

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 677–683 |677

Microservice-Aware CI/CD Pipelines: Dependency Graphs, Build

Isolation, And Deployment Orchestration

Pathik Bavadiya

Submitted:15/02/2023 Revised: 27/03/2023 Accepted: 05/04/2023

Abstract: Because of the growing complexity of microservice architectures, continuous integration and continuous delivery

pipelines need to be efficient, dependable, and robust in order to maintain rapid software delivery cycles. For the purpose of

optimizing microservice-aware continuous integration and continuous delivery pipelines, this study studied the integration of

dependency graphs, build isolation, and deployment orchestration as optimization methodologies. In this study, a mixed-

method research methodology was utilized, which included both experimental evaluation through the use of a simulated

environment consisting of twenty microservices and qualitative insights from fifteen DevOps professionals. Over the course

of controlled simulation runs, quantitative data like as build times, deployment latencies, and failure rates were gathered. On

the other hand, practitioner input was gathered through interviews and questionnaires. According to the findings, the optimized

pipeline was able to achieve a reduction of 32.87% in the average build time, a reduction of 34.02% in deployment latency,

and a reduction of over 51% in failure rates. Although initial setup complexity was highlighted, thematic analysis of

practitioner comments indicated gains in build efficiency, fault isolation, and deployment control. However, the complexity

of the initial setup was noted. The findings of the study indicate that the proposed improvements considerably improve the

performance and reliability of continuous integration and continuous delivery pipelines in microservice environments. This

provides a real benefit for contemporary DevOps processes when implemented.

Keywords: Microservices, CI/CD Pipelines, Dependency Graphs, Build Isolation, Deployment Orchestration, DevOps

Optimization, Software Engineering.

1. Introduction

Over the course of the past few years, microservice

architecture has become the approach of choice for

the construction of software systems that are

scalable, modular, and well maintaining. This allows

enterprises to expedite their development cycles and

adapt more quickly to changing business

requirements. Decomposing apps into services that

can be deployed separately is one way to accomplish

this. On the other hand, this architectural shift has

also resulted in the introduction of substantial

operational issues, notably with regard to the design

and administration of pipelines for continuous

integration and continuous deployment (CI/CD).

Inefficiencies such as redundant builds, extended

deployment times, and a higher chance of failures

are frequently the result of the inherent

interdependencies that exist amongst microservices.

Additionally, the requirement for frequent upgrades

creates additional complications. It is necessary to

develop novel pipeline optimization strategies in

order to address these problems. These strategies

should guarantee both speed and reliability without

compromising the stability of the system. Through

the use of experimental analysis and practitioner

insights, this study focuses on three such methods:

dependency graphs, build isolation, and deployment

orchestration. The purpose of this study is to

evaluate the combined impact of these three

strategies on the performance and resilience of

microservice-aware continuous integration and

continuous delivery pipelines.

1.1. Background of the Study

Pipelines for continuous integration and continuous

deployment (CI/CD), which are critical for

sustaining agile and efficient release cycles, have

been presented with additional issues as a result of

the fast use of microservice architectures in modern

software development. In contrast to monolithic

systems, microservices necessitate the management

of several interdependent services, each of which

must proceed through its own build, test, and

deployment procedures. The complexity of the

system frequently results in longer build times,

higher failure rates, and bottlenecks during

Vice President, Production Services (Independent

Researcher) BNY, New York, USA

pathikbavadiya1900@gmail.com

ORCID: 0009-0003-4405-3657

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 677–683 |678

deployment, which ultimately has an impact on the

delivery pace and the stability of the organization.

Traditional techniques to continuous integration and

continuous delivery have difficulty successfully

managing these dependencies, which leads to

multiple builds, extended periods of outage, and

increased operational overhead. Emerging solutions

like as dependency-aware build sequencing, build

isolation, and deployment orchestration have been

proposed as a means of improving pipeline

efficiency and robustness in response to the issues

that have been presented. The purpose of this study

is to expand upon these achievements by conducting

an experimental evaluation of their combined

impact in a simulated microservices context and

proving their practical application through the

feedback of industry practitioners.

