
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 344–351 |344

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-6799 www.ijisae.org Original Research Paper

Designing Carrier-Grade Microservices for Telecom: Ensuring

Availability and Scale in Order Fulfillment Systems

Suresh Kumar Panchakarla

Submitted:01/08/2025 Revised:20/08/2025 Accepted:02/09/2025

Abstract: One of the issues telecom providers have to tackle is the ability to provide scalable services with zero

downtimes to enable real time transactions with customers. The current paper describes an architecture of

microservices that can be used in the carrier-grade telecommunications environment, focusing on resilience and

high availability of order fulfillment systems. This framework proposed makes use of Spring Boot, Apache

Kafka, and Kubernetes with the guarantee of transaction as well as the protection against fault on the web and

agent channels promises elastic scalability and fault tolerance. The system was tested with load tests and

recovery simulations and the resultant confirmation specifying better MTTR and availability of more than

99.997%. Decoupling and self-healing orchestration based on Kafka contributed highly to robustness of the

system. Such results serve as a guide to telecom operators who want to transform their monoliths into fault-

tolerant microservice environment.

Keywords: Telecom, Microservices, Order Fulfillment,

I. Introduction

The transactions handled by telecommunication

platforms are in millions that require high availability

and extreme low latency. Such structured systems

burden legacy monolithic architecture, which

introduces the concept of microservices to fix the

burden by being modular and having elasticity. But

decomposition is not enough when it comes to

designing telecom-grade microservices; that is

because architecture resiliency, failover simplicity,

and smart orchestration are obligatory.

The paper discusses the evolution of the high-

availability microservices framework dealing with

telecom order fulfillment, making use of practices

observed by Spectrum Mobile. It assesses the adoption

of Apache Kafka on decoupling, Spring Boot on

service-level resilience and Kubernetes on

orchestration. Using empirical testing we evaluate the

combined capabilities of these technologies to produce

fault-tolerant, scalable and carrier-grade order

systems.

http://www.ijisae.org/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 344–351 |345

II. Related Works

Microservices

The telecommunication order fulfillment systems are

characterized by dynamic scaling demands, since it is

a highly available architecture that affords to provide a

seamless Buy Flow operations. Microservices

architectural paradigm provides fundamental

alteration of traditional monoliths and arranges

software as a series of micro-services that can be

deployed independently [1][6].

Such decomposition increases scalability and agility

that is a necessity in the case of telecom platforms that

process millions of transactions concurrently. Telecom

scalability can also be enhanced through the adoption

of container orchestration platforms such as

Kubernetes that provides an automated way of

deploying and replicating microservices as well as

healing [1][2].

An example of telecom operators that use Spring Boot

and Kafka with Kubernetes is Spectrum Mobile allows

sustaining a continuous chain of service delivering to

the customers through both the retail channels

(customer-facing) and the agent-assisted stores. In

spite of these benefits, the development of carrier-

grade microservice creates problems of fault isolation,

transactions, and synchronous messages between

distributed services.

Tests comparing Kubernetes in default and optimized

configuration have shown that the default availability

cannot be assumed to be telecom-grade with

(99.999%), or five nines [1][2] up time. In various

industry analyses, fault-tolerance enhancements at the

architecture-level, as in the case of redundancy and

state replication has been stressed upon. Not only do

these improvements decrease the mean time to

recovery (MTTR) but it also decreases service outage

in unscheduled failures.

Among improvements there is a good one to be

discussed the HA State Controller, it is tightly

integrated with Kubernetes and keeps the state of

microservices and facilitates dynamic service

redirection [2]. Such strategies provide telecom

companies with a solid route-map that will lead to the

delivery of strict SLAs and customer demands by

cutting the downtime of stateful applications by more

than 50 percent.

