple processing layers, and every layer 

contributes to decision-making and feature extraction. Several 

hyperparameters dictate the operation of a DNN and are to be 

determined in advance, including the number of units, number of 

layers, weights and bias initializers, activation function, 

regularizes coefficient, learning rate, and the optimizer. In this 

DNN model, ReLU activation is applied in the input layer and in 

every hidden layer. The ReLU function is a piecewise linear 

function and returns the same input in the situation where the input 

is a positive number and a value of zero in the situation where the 

input is a negative number. The neurons activated by this function 

are also rectified linear activation units [24]. 

  𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)  (5) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1), 469–477 |  473 

3.2.6. Multi-Stage Classifier: 

In this paper, a multi-stage ML classifier was used to address the 

complexity of the classification task by breaking it down into 

sequential decision-making steps, thereby improving the ability of 

model to differentiate between the classes effectively. Random 

Forest was used as a backbone for Multi-Stage Classifier 

3.2.6.1. First Stage: 

The first stage of the classifier focuses on separating the majority 

class (Class 0) from the remaining classes (Class 1 and Class 2). 

This phase approaches the problem as a binary classification task, 

aiming to distinguish and identify instances that fall under the 

majority class. A ML model is trained to distinguish Class 0 from 

the other classes. Instances that are confidently classified as Class 

0 in this stage are directly assigned to that class, while the 

remaining instances proceed to the second stage for further 

classification. 

3.2.6.2. Second Stage: 

The second stage is engaged for cases not falling under Class 0 as 

determined by the first stage. Those cases are then forwarded to a 

second machine learning model, specifically designed to 

distinguish between the two remaining classes (Class 1 and Class 

2). In this stage, the problem is addressed as another binary 

classification problem, but this time with the sole target of 

discriminating between the two minority classes. Now, the model 

is trained on a specific subset of data from these classes, thereby 

making it learn the specific patterns and features for this 

discrimination. 

3.2.6.3. Final Predictions: 

The final predictions are made by taking a combination of results 

from both stages. Examples classified as Class 0 in the initial stage 

are strictly classified into that class. For examples that proceed to 

the subsequent stage, the classification decisions made by the 

second model decide their classification into Class 1 or Class 2. 

This multi-stage process is responsible for the model first solving 

the easier binary classification problem before dealing with the 

harder differentiation between the other classes. 

3.3. Evaluation Metrics: 

3.3.1. Accuracy:  

Evaluating the overall model’s performance in predicting 

readmission rates. 

Accuracy =
 Number of Correct Predictions 

 Total Number of Predictions 
 (6) 

3.3.2. F1-score:  

Balancing precision and recall to calculate the model's 

performance in identifying true readmissions. 

 F1 Score = 2 ×
 Precision ∗ Recall 

 Precision + Recall 
 (7) 

3.3.3. Recall:  

The model's prediction of which patients are likely to be readmitted 

and which should not be admitted. 

Recall =
 True Positives 

 True Positives + False Negatives 
 (8) 

3.3.4. Precision:  

Evaluating the model's prediction for readmissions without 

incorrectly classifying non-readmitted cases. 

Precision =
 True Positives 

 True Positives + False Positives 
 (9) 

3.3.5. Confusion Matrix:  

Providing a detailed breakdown of correct and incorrect 

predictions regarding readmissions. 

3.3.6. AUC-ROC:  

Assessing the model's performance in differentiating between the 

patients who would be readmitted and those who would not be 

readmitted. 

4. Result: 

In this paper, the evaluation of the performance of multiple ML 

and DL models in predicting hospital readmissions among diabetic 

patients, covering both binary and multi-class classification tasks. 

For binary classification, the aim was to distinguish between 

patients’ readmission within ≤30 days and other classes. In the 

multi-class setting, readmissions were categorized into three 

classes: “no readmission”, “readmission within 30 days”, and 

“readmission after 30 days”. To address class imbalance, Random 

Under-Sampling (RUS) was employed for multi-class 

classification and SMOTENC for binary classification. 