1.2. Role of Pipeline Optimization in

Accelerating DevOps Workflows

When it comes to enabling DevOps teams to provide

high-quality software at a rapid pace while yet

preserving stability, pipeline optimization is an

extremely important contribution. Even very slight

inefficiencies in the continuous integration and

continuous delivery process can compound into

considerable delays in microservice architectures,

which require a large number of independently

deployable components to be constructed, tested,

and deployed on a regular basis. It is possible for

businesses to minimize superfluous processes,

prioritize jobs based on service requirements, and

make certain that only the components that are

necessary are rebuilt and redeployed by refining

pipeline workflows. This targeted strategy not only

cuts down on the amount of time needed for building

and deploying software, but it also lowers the

amount of resources that are consumed. As a result,

development teams are able to operate more

effectively without compromising on quality.

The influence that pipeline optimization has on the

reduction of bottlenecks throughout the software

delivery lifecycle is another essential feature of

pipeline optimization. It is common for code

changes to accumulate in queues while waiting for

builds, tests, or approvals when pipelines are not

designed properly. This causes release cycles to be

slowed down, which increases the level of irritation

experienced by engineers. Pipelines that have been

optimized implement automation, parallel

execution, and intelligent orchestration in order to

speed up the process of moving changes through the

workflow while still ensuring that quality checks are

carried out correctly. This acceleration is especially

useful in highly competitive markets, where the

supply of new features quickly and the

implementation of frequent upgrades are important

for maintaining a competitive advantage.

The feedback loop between the development and

operations teams is strengthened by optimized

pipelines, which is a fundamental principle of the

DevOps implementation methodology. Teams are

able to receive feedback on code changes that is both

more accurate and more timely as a result of

improvements made to build isolation, deployment

orchestration, and dependency handling. This

enables teams to identify and address problems at an

earlier stage in the development cycle. Having faster

feedback ensures that flaws are corrected before

they become production problems, which in turn

reduces the chance of downtime and improves the

overall stability of the system. Through this method,

pipeline optimization not only has the effect of

accelerating delivery, but it also improves the

resilience and maintainability of the program that

has been deployed.

One of the ways in which DevOps teams foster a

culture of continuous improvement is through the

efficiency benefits that are achieved through

pipeline optimization. Teams are more inclined to

experiment with new ideas, develop current

features, and embrace creative methods when they

are able to trust their pipelines to deliver updates in

a timely manner, with a high degree of reliability,

and with a little amount of interference from human

interaction. This, over the course of time, helps to

cultivate a high-performance engineering

environment in which rapid iteration is matched

with strong operational discipline. This helps to

ensure that business objectives and technical quality

go hand in hand.

1.3. Challenges in Optimizing CI/CD for

Microservice Architectures

The management of intricate interdependencies

between services is one of the most significant

issues that must be overcome in order to optimize

continuous integration and continuous delivery

pipelines for microservice architectures. Each

service in a microservice ecosystem may be

dependent on the output, application programming

interface (API), or data stream of one or more other

services. Because of the linked structure of the

system, even a very slight modification to a single

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 677–683 |679

service has the potential to have an effect on

numerous downstream components. CI/CD

methodologies that are traditionally used, which

frequently involve rebuilding and redeploying

whole applications upon a single change, become

ineffective when used to situations like this. If teams

do not have an efficient dependency management

system, they run the danger of executing redundant

builds and deploys that are not essential, which

wastes resources and extends delivery timeframes.

● Build Time and Resource Overhead

Systems that are based on microservices can consist

of dozens or even hundreds of distinct services, each

of which has its own build and testing procedures.

The execution of these builds in sequential order

might result in significant delays, but the execution

of all of them simultaneously without isolation can

result in conflicts, unstable test results, and

exhaustion of resources. In situations when various

services have diverse technology stacks, build tools,

and environment requirements, it becomes very

challenging to optimize build times while also

preserving quality and reliability. A additional factor

that contributes to these inefficiencies is the absence

of focused build sequencing that is based on actual

dependencies.