Resilience Patterns

The idea of resilience tops the list in telecom systems

under a high load of traffic or in case of partial system

failure. It is possible to have fragile microservice

ecosystems since there are interdependencies between

services. Thus, resilience engineering of microservices

requires pre-emptive dealing with the failure domains

with well-known patterns such as circuit breakers,

service discovery, and API gateways [5].

Such patterns protect faults, offer fall sibs, and abort

cascade failures, which are vital characteristics in

telecom-based platforms because service failures

ultimately result in revenue and customer

dissatisfaction. Much of the literature has been

devoted toward the classification and validation of

fault tolerance and anti-patterns in distributed systems.

Surveys among software engineers demonstrated that

the overall challenge of designing fault-tolerant

microservices lies on the inability to establish

approaches to defining the quality measurements and

verification procedures [6]. This is also consistent

with real life application in the telecom that usually

involves transaction boundaries that crosses across

catalog services, provisioning service as well as

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 344–351 |346

billing service, which are consequently in need of end-

to-end resilience.

Self-adaptive systems are one of the new areas of

interest, in which microservices self-monitor and self-

adjust to changes (deviations) in performance or

availability. The majority of existing systems however

concentrate mainly on the monitoring and reactive

healing modes of completion and resort to centralized

approaches [4].

Although reactive healing slows the process, it will

require proactive solutions such as predictive scaling,

distributed health modeling to operate in the telecom

grade, particularly flash events such as promotional

launch, or a high number of requests to port-in.

Apache Kafka is one of the tools that will assist in

self-healing because of asynchronous communication

and consumer groups persistence with the help of

Spring Boot and Kubernetes. Kafka event-based

architecture minimizes the dependency between the

services and services, enabling the system to redirect

the messages or make them wait temporarily when the

services become impaired [3][7][9].

Such decoupling is necessary in telecom processes,

and occasional problems with the catalog or inventory

systems must not be allowed to halt the customer

experience.

Decoupling with Kafka

Event-driven architecture (EDA) has been declared as

a pillar in the development of responsive and scalable

microservices particularly in the areas that necessitate

real-time interactions such as telecom and retail.

Apache Kafka a high-throughput distributed

messaging system is also crucial in decoupling the

micro-services, guaranteeing asynchronous

communications as well as enhancing the system

elasticity [3][7][8].

Publish-subscribe pattern used by Kafka means that

processing order of the customers can perform its

service even when the downstream service e.g.

inventory service or billing service may not be

operational due to some reasons. The superiority of

the performance of Kafka is especially true when it

comes to fault scenarios.

The Kafka was adopted as the core of the consolidated

data replication and fault tolerance between cloud and

edge parts of the IoT networks in the CEFIoT

architecture and proved the applicability across

verticals [9]. In the case of telecom systems, Kafka

makes purchase-flow transactions continue without

interruption through service failures, and a new

processing can be initiated after downstream services

have resumed.

New message frameworks founded on Kafka and

Apache Camel have appeared to simplify

communication amid heterogeneous services and

bring down the complexity of the integration [8].

Through these structures, schema transformation,

validation and routing can be done with a little

overhead of codes.

Experimental evidence indicates that these types of

frameworks can cut integration code by as much as 60

percent on the producer side and 40 percent on the

consumer-more than capable of having an effect in

telecom organizations that are faced to deal with the

sheer scale as well as diversity of service catalogs.

Comparative analysis of Kafka against AMQP

protocols on an empirical basis can help demonstrate

that Kafka has higher throughput at high loads, and

the latency is also lower, thereby becoming a better

candidate in the case of telecom-grade systems

requiring order fulfillment on a real-time basis [7].

Operational Challenges

Telecom corporations moving to microservice are

facing an important challenge of consistency in

operations and quality of services. Microservices also

need continual integration and deployment chain,

intensive testing, and end-to-end monitoring that is,

however, difficult to achieve with monolithic systems.

Nevertheless, resilience test cases and performance

benchmarks as it applies to microservices are yet

poorly defined [6]. This increases as the count of the

services and dependence between the services

increase. Carrier-grade platforms need to allow

transactions to be run across services independently

deployed to the platform, including capability in

versioning, rolling back and blue-green deployments.

