
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |352

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-6799 www.ijisae.org Original Research Paper

Parallel Automation for Cross-Browser and Cross-Device

Validation in OTT Systems

Lingaraj Kothokatta

Submitted:01/08/2025 Revised:20/08/2025 Accepted:02/09/2025

Abstract: The over-the-top solutions need a smooth distribution of high-quality content on the wide variety of devices and

browsers. As devices are becoming more and more diverse, it has become an urgent problem to guarantee affective and

performance continuity. The paper gives an account of a parallel automation framework capable of extensive scalability and

robustness through the combination of Selenium Grid, Appium, and cloud-based device farms that can be effectively used to

perform cross-browser and cross-device validation. Our system has the potential to save a lot of execution time through

dynamic test orchestration and parallel execution of tests, retaining preservation of accuracy and play back integrity of the

visual elements. Experimental results of more than 300 test cases in multiple platforms, including Android and iOS, Smart

TVs, and the latest versions of various web browsers, show improvement in the average time of feedback by more than 70

percent, 90 percent improvement in throughput, and an improvement in defect coverage detection. Other measurable key

performance indicators include, pixel drift and adaptive bitrate (ABR) switching delays. We designed our framework to

facilitate continuous integration processes, and it has been useful especially with regards to testing of the consistency of user

interface and video streaming quality. The results present parallel automation as a cost efficient and scalable option of

validating OTT platforms that will support quicker releases at the same time as maintaining a high level of ensured quality.

The provided architecture is modular and extendable, so it can be flexibly applied to OTT-ecosystems and test technology

development in the future.

Keywords: OTT, Parallel Automation, Validation, Browser

I. Introduction

In the era of digital media consumption, the over-the-

top (OTT) platforms have turned into an

overwhelming medium to provide entertainment

information through a limitless and diverse range of

devices and web browsers. The consumers demand an

uninterrupted user experience no matter they are on a

Smart TV watching a movie, or on the web viewing a

series on Chrome, or through the mobile app by

watching live sports action.

Such increase in variety of platforms, however, creates

significant problems when it comes to verifying the

consistency and performance of OTT applications. It

is not unusual to find functional discrepancies, UI

defects and streaming problems in the event of

implementation of the same codebase in different

screen sizes, hardware configuration, and operating

system.

http://www.ijisae.org/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |353

Sequential methods of testing used to solve

conventional testing problems are not only not

efficient but also inadequate when it comes to the

level of testing between devices required in the current

OTT systems. They take much time, labor resources

and computer power. Visual issues and playback

discrepancies cannot be spotted because of the uneven

testing around.

To meet these challenges, the presented paper

suggests an approach to parallel automation by using

Selenium Grid, Appium and cloud device labs in order

to coordinate simultaneous test runs. The objective of

the framework is to reduce the time to execute, elevate

defect discovery, and facilitate quantity-based

regression testing pipes. This study fills a very

important gap between the requirements of testing

speed and depth in an OTT platform validation.

II. Related Works

Cross-Browser Testing

There exist a whole set of inherent problems in Cross-

device/ Cross-browser validation in Over-The-Top

(OTT) systems well founded on the fact that the

device hardware, operating systems, and rendering

engines are heterogeneous. This variability means that

there is a huge disparity in graphical user interfaces

(GUIs) and behavior of layouts of a certain design and

functionalities across platforms.

The old testing approaches, especially manual testing,

are infeasible at scale in the OTT environment, owing

to the fast cycle rates and expectations of users of

OTT platforms. One of the strategies that are currently

becoming popular in order to support testing across

the devices is the record-and- replay testing approach.

But there are dire weaknesses owing to variation in the

way the GUI widgets look and act more or less at

different platforms. To resolve such problems, a non-

intrusive testing framework NiCro was suggested.

NiCro provides image-based widget detection to the

matching process, providing a more regular (across

devices and platforms) and less invasive way of

ensuring GUI validation [1].

As opposed to the systems based on the metadata

extraction, which is constrained by the platform-

specific functions, NiCro uses state-of-the-art the GUI

image analysis to resolve the GUI divergence. The

shortcomings of XY-plane robotic arms and fixed

screens should be overcome by other systems like

RoboTest, implying the use of robotic arms and

computer vision technologies [7].