● Deployment Complexity and

Rollback Management

When it comes to monolithic applications, the

deployment process often consists of a single step

per application. On the other hand, microservice

architectures necessitate the coordinated

deployment of a number of separate components,

which frequently necessitates the deployment of

these components across a variety of different

environments. To ensure that dependent services are

deployed in the appropriate sequence and that new

versions are compatible with those that are already

in place, this creates a challenge that must be

overcome. In the event that even a single service

experiences a failure, it has the ability to cause

disruptions throughout the entire deployment, which

may lead to incomplete rollouts or downtime for the

service. A more sophisticated process is the process

of rolling back changes in a microservices

configuration. This process may entail reverting a

large number of services to versions that are

compatible with earlier versions of the system

without causing any disruption to the system's

functionality.

● Environment Configuration and

Consistency Issues

Another significant obstacle that microservice

continuous integration and continuous delivery

pipelines must overcome is maintaining consistency

throughout the development, testing, staging, and

production environments. It can be challenging to

ensure uniformity across all pipeline stages due to

the fact that various services may use different

runtime environments, databases, or container

configurations. Small differences between

environments can result in problems that are not

discovered during testing but become apparent

during production, which can have a negative

impact on both the system's stability and the user

experience.

● Testing and Quality Assurance

Bottlenecks

The testing process in a microservice context is

intrinsically more complicated due to the fact that

services frequently interact with one another in an

asynchronous manner and rely on shared databases

or APIs from the outside. Integration and end-to-end

tests are essential in order to guarantee that the

system performs as a whole. Unit tests on their own

are insufficient to verify overall functionality. The

execution of these tests across different services, on

the other hand, can drastically slow down the

pipeline, particularly when the tests need the

orchestration of components that are dependent on

one another. Mocking and emulating service

behavior can be helpful, but they add extra levels of

complexity to the implementation of continuous

integration and continuous delivery.

1.4. Objectives of the study

● To evaluate the impact of dependency-

aware build sequencing on CI/CD

pipeline efficiency.

● To assess the effectiveness of build

isolation in improving fault tolerance

and reliability.

● To measure the role of deployment

orchestration in reducing latency and

failure rates.

● To capture practitioner insights on the

practical adoption of optimized CI/CD

techniques.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 677–683 |680

2. Literature Review

Persson & Johansson (2022) investigated the ways

in which service dependency graphs could make

software testing in microservice architectures more

straightforward. The findings of their research

highlighted the importance of precisely mapping

dependencies across services in order to provide

targeted testing, hence lowering the number of

redundant test runs and enhancing the overall

efficiency of testing. In their demonstration, they

demonstrated that dependency graphs made impact

analysis more effective by enabling teams to

anticipate how changes in one service would have

an effect on other services. By reducing needless

rebuilds and deployments, our research provided

direct support for the hypothesis that dependency-

aware build sequencing may be used to improve

continuous integration and continuous delivery

pipelines.

Microsoft Docs (2022) offered a comprehensive

implementation guide for the purpose of

establishing microservices continuous integration

and continuous delivery pipelines on Kubernetes by

utilizing Azure DevOps Services. The

documentation provided an explanation of how

containerized microservices might be constructed,

tested, and deployed in an environment that was

native to the cloud and utilized orchestrated

workflows. The document provided an overview of

the most effective procedures for pipeline

automation, scalability, and environment isolation,

stressing the ways in which orchestration systems

such as Kubernetes improved deployment

dependability. Using this resource, real validation

was provided for integrating deployment

orchestration into continuous integration and

continuous delivery workflows in order to improve

speed and fault tolerance.

Kong Inc. (2022) explored the idea of microservices

orchestration, providing an overview of its

advantages, tools, and applications in the actual

world. Through the use of orchestration, the authors

showed how service interactions, sequencing, and

automated rollouts were controlled in order to

reduce the complexity of operational processes.

Additionally, the study demonstrated how

orchestration frameworks supported the robustness

and consistency of services during deployments.

The significance of deployment orchestration in the

optimization of continuous integration and

continuous delivery processes was reaffirmed by

this source, particularly in settings that feature

intricate service interdependencies.

Grancz, Schmid, & Carro (2020) conducted

research on the potential, gaps, and advancements in

the field of microservice-aware static analysis. They

conducted an investigation into the ways in which

static analysis approaches could uncover potential

integration problems, performance bottlenecks, and

dependency-related concerns prior to deployment.