This implies a need to implement frameworks of fault

injection testing, chaos engineering, and traffic

mirroring all of which are young in their uptake.

Microservices and big data platforms work together to

create one more architectural dimension.

Literature illustrates that the microservice-big data

integration has mutual benefits to both microservice

and big data workflows, whereby microservices

achieve scalable data pipelines and big data workflows

achieve modular and fault-tolerant big data workflows

[10]. This is essential in telecom systems which not

only has the capacity to fill out orders but also

monitors the customer behavior and the usage and

fraud indicators in real-time.

To formalize such architectures, telecom operators

have to implement layered observability decks

adopting Prometheus, Fluentd, Grafana and

ElasticSearch. These technologies allow correlating

across services which in turn allows root cause

analysis as well as predictive scaling.

The body of current research and application cases in

industry confirm that microservices can be that

disruptive factor that makes carrier-grade availability

much more than just a hope. To that add orchestration

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 344–351 |347

(Kubernetes), messaging (Kafka), resiliency patterns

(circuit breakers, self-healing), and you have a game

changer indeed.

The availability of such services, the management of

these services and the act of quality assurance testing

has been an ongoing battle more so with the high-

volume transactional services of the world such as the

telecom platform. Future research needs to deal with

the distributed tracing, contract up-scaling

(forecasting) and contract testing strategies to support

end-to-end availability requirements of a telecom-like

architecture.

IV. Results

Resilience

The transition to the microservice approach of

constructing telecom order fulfilment systems showed

the level of increased modularity as well as emergent

defect domains. In real world implementation into a

live telecom order pipeline (including action by

catalogue, order validation, provisioning and billing) it

was observed that service-wide transactional delay

would occur due to component failure, unless circuit

breakers and fallback logic were employed to

intervene Services can be broken due to component

failure (or error), and having no circuit breakers and

fall back logic means service-wide delays will occur

as transactions are progressively backed up behind

failed components.

The fault tolerance under agent and the web customer

journey was enhanced considerably by integrating the

capability of @CircuitBreaker in Spring Boot and

asynchronous messaging of Kafka. Controlled fault

injections experiment was carried to test resilience.

Services would be slowly decreased to emulate

instance failures and their reinstatement would be

gauged on a number of different scenarios-with and

without Kubernetes-native healing. The HA State

Controller [2] that was carried at most high-

concurrency tests during the trials proved to be better

at healing native Kubernetes in most of the test

environments.

Table 1: MTTR Strategies

Recovery Method Stateless Services Stateful Services

Kubernetes Default 18.2 36.9

HA Controller 10.5 17.3

Spring Retry 12.6 20.7

Telecom-grade availability was achieved by adopting

the HA-aware components. The calculated availability

increased with the standard configuration of 99.94%

to the optimized redundancy configuration of 99.997%

and the message replay configuration of 99.997%.

This was a great enhancement especially on important

functions like the provision of accounts and checks on

eligibilities.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 344–351 |348

Event Decoupling

The Buy Flow is one of the most performance-

sensitive operations in telecom systems: it is the

virtual trail the customer follows on his or her way to

choosing a plan and purchasing it. Conventional

rendition less APIs brought about strict binding

among service levels. Buy Flow After switching to

event streaming, based on Apache Kafka, the Buy

Flow enjoyed significant latency enhancements and

isolation of faults.

Kafka consumer groups enabled several replicas of a

service to take on orders asynchronously and sever the

connections between front-end action and back-end

system limits. A collapse in one of the downstream

systems (e.g. payment gateway) did not actually block

the movement of others (e.g. inventory locking).