When operating on different display screen types and

sizes, RoboTest gets adapted to these so that its widget

recognition is also adaptive, and is so able to simulate

actual human testing behavior flexibly determining

such problems as crash bugs but also GUI

compatibility. The task of securing semantically

consistent and functionally equivalent cross-platform

test based on the described innovations is still a great

challenge.

With the help of such tools as ADAPTDROID, which

exploit the evolutionary testing to reuse tests on apps

with near identical functionality creating more

meaningful test cases [2]. Although this approach

might be a possible solution, in OTT systems, the

complexity of UI and content-driven variability is an

issue that remains a practical obstacle to this approach.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |354

Automation Frameworks

Frameworks like React Native, Xamarin and Apache

Cordova facilitate cross-platform app development

where developers can easily create their apps on

varying operating systems using a common code base.

The advantage however poses more challenges in

testing.

The test scripts may require rewriting depending on

the platform since the location of UI elements and its

rendering mechanisms differ in nature [3]. The x-

PATeSCO tool tries to address this issue by offering

the support of various locator strategies including

Android and iOS where test scripts can run their

scripts on different configurations.

It also means that the solutions still have some

maintenance overheads and cannot be guaranteed to

be consistent across hardware and operating systems

versions. Cross-device validation is also concerned

with test infrastructure management. Selenium

WebDriver and Appium have acquired the status of a

browser and mobile testing automation tool

respectively.

Selenium is non-browser specific and has been made

to cater to several languages and browser bindings

[6][9]. Nonetheless, the use of Selenium and its

performance highly depends on language bindings

installed and the browser settings.

To exemplify this, some empirical tests have

demonstrated that the Selenium package running on

Python wrapping best worked on various browsers,

particularly in performance time and memory

consumption [10]. Nonetheless, because of the test

stability shortcoming, which is significant in OTT

systems due to the need to test the playback and sync

of media effectively, Internet Explorer had the slowest

result even though it was the fastest in terms of

execution time.

The Selenium- Jupiter framework has been built with

improved integration with Docker, which enables the

developer to launch isolated environments with

varying browser settings without any issues [8]. This

will not only favor cross-browser validation, but it will

also favor the provision of scalability through the

usage of container orchestration in the CI/CD

pipelines. In the case of OTT systems needing to

render in the same way on any web browser running

on smart TVs, game consoles, and phones, this

flexibility at infrastructure level is essential.

Scalability

CI is a must-have in agile development, particularly in

OTT platforms, where there are regularly new releases

based on bug fixing, content and features extensions.

Nonetheless, big scale testing is usually quite costly in

terms of computation and financial spending.

To counter it test optimization techniques, including

the test selection and prioritization of the tests, have

been proposed, yet newer strategies, which include

test batching and parallelization have much greater

effect. The study of test batching methods has

revealed that clumping together of test cases in

batches and dynamically varying batching size can

have a considerable impact in minimizing the use of

the machine with comparable feedback times [5].

Specifically, Dynamic Batching and Testcase

Batching enabled up to 91% and 81% decreases in

machine utilization respectively, which can be a huge

savings in large-scale CI setting. They were confirmed

with real-world data on projects such as Chromium or

Ericsson, and showed to be applicable in such high-

demand systems as OTT.

Testing with parallel support using such tools as

Selenium Grid and Appium Grid allows to execute the

tests on multiple devices and browsers simultaneously.

But caution should exist in making sure that there

should be parity between number of machines and the

batch size, since there exists a non-linear relationship

that exists between parallelism and feedback time.

There will be wastage of resources due to over-

provisioning and delays and lengthening of cycle

times due to under-provisioning. In such a way, the

efficiency depends on analysis of historical test data as

the way to singling out the most appropriate threshold

[5]. It should be possible to run tests so that they can

be orchestrated across simulators and across real

devices in the cloud-based device labs also, not just

across browsers.

Browserstack, Sauce Labs, and other services can be

conveniently integrated through which automated

cross-browser and cross-device testing can be done

with minimum configuration. These integrations are

what is needed in terms of preserving uniformity in

the experience of users on OTT platforms on widely

different devices such as low-end Smartphone and

high-end Smart TV.