The authors emphasized that the improved stability

and predictability of microservice deployments was

a result of adding such analysis into continuous

integration and continuous delivery procedures. The

findings of this study provided support for the

premise of the study, which stated that it was

essential to comprehend and manage service

dependencies in order to maximize pipeline

efficiency and reliability.

3. Research Methodology

By concentrating on dependency graphs, build

isolation, and deployment orchestration, this study

studied various methods that might be utilized to

optimize microservice-aware continuous integration

and continuous delivery pipelines. The methodology

was developed with the purpose of determining how

the aforementioned approaches impacted the

efficiency of the build process, the speed of

deployment, and the stability of the system inside a

controlled microservices environment.

3.1. Research Design

The research approach that was chosen was a mixed-

method research design, which included both

experimental evaluation and qualitative insights

from industry practitioners together. In order to

evaluate the effects of dependency-aware build

sequencing, segregated build containers, and

managed deployments, a prototype of a continuous

integration and continuous delivery pipeline was

developed and executed using a simulated

microservices architecture. Additionally, interviews

were conducted in order to collect practitioner

viewpoints in addition to observations.

3.2. Data Collection

Data was collected from two sources:

1. Experimental Logs – Metrics such as

build times, error rates, and deployment

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 677–683 |681

latency were recorded during controlled

simulation runs.

2. Interviews and Questionnaires –

Feedback was obtained from DevOps

engineers and software architects who

reviewed or interacted with the prototype

pipeline.

3.3. Sample Size

Within the experimental environment, there were

twenty microservices that were organized into five

different functional domains. For the purpose of

gathering qualitative feedback, fifteen DevOps

specialists from a variety of software companies

took part in the discussion. This ensured that there

was representation from organizations that had both

experience migrating from monolithic to

microservices and native microservice

development.

3.4. Data Analysis Techniques

For the purpose of comparing the performance of the

baseline pipeline to that of the improved pipeline,

quantitative data was evaluated using descriptive

statistics and paired t-tests. An evaluation of the

correctness of the dependency graph was carried out

using precision-recall analysis. In order to uncover

recurrent obstacles, best practices, and perceived

benefits of the proposed optimizations, qualitative

responses were coded and then subjected to thematic

analysis.

4. Data Analysis

In order to evaluate the effects of incorporating

dependency graphs, build isolation, and deployment

orchestration into microservice-aware continuous

integration and continuous delivery pipelines, the

data that was collected was evaluated. The

experimental metrics that were gathered throughout

the baseline and optimized pipeline runs were used

to produce the quantitative results. Measurements

such as build times, deployment latencies, and error

rates were included in these measurements. In

addition, qualitative data obtained from interviews

with DevOps experts was coded using a thematic

approach in order to uncover recurrent trends,

anticipated difficulties, and perceived advantages.

Table 1: Comparative Build Time Performance Between Baseline and Optimized Pipelines

Metric Baseline Pipeline Optimized Pipeline

Average Build Time (min) 14.6 9.8

Maximum Build Time (min) 21.3 15.5

Minimum Build Time (min) 11.2 7.4

Figure 1: Percentage Improvement Between Baseline and Optimized Pipelines

32.87%

27.23%

33.93%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Average Build Time (min) Maximum Build Time

(min)

Minimum Build Time (min)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 677–683 |682

According to the findings of the examination of

build times, the optimized pipeline shown a

significant gain in efficiency when compared to the

baseline procedure. The typical amount of time

required to construct something went from 14.6

minutes to 9.8 minutes, which is a 34.87 percent

improvement. Not only did the maximum build

durations decrease by more than 27 percent, but the

minimum build times also decreased by about 34

percent. These enhancements suggest that the

integration of dependency graphs and build isolation

made it possible to construct numerous

microservices in parallel while avoiding redundant

or superfluous builds. As a result, the execution of

the pipeline as a whole was sped up without

affecting its dependability.

Table 2: Deployment Latency Comparison

Metric Baseline Pipeline Optimized Pipeline

Average Deployment Latency (s) 52.4 34.6

Deployment Failures (%) 7.2 3.5

Figure 2: Percentage Improvement in comparison of Deployment Latency

The optimized pipeline demonstrated a statistically

significant improvement in terms of deployment

performance parameters. The average deployment

latency was decreased from 52.4 seconds to 34.6

seconds, which is equivalent to a speed

improvement of 34.02%. Additionally, the

deployment failure rate experienced a significant

decrease, going from 7.2% to 3.5%, which is a

reduction of additional than half. Based on these

findings, it appears that deployment orchestration

helped to streamline the release process, reduce

bottlenecks, and improve the success rate of rollouts,

all of which contributed to faster and more reliable

software delivery cycles.