Table 2:REST vs Kafka

Workflow Component REST Kafka

Catalogue Service 214 96

Order Processor 345 128

Billing 501 173

Total Latency 1123 397

Kafka also had an inbuilt durability; it is possible to

reprocess failed events with the help of topic offset

control. As a concrete example, the provisioning

requests lost to downstream caused due to outage were

also re-attempted during recovery with no data loss

hence the improved customer experience.

Eventual consistency was achieved through Kafka

Boston buffering aspect of smoothing the event storm.

The highest load was observed during promotional

campaigns and it was multiplied 4-6 times. Kafka

supported order queuing and prioritization and could

cope with fluctuations without bringing any

downstream microservice crashing.

Load Testing

In order to prove the scalability of the microservices in

the real telecom traffic conditions, we have just

performed the load testing of the Spring Boot

microservices on Kubernetes Horizontal Pod

Autoscaler (HPA). The CPU and custom messages

(Kafka consumer lag and HTTP response time) were

the triggers of auto scaling.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 344–351 |349

Table 3: Scaling Efficiency

Load Type Base Pods Max Pods Scaling Time Max Throughput

Web Order 4 16 38 920

Agent Order 3 12 42 780

Billing Services 2 10 47 520

Upon testing there was a realization that Kafka-

enabled decoupling and Kubernetes HPA helped

prove that the system could scale to elastically

respond to any burst activity like the Black Friday

level of order volume without negative service impact

on users. It has been observed that Kubernetes scaled

service horizontally within a period of 35-50 seconds

when service metrics exceeded specified limits.

Although an increment in latency was recorded, SLA

compliance was still kept beyond 99.5 percent.

The graceful failovers were achieved with the help of

pod liveness and readiness probes as they limit partial

failures. Fault tolerance was also enforced in the face

of misbehaving pods as eviction, and a replacement

was done automatically.

Operational Observability

An observable system should be resilient too. The

Prometheus, Grafana, Fluentd and Jaeger were

available in the deployment stack where the metrics or

the dashboards are covered, the logs, and the

distributed traces respectively. These tools made it

possible to have real time diagnostics in case of faults

and poorer performance.

The observability stack of the system has successfully

identified root causes in seconds during live tests of

regional outages and crashes of the services, e.g., in

case of timeouts on catalogue services, we have found

their cause caused by memory leaks or slow

consumers of Kafka.

Trace logs analysis determined the lower downstream

service churn after the bulkhead isolation, circuit

breakers, and fallback responses implementation. In

earlier architecture, during the checkout, failure in

catalogue would lead to a cascading failure. Following

architectural upgrading, the incident got constrained to

having a partial effect.

Table 4: Availability Improvements

Component Pre-Optimization Post-Optimization

Catalog Service 99.85 99.997

Order Processing 99.90 99.998

Billing Gateway 99.72 99.994

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 344–351 |350

Distributed tracing enabled discovering of the so-

called hot spots and latency bottlenecks. When trotting

it out in a production situation, it revealed downstream

retries in a repeated loop, which induced CPU spikes--

which gave us a retry cap logic to barricade system

performance.

Both experimental and operational results of the

current study prove that a well-orchestrated

microservices architecture has the potential to achieve

the carrier-grade telecommunications availability and

scalability requirements. Kafka offered the required

structure to the asynchronous communication and

isolation of faults; Kubernetes combined with its

custom controller and Spring Boot resilience

functionality making sure the failover is fast and it is

easily scaled.

Observability tools also enabled the operations to react

to the failures in real-time, steadfastly sustaining the

flow of orders throughout both the customer and agent

forums.

Such end-to-end framework now enables near-zero-

downtime dynamics and service orchestration among

system updates, or peak traffic and will serve as the

foundation of upcoming self-healing and proactive

scaling in the telecom bespoke space.

V. Conclusion

In the study, it is established that high-availability and

scale requirements of telecom order fulfillment

systems can be fulfilled with a well-architected

microservices platform that will be supported by

Kafka, Kubernetes, and Spring Boot. The decoupling

aspect adopted by Kafka guaranteed non-failing

message consumption, whereas Kubernetes was used

to attain elastic scaling and automatic recovery.