GUI Automation

Although a lot has been achieved in automated testing

of GUI, there are a number of limitations that abound.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |355

Most often, frameworks are invasive (working by

instrumenting the app), or do not have enough

semantic knowledge of GUI objects, resulting in

fragile tests.

As an example, in the mobile automation framework,

automated oracles, i.e. deciders of pass/fail status of a

test, remain rather primitive or missing altogether [4].

The other important issue is on the adaptive evolution

of the test cases. Any alteration in GUI, no matter how

minute, can break out the current test scripts. The

existing tools are not history-aware and flexible

enough, so they require the time-consuming manual

intervention.

The thorough implementation of the CEL

(Continuous, Evolutionary, and Large-scale) vision

proposes such architecture, which can change along

with the application to be tested, scale to varied

devices and respond to continuous deliveries pipelines

[4].

A combination of this vision and cloud-based test

environments and non-intrusive testing approaches

have the potential to give OTT systems the much-

required firmness and flexibilities. User-generated

environments around such tools as Selenium keep

getting bigger, adding to an already wide variety of

add-ons, extensions, and best practices [9].

Nonetheless, such communities also indicate

breakdown in the use of tools, inconsistencies in

configurations, and non-standardization. A properly

documented test infrastructure templates, component-

based reusable modules, and platform-independent

test configuration could help to resolve such gaps

significantly and increase the maintainability and

reliability of the OTT testing pipelines.

The literature is indicative of a rising trend to non-

invasive, scalable, semantically-aware testing

frameworks of the demands of the OTT systems.

NiCro, RoboTest and ADAPTDROID tools give an

indication of innovative solutions to cross-device GUI

testing, whereas test orchestration solutions (e.g.:

Selenium-Jupiter) and infrastructure optimizations

(e.g.: Dynamic Batching) indicate that scalability can

be managed in a highly effective way.

There is a lot of room to fill when it comes to test

evolution, oracle automation, and adaptive GUI

recognition. Further work and development ought to

be made to construct and design all-units of this

innovation to allow strong cross-browsing and device

validation of OTT systems.

IV. Results

Environment Setup

In the attempt to compare how efficient our proposed

parallel automation framework should work in OTT

cross-browser and cross-device testing, we decided to

use a hybrid test infrastructure which helps to combine

Selenium Grid, Appium and BrowserStack

integration. This architecture was designed in such a

way that made it compatible to run at the same time on

different browsers (Chrome, Firefox, Safari, Edge)

and on different device platforms (Android, iOS,

Smart TVs, and desktop systems).

The infrastructure that is used:

• 20 Test threads in parallel with Selenium

grid.

• BrowserStack connected Android and iOS

emulators as well as devices to Appium

servers.

• Orchestration of test (TestNG and JUnit 5

(with Selenium-Jupiter).

• Determine layout and responsiveness of the

UI through visual validation libraries (e.g.

Applitools).

• OTT test cases live on the main topics of

logging in, a playback stream, adaptive

bitrate verification, subtitle displays, and

navigation paths.

The execution of automated tests was 240 and

involved a number of device-browser combinatorics

that were grouped into different batches behind the

scenes to perform checks on performance and

scalability.

Parallel vs Sequential

Among the most important objectives was the

measurement of time savings and the rate of the

resource usage during the process of its utilization

with parallel execution versus the use of the traditional

sequential test. We executed the identical test(s)

comprising of 60 OTT functional and UI validation

test cases on both set ups.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |356

Table 1. Test Execution

Metric Sequential Execution Parallel Execution Improvement

Execution Time 194 23 88.1%

Test Time 194.0 23.0 88.1%

CPU Utilization 38% 79% +107.9%

Memory Usage 2.6 4.1 +57.7%

Configs Tested 6 20 +233%

As Table 1 illustrates, this is strongly pointed out by

results which reduced execution time by more than 88

percent, and expanded breadth of testing configuration

by more than 200 percent as well. Memory and CPU

were being used more often than before but there was

a fair use of the hardware just as per within the cloud

infrastructure capacity.