4.1. Dataset: 

The dataset was obtained from the “UCI Machine Learning 

Repository” [25]. It was collected from a voluntary program 

named Health Facts with the objective of creating a database for 

those institutions that utilize the “Cerner Electronic Health Record 

System” [26]. The dataset comprises extensive details about 

patients from the hospitals involved, including emergency, 

outpatient, and inpatient. Data gathered comprises the patient ID, 

demographics, diagnosis, length of hospital stay, laboratory tests, 

test results, etc. The 1999-2008 Diabetes 130-US Hospitals dataset 

has 101,766 observations and comprises 50 features, of which 13 

are numerical and 37 are categorical. Features include patients' 

administrative data, medication type and count, diagnosis, and 

laboratory tests for diagnosis. The data also contains the 

"Readmitted" column, showing if the patient has readmitted within 

30 days, more than 30 days, or not at all. 

Fig. 2 is a pie chart breaking down the distribution of readmission 

classes in the dataset. The biggest slice, constituting 53.9% of the 

data, is for non-readmitted patients. The second biggest slice, 

constituting 34.9%, is for patients readmitted more than 30 days 

later. The smallest slice, constituting 11.2%, is for patients 

readmitted within 30 days of initial discharge.  

 

Fig. 2.  Readmission Classes 
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Fig. 3 presents a series of histograms that visualize the distribution 

of various numerical variables from a dataset. Each histogram is 

accompanied by a Kernel Density Estimate (KDE) curve, 

providing a smoothed display of the data distribution. The figure 

is organized into a grid with 3 rows and 5 columns, resulting in 15 

subplots. From the chart, it can be observed that there are no 

extreme or sharp outliers in the data. The distributions appear to be 

relatively consistent, with no significant skewness or abrupt 

deviations that would indicate the presence of unusual or extreme 

values. 

In Fig. 4 below, after observing this chart, it becomes clear that 

there is no significant difference between males and females in 

terms of their impact on readmission rates. The proportions of 

readmissions for both genders are approximately equal, indicating 

that gender does not play a notable role in influencing whether a 

patient is readmitted or not. 

 
Fig. 4.  Distribution of readmission rates by gender. 

Fig. 5 represents a chart that analyzes the relationship between age 

and readmission rates. It demonstrates that age has a moderate 

influence on readmission, as the likelihood of readmission tends to 

increase with advancing age. This means the older a person is, the 

more likely he or she will be readmitted to the hospital compared 

to younger patients. The trend highlights the importance of 

considering age while designing healthcare interventions aimed at 

cutting down readmissions. 

 
Fig. 5.  Distribution of readmission rates across different age groups 

4.2. Data Preprocessing: 

4.2.1. Dataset Cleaning: 

For the quality and relevance of the dataset, columns that were 

either not predictive or had numerous null values were dropped. 

These were columns like "examide", "citoglipton", "weight", 

"payer_code", and many others which pertained to medication or 

test results that were missing or not relevant for prediction 

purposes. Rows with null values were also dropped for a clean and 

consistent dataset. This was done to remove noise and have quality 

data that was used for modeling and analysis. 

4.2.2. Feature Transformation: 

The diagnosis columns (diag1, diag2, diag3) were converted to 

ICD-9 codes so that their representation would be standardized. 

This made the data consistent and relevant because ICD-9 codes 

are utilized everywhere in healthcare for classifying diagnoses. 

With this standardization of columns, the data was made readable 

and analysis-ready. 

Fig. 3.  Histograms that visualize the distribution of various numerical variables from a dataset 
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4.2.3. Column Removal: 

Uninformative columns like "encounter_id", "patient_nbr", 

"admission_source_id", "discharge_disposition_id", 

"admission_type_id", and "medical_specialty" were deleted. 

These columns consisted of either unique identifiers (i.e., patient 

and encounter IDs) or categorical variables that were 

uninformative for the predictive model process. Deletion of these 

columns down-sized the dataset and eliminated unnecessary 

complexity.Their removal streamlined the dataset from 50 to 27 

key features, reducing noise and computational complexity. The 

retained features (e.g., race, gender, time_in_hospital, diagnosis 

codes [diag_1-3], medication histories, and lab/visit counts) were 

selected for their clinical relevance to readmission prediction. 

Post-cleaning, the dataset contained 98,053 entries, all non-null, 

ensuring robustness for subsequent modeling. 