Table 3: Thematic Analysis of Practitioner Feedback

Theme Identified Frequency Mentioned Example Practitioner Quote

Improved Build Efficiency 12
“Parallel builds with isolation cut

down waiting times drastically.”

Better Fault Isolation 9
“A single microservice failure no

longer stalls the entire pipeline.”

Enhanced Deployment Control 8
“The orchestrated rollout minimized

downtime and rollback issues.”

Learning Curve and Complexity 6
“The added orchestration logic

required more initial setup effort.”

34.02%

51.39%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Average Deployment Latency (s) Deployment Failures (%)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 677–683 |683

Both the technical and operational benefits of the

streamlined CI/CD pipeline were brought to light by

the qualitative comments received from DevOps

professionals. The topic that was brought up the

most frequently was the enhancement of build

efficiency. Twelve of the participants indicated that

parallel and isolated builds contributed to a

considerable reduction in waiting times. Nine of the

respondents stressed the need of improved fault

isolation, which eliminated the possibility of

individual service failures disrupting the overall

pipeline. Six of the participants agreed that there was

a learning curve and initial complexity throughout

the adoption process, whereas eight of the

participants mentioned that staged rollouts led to

improved deployment control. The response, in

general, provided support for the experimental

findings, so proving the practical practicality and

significant utility of the optimization strategies that

were offered.

5. Conclusion

Within microservice-aware continuous integration

and continuous delivery pipelines, the incorporation

of dependency graphs, build isolation, and

deployment orchestration resulted in a considerable

improvement in performance, reliability, and

operational control, according to the findings of the

study. The experimental findings revealed

significant reductions in construction times (an

improvement of over 32 percent) and deployment

latencies (an improvement of over 34 percent), in

addition to a notable reduction in failure rates by

more than half. The pipeline was optimized, which

allowed for effective parallel builds, reduced the

number of redundant processes, and expedited

rollouts, which ultimately resulted in the delivery of

software that was both faster and more stable. These

findings were supported by qualitative comments

from practitioners, which highlighted improved

build efficiency, improved fault isolation, and

enhanced deployment management, despite the fact

that there was some initial setup difficulty.

According to the findings of the research, the

proposed improvements offer measurable

advantages in terms of both technical and

operational aspects, which makes them a realistic

strategy for contemporary microservice-based

DevOps processes when implemented.

References

[1] R. T. Oliveira, E. D. Canedo, E. A. Silva, and

D. M. R. Mattos, “A method for monitoring the

coupling evolution of microservice-based

systems,” Journal of the Brazilian Computer

Society, vol. 27, no. 1, pp. 1–16, 2021.

[2] Kong Inc., “What is Microservices

Orchestration? Tools and Benefits,” Mar. 9,

2022. [Online]. Available:

https://konghq.com/learning-

center/microservices/microservices-

orchestration

[3] Microsoft Docs, “Microservices CI/CD

pipeline on Kubernetes with Azure DevOps

Services,” Sep. 8, 2022. [Online]. Available:

https://learn.microsoft.com/en-

us/azure/devops/pipelines/apps/cd/azure/micro

services

[4] Grancz, K. Schmid, and L. Carro,

“Microservice-aware static analysis:

Opportunities, gaps, and advancements,” in

Proc. Microservices 2020–2022, 2020.

[5] L. Persson and E. Johansson, “Simplifying

software testing in microservice architectures

through service dependency graphs,” M.S.

thesis, Linköping Univ., Linköping, Sweden,

2022.

[6] DevOps.com, “How to scale microservices

CI/CD pipelines,” May 18, 2020. [Online].

Available: https://devops.com/how-to-scale-

microservices-ci-cd-pipelines

[7] NeuroQuantology, “Versioning strategies and

dependency management in polyglot DevOps

pipelines,” NeuroQuantology, vol. 20, no