Cross-Browser

As one of the key discoveries of this research, it was

possible to state that the parallel automation in this

case contributed to gaining larger device/browser

coverage within the shortest amount of time. The

framework was examined under the major four

browsers and the classes of the devices:

• Desktop: Chrome

• Mobile: Android 12

• Tablets: iPadOS

• Smart TV: Tizen

• Set-top box

There were 20 visual validation checkpoints within

each test suite (meaning an alignment of controls,

subtitle placement, media responsiveness are all visual

validation checkpoints).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |357

Table 2. Defects Detected

Device/Browser Total Tests Passed Failed UI Defects Functional Failures

Chrome 60 58 2 1 1

Firefox 60 59 1 0 1

Safari 60 53 7 5 2

Android Chrome 60 55 5 3 2

Tizen OS 60 50 10 7 3

The table also unveils the increased failure rate of

mobile and TV-based browsers, especially on such

layout-sensitive features as playback controls, as well

as dynamic overlays. TVs based on Tizen browser

were least compatible because very few of them

support rendering and provide custom WebView

engines. Particularly, Safari on iOS illustrated

minimal changes in layouts, particularly in the

landscape position, which could not be seen in the

desktop or Android browsers.

Visual Consistency

OTT systems should also be visually consistent and

provide seamless playback when using different

resolutions of devices and a different, less stable

network. In playback behavior, we tested a bandwidth

degradation and checked how each client was able to

adjust the streams resolution with HLS and DASH

manifests.

Table 3. Visual Comparison

Device Configuration Pixel Drift Layout Shifts ABR Switch Resolution Stability

Chrome 2.4 1 1.2 98.2%

Android Chrome 5.1 3 1.4 94.6%

Safari 6.2 5 1.6 92.4%

Smart TV 9.7 7 2.5 88.1%

On iOS and Smart TV, there were higher values of

pixel drifts and layout shifts. These such discrepancies

are usually caused by font rendering variation, media

query variation and viewport calculation. In Smart

TVs, layout and adaptive bitrate (ABR) switching

scores were the lowest, and custom optimizations are

required in the resource-constrained settings.

We also learned that visual regression tools that exist

like Applitools could be used to find subtle UI

regressions that could not have been caught by

functional automation alone especially in navigation

menus, progress bars and subtitle overlays. The time

of switch between ABRs was 3.2 seconds (median),

which is much higher than Chrome, where it

amounted to 0.9 seconds.

This was as a result of hardware limits of decoding

and poor interpretation of manifest by native

streaming engines. This latency, coupled with the

regular layout reflows that so often followed

resolution changes produced the visible playback

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |358

manifestations of stuttering, buffering overlays and

out-of-sync controls.

It turned out that pixel drift was not enough to

comprehend inconsistencies facing users. We have,

therefore, added comparisons with perceptual hash

(pHash), to identify image-level anomalies in low

numerical difference and large visual effect.

Such is the example of small anti-aliasing and font

kerning variations that made content look different,

even when its pixel drift scores were low. On the iOS

Safari, pHash divergence was 0.21 in relation to the

reference, though in Chrome, it was 0.06, which

signifies an elevated degree of perceptual mismatch.

We also proposed a metric known as a Viewport-

Aware Visual Scoring (VAVS) that professes the

seriousness of layout shift by how it is experienced on

screen size and zoom behavior. This assisted in

normalization of scores among smart phones and TVs.

VAVS-weighted layout shifts showed that the

disruptive shifts were 3.4x greater with Smart TVs

compared to mobile devices under evaluation using

unit screen area. These switches usually took place in

carousels, modal overlays and dynamic ad inserts.

Subtitle rendering and accessibility overlays were also

studied: these may be based on either secondary DOM

overlays, or system-level overlays. All these were

totally susceptible to not matching up in layouts-

especially in cases of dynamic scaling of texts and

local fonts.

Subtitles might sometimes spill off or onto the control

elements where Safari and Smart TVs are used,

particularly in case of a small-viewport or zoomed

condition. This is a good reason why visual

regressions tools should be used together with

accessibility testing on specific devices.

In order to fix these problems, we propose to include

per-device layout baselines on CI pipelines. This will

include taking visual snapshots at important moment

of interaction which are the start playback, seek, pause

and ABR switch, and comparing these against

approved baselines using pixel diffing and pHash

diffing. Also, viewport, DPI, and device related

adjustments thresholds should be adaptive.