4.2.4. Numerical Features: 

Numerical features were standardized using the StandardScaler to 

normalize their distributions. The scaling standardizes data to a 

mean of 0 and standard deviation of 1, which is needed by most 

ML algorithms having an assumption of normal distribution in 

data. Equation (10) represents the formula for standardization: 

𝑧 =
𝑥−𝜇

𝜎
 () 

In this formula, 𝑧 represents the standardized value, the original 

value is represented by 𝑥, 𝜇 denotes the mean of the feature, and 𝜎 

represents the standard deviation of the feature. 

This process normalizes numerical features to a consistent scale, 

ensuring that features with larger magnitudes do not 

disproportionately influence the model. 

4.2.5. Categorical variables  

were transformed with OneHotEncoder in order to be able to 

express them in binary form (0 or 1), which machine learning 

models are okay with. One-hot encoding creates new binary 

columns for each category in a categorical feature so that the model 

can deal with these features appropriately. For example, a 

categorical feature "gender" with categories "Male" and "Female" 

would be one-hot encoded into two binary features: 

"gender_Male" and "gender_Female." 

4.3. Hyperparameter Settings 

To ensure optimal model performance, hyperparameters were 

carefully selected and tuned for each machine learning algorithm. 

For Logistic Regression, max_iter=1000 was set to guarantee 

model convergence during training. The Decision Tree classifier 

was configured with max_depth=100 to maintain sufficient 

complexity while avoiding underfitting. In this paper, the Random 

Forest implementation utilized 1000 estimators 

(n_estimators=1000) with a maximum depth of 40 

(max_depth=40) to create a robust ensemble model capable of 

handling complex patterns in the data. The XGBoost model was 

similarly configured with 1000 estimators and a maximum depth 

of 40, with the additional specification of eval_metric='logloss' to 

optimize for binary classification tasks. For the Deep Neural 

Network architecture, a sequential model was implemented 

featuring multiple hidden layers with ReLU activation functions 

and strategically placed dropout layers (with rates between 0.1 and 

0.3) to prevent overfitting. The output layer employed softmax 

activation for multi-class prediction tasks. A key innovation in the 

approach of this paper was the development of a Multi-Stage 

Classifier using Random Forest as the base algorithm. This 

hierarchical classification system operates in two distinct phases: 

First, it performs binary classification to separate non-readmitted 

patients (Class 0) from those requiring readmission (Classes 1 and 

2). Cases identified as potential readmissions then proceed to a 

second classification stage where they are further categorized as 

either early (≤30 days) or late (>30 days) readmissions. This staged 

approach allows for more precise classification by progressively 

addressing increasingly subtle distinctions between patient groups. 

The selected hyperparameters for each model are presented in 

Table 2. 

4.4. Performance of Best Models 

4.4.1. Binary Classification (SMOTENC-balanced data): 

RF had the best performance with 94% accuracy and 97% AUC-

ROC, demonstrating its superiority in distinguishing early 

readmissions. XGBoost followed closely with 93% accuracy and 

95% AUC-ROC, while DNN yielded 89% accuracy as shown in 

Table 3 and Fig. 6. 

 

Fig. 6.  Binary classification results showing the superiority of the RF 

algorithm . 

The ROC curve for the RF model demonstrates near-perfect 

80%

85%

90%

95%

100%

Binary Classification 
performance

Accuracy F1-Macro AUC-ROC

Table 2. Hyperparameters 

Model Key Hyperparameters 

Logistic Regression max_iter=1000 

DT max_depth=100 

RF n_estimators=1000, max_depth=40 

XGBoost n_estimators=1000, max_depth=40 

DNN 5 layers (1024–128 neurons), 

dropout=0.1–0.3 

 

Table 3. Binary Classification (SMOTENC) 

Model Accuracy F1-Macro AUC-ROC 

Logistic Regression 86% 0.86 0.92 

DT 87% 0.87 0.87 

RF 94% 0.94 0.97 

XGBoost 93% 0.93 0.95 

DNN 89% 0.89 0.94 
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classification performance, with an AUC of 0.97 as shown in Fig. 

7. This high AUC value reflects the model’s strong ability to rank 

patients at risk of readmission within 30 days above those without 

readmission. For context, an AUC of 1.0 signifies flawless 

prediction, while 0.5 implies no better than chance. 