There was also the real-world verification of carrier-

grade uptime (>= 99.997) even when there are traffic

peaks or hardware failure. Enhancements which were

made on observability and service mesh gave insights

into operations that helped clear anomalies quicker.

Such outcomes indicate that, when properly set up,

resilience patterns and orchestration techniques,

telecom operators could comfortably transform their

infrastructure by ensuring an agile, dependable, and

effective digital experience in front of their customers

and agents.

REFERENCES

[1] Vayghan, L. A., Saied, M. A., Toeroe, M., &

Khendek, F. (2019). Kubernetes as an availability

manager for microservice applications. arXiv

(Cornell

University). https://doi.org/10.48550/arxiv.1901.0

4946

[2] Vayghan, L. A., Saied, M. A., Toeroe, M., &

Khendek, F. (2020). A Kubernetes controller for

managing the availability of elastic microservice

based stateful applications. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2012.1

4086

[3] Vashisht, A., & S, R. B. (2025, June

11). Microservices and Real-Time Processing in

Retail IT: A review of Open-Source Toolchains

and Deployment Strategies.

arXiv.org. https://arxiv.org/abs/2506.09938

[4] Filho, M., Pimentel, E., Pereira, W., Maia, P. H.

M., & Cortés, M., I. (2021). Self-Adaptive

Microservice-based Systems -- landscape and

https://doi.org/10.48550/arxiv.1901.04946
https://doi.org/10.48550/arxiv.1901.04946
https://doi.org/10.48550/arxiv.2012.14086
https://doi.org/10.48550/arxiv.2012.14086
https://arxiv.org/abs/2506.09938

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 344–351 |351

research opportunities. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2103.0

8688

[5] Montesi, F., & Weber, J. (2016). Circuit breakers,

discovery, and API gateways in

microservices. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.1609.0

5830

[6] De Souza Miranda, F., Santos, D. S. D., Vilela, R.

F., Assunção, W. K. G., Santos, R. C. D., &

Pinto, V. H. S. C. (2024). A proposed catalog of

development patterns for fault-tolerant

microservices. A Proposed Catalog of

Development Patterns for Fault-tolerant

Microservices, 406–

416. https://doi.org/10.1145/3701625.3701678

[7] John, V., & Liu, X. (2017). A survey of

distributed message broker queues. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.1704.0

0411

[8] B, S. G., & S, G. R. S. N. (2021). High resilient

messaging service for microservice

architecture. International Journal of Applied

Engineering Research, 16(5),

357. https://doi.org/10.37622/ijaer/16.5.2021.357-

361

[9] Javed, A., Heljanko, K., Buda, A., & Framling, K.

(2018). CEFIoT: A fault-tolerant IoT architecture

for edge and cloud. CEFIoT: A Fault-tolerant IoT

Architecture for Edge and Cloud, 813–

818. https://doi.org/10.1109/wf-iot.2018.8355149

[10] Ataei, P., & Staegemann, D. (2023). Application

of microservices patterns to big data

systems. Journal of Big

Data, 10(1). https://doi.org/10.1186/s40537-023-

00733-4

https://doi.org/10.48550/arxiv.2103.08688
https://doi.org/10.48550/arxiv.2103.08688
https://doi.org/10.48550/arxiv.1609.05830
https://doi.org/10.48550/arxiv.1609.05830
https://doi.org/10.1145/3701625.3701678
https://doi.org/10.48550/arxiv.1704.00411
https://doi.org/10.48550/arxiv.1704.00411
https://doi.org/10.37622/ijaer/16.5.2021.357-361
https://doi.org/10.37622/ijaer/16.5.2021.357-361
https://doi.org/10.1109/wf-iot.2018.8355149
https://doi.org/10.1186/s40537-023-00733-4
https://doi.org/10.1186/s40537-023-00733-4