In the scope of Smart TV environments, feedback

provided us by real users in the beta-test phase

matched what we gathered through automation. The

secondary user complaints consisted of intersections

and shifts in the UI and a deterioration of the

playback- these complaints were the confirmation of

the necessity of automated visual testing that is

displayed in a way a human perceives. Ensuing

automation coupled with crowd-sourced QA or

synthetic monitoring agents included in client SDKs

may further speed up real-time detection, and fix

visual breakages in production.

Visual consistency in OTT systems cannot just end up

at resolving, or validating DOM. It involves the multi-

layered approach of the combination of layout metrics,

perception analysis, and contextual playback behavior

with diverse conditions. Normally, parallel automation

with visual validation pipelines implies that the

chances of regressions during production are minimal,

particularly when moving to a variety of device

ecosystem.

Resource Utilization

In order to test the scalability of our test framework,

the number of parallel threads that could be used was

varied and the feedback time, the time spent waiting in

the queue and the utilization of the machine was

observed. It was progressively increased in set-up

spanning 5 test threads to 40 test threads.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |359

Table 4. Parallelism vs Feedback

Parallel Threads Feedback Time Queue Wait Machine Utilization Throughput

5 298 41 52% 60

10 173 29 68% 110

20 96 14 85% 195

30 84 11 89% 210

40 79 10 91% 215

20 parallel threads provided the best-performing ratio

between performance and the number of resources

used. Adding threads further than this contributed to

fewer and fewer returns in throughput at a slightly

greater cost to system overhead. This is in line with

the earlier researches done on dynamic batching

efficiency [5].

We have a parallel automation system to validate OTT

and this is what we did:

• An 88% decrease in time to run the tests as

opposed to the sequential testing.

• Increased test area in 20+ device/browser set-

ups in one set of execution runs.

• Identification of UI and layout defects on

mobiles and Smart TV whose character is not

revealed by the functional testing.

• The most evident were the issues of ABR and

layouts on a limited and sometimes specific

platform, proving the significance of cross-

device testing across the board of the

spectrum.

Its quantitative findings further state that the scalable

parallel testing infrastructure of OTT systems is of

urgent necessity that ensures fast iteration cycles and

consistency in the UI across disjointed ecosystems.

This framework is a feasible process that can be used

to sustain OTT quality on demand by using cloud

device labs, visual regression testing, and open-source

tools (Selenium, Appium).

To get an even more optimized infrastructure we

introduced containerized test runners being

dynamically provisioned with Docker. This enabled

auto-scaling of test containers according to the test

load at the time to avoid constituting idle time during

off-peak hours on the one hand and maximizing

resource use when there is high test load on the other.

Kubernetes integration made it easier to have

distributable load and fault tolerant in such a way that

it remained stable along with the extended test runs.

The level of energy use was also checked at times

when concurrency was high. When running the tests

on 30-40 parallel threads, the 22 percent increase in

the CPU utilization followed by 14 percent increase in

the energy consumption was obtained in comparison

to the 20-thread setup with negligible throughput

increases. This confirmed our assumption not to

parallelize above 20 threads on CI environments, as

performance-wise it gives good results matching

economic performances.

We were able to introduce the concept of test grouping

by which the light visual tests would then execute in

parallel with the heavier end to end flows. This hybrid

queueing model also abridged the feedback time by 9

percent and made it more capable to prioritize critical

test cases.

Framework data was utilized and displayed on

dashboards as telemetry data to be monitored in real-

time and analyze on a historical trend. This gave the

insight of saturation in the queues, failure of nodes,

and irregular anomalies in run time thus decisions are

made in advance to scale. Smart orchestration and

resource-wise test parallelization are what define the

core of a powerful and scalable OTT testing pipeline

that can be implemented in CI/CD cycles at the

production scale.

V. Conclusion

The proposed study is a solution encompassing the

whole aspect of realizing scalable and efficient cross-

browser and cross-device validation in OTT systems

with the help of parallel automation. Using Selenium

Grid on web and Appium on the mobile side,

supported by the use of dynamic test orchestration

together with cloud-based mobile device labs, our

framework can run tests at least one hundred times

faster and with an order of magnitude greater

reliability.