 

Fig. 7.  ROC curve for the Random Forest model in binary classification 

of hospital readmissions (≤30 days vs. others).  

4.4.2. Multi-Class Classification (RUS-balanced data): 

 The Multi-Stage Classifier (RF-RF) significantly outperformed 

single-stage models, achieving 80% accuracy, and 89% AUC-

ROC. In contrast, standard RF and XGBoost attained 45% and 

42% accuracy, respectively, highlighting the challenge of multi-

class prediction. The DNN performed comparably to RF (45% 

accuracy) but lagged behind the multi-stage approach as. shown in 

Table 4 and Fig. 8. 

 

Fig. 8.  Multi-classification results showing the superiority of the multi-

stage algorithm . 

Fig. 9 represents a confusion matrix that shows the ability of the 

multi-stage model to differentiate between the categories in the 

data. The biggest difficulty that the model faces is in distinguishing 

between no readmission and readmission after 30 days. 

 

Fig. 9.  Multi Stage Model Confusion Matrix 

5. Discussion: 

This paper significantly advances the predictive modeling of 

diabetic patient readmissions by addressing critical limitations in 

both binary and multi-class classification tasks, building upon the 

works of Mahmoud et al. and Shang et al. [6] [8]. While Shang et 

al. focused exclusively on binary classification (30-day 

readmission), and Mahmoud et al. examined both binary and multi-

class scenarios, the methodological innovations—particularly the 

Multi-Stage Classifier and advanced imbalance-handling 

techniques—yielded superior performance across all prediction 

tasks. As shown in Table 5, the RF model achieved 94% accuracy 

and 0.97 AUC-ROC in binary classification, surpassing both 

Shang et al.'s RF AUC: 0.64 with over-sampling, Mahmoud et al.'s 

RF (86.38% accuracy, 0.63 AUC) For multi-class prediction, the 

Multi-Stage RF (80% accuracy, 0.89 AUC) outperformed 

Mahmoud et al.'s single-stage models, which struggled with class 

overlap (e.g., their SVM: 64.5% accuracy for "all readmissions"). 

6. Conclusion 

This paper developed and evaluated multiple ML and DL models 

to predict hospital readmissions among diabetic patients, utilizing 

the “UCI Diabetes 130-US Hospitals” dataset. Key challenges 

such as class imbalance and heterogeneous data types were 

addressed through data balancing techniques like SMOTENC and 

Random Under-Sampling, along with appropriate preprocessing 
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Accuracy F1-Macro AUC-ROC

Table 5. Multi-Class Classification (RUS) 

Study Task Model Accuracy AUC-ROC 

Shang et al. 

(2021) [8] 

Binary Early 

Readmission 

RF (Over-

sampled) 

— 0.64 

Mahmoud et 

al. (2023) [6] 

Binary Early 

Readmission 

RF 86.38% 0.63 

Mahmoud et 

al. (2023) [6] 

Multi-Class SVM 64.5% 0.60 

This paper Binary Early 

Readmission 

RF 94.0% 0.97 

This paper Multi-Class Multi-

Stage RF 

80.0% 0.89 

  
   

 

Table 4. Multi-Class Classification (RUS) 

Model Accuracy F1-Macro AUC-ROC 

Logistic Regression 49% 0.41 0.64 

DT 37% 0.34 0.52 

RF 45% 0.40 0.63 

XGBoost 42% 0.38 0.59 

DNN 45% 0.40 0.50 

Multi-Stage (RF-RF) 80% 0.76 0.89 
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steps. Traditional models, particularly Random Forest and 

XGBoost, demonstrated superior performance, achieving up to 

94% accuracy and 0.97 AUC-ROC in binary classification. In the 

multi-class setting, the Multi-Stage Classifier significantly 

improved predictive accuracy, reaching 80% accuracy and 0.89 

AUC-ROC. These results emphasize the effectiveness of classical 

machine learning methods when combined with proper 

preprocessing strategies, particularly in complex healthcare 

prediction tasks. Future improvements may include exploring 

hybrid ensembles, incorporating temporal features, and applying 

interpretability methods to support clinical decision-making. 
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