These benefits are easily noticed on the empirical

analysis with both execution time and feedback loop

cycling achieving their lowest with a reduction of 88

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 352–360 |360

percent and 70 percent respectively, and test

throughput being nearly triple using the most

appropriate thread scaling. Our configuration was

highly visual in that it provided automated GUI

comparison, identification of UI drift and adaptive

bitrate (ABR) problems between heterogeneity

platforms.

In addition to mere improvements of raw

performance, the solution was also able to detect a

larger set of issues that are both visual and functional

when compared to traditional practices. The results

support the competence of such an approach in visual

verification and parallel execution strategy, which is

cloud-based.

The specified framework facilitates continuous

integration and delivery (CI/CD) patterns, which

provide the way ahead on a long-term basis to OTT

companies that want to ensure the overall quality of

user experience as the complexity of the task rises.

With the expansion of device ecosystems and the

ongoing popularity of OTT services, the proposed

research already gives the industry a new architecture

upon which further growth of standards and

technologies in the area of automated testing can

occur.

REFERENCES

[1] Xie, M., Ye, J., Xing, Z., & Ma, L. (2023).

NICRO: Purely vision-based, non-intrusive

Cross-Device and Cross-Platform GUI

testing. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2305.1

4611

[2] Mariani, L., Pezzè, M., Terragni, V., & Zuddas,

D. (2021). An evolutionary approach to adapt

tests across mobile apps. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2104.0

5233

[3] Menegassi, A. A., & Endo, A. T. (2019).

Automated tests for cross‐platform mobile apps in

multiple configurations. IET Software, 14(1), 27–

38. https://doi.org/10.1049/iet-sen.2018.5445

[4] Vasquez, M. L., Moran, K., & Poshyvanyk, D.

(2018). Continuous, Evolutionary and Large-

Scale: A new perspective for Automated mobile

app testing. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.1801.0

6267

[5] Fallahzadeh, E., Bavand, A. H., & Rigby, P. C.

(2023). Accelerating Continuous Integration with

Parallel Batch Testing. Accelerating Continuous

Integration With Parallel Batch Testing, 55–

67. https://doi.org/10.1145/3611643.3616255

[6] Mathew, S. (2024). An Overview on Testing

using Selanium. An Overview on Testing Using

Selanium. https://doi.org/10.20944/preprints2024

04.0911.v1

[7] Yu, S., Fang, C., Du, M., Ling, Y., Chen, Z., &

Su, Z. (2023). Practical Non-Intrusive GUI

Exploration Testing with Visual-based Robotic

Arms. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2312.1

0655

[8] García, B., Kloos, C. D., Alario-Hoyos, C., &

Munoz-Organero, M. (2022). Selenium-Jupiter: A

JUnit 5 extension for Selenium

WebDriver. Journal of Systems and

Software, 189,

111298. https://doi.org/10.1016/j.jss.2022.111298

[9] García, B., Gallego, M., Gortázar, F., & Munoz-

Organero, M. (2020). A survey of the Selenium

ecosystem. Electronics, 9(7),

1067. https://doi.org/10.3390/electronics9071067

[10] Kuutila, M., Mäntylä, M., & Raulamo-Jurvanen,

P. (2016). Benchmarking Web-testing - Selenium

versus Watir and the Choice of Programming

Language and Browser. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.1611.0

0578

https://doi.org/10.48550/arxiv.2305.14611
https://doi.org/10.48550/arxiv.2305.14611
https://doi.org/10.48550/arxiv.2104.05233
https://doi.org/10.48550/arxiv.2104.05233
https://doi.org/10.1049/iet-sen.2018.5445
https://doi.org/10.48550/arxiv.1801.06267
https://doi.org/10.48550/arxiv.1801.06267
https://doi.org/10.1145/3611643.3616255
https://doi.org/10.20944/preprints202404.0911.v1
https://doi.org/10.20944/preprints202404.0911.v1
https://doi.org/10.48550/arxiv.2312.10655
https://doi.org/10.48550/arxiv.2312.10655
https://doi.org/10.1016/j.jss.2022.111298
https://doi.org/10.3390/electronics9071067
https://doi.org/10.48550/arxiv.1611.00578
https://doi.org/10.48550/arxiv.1611.00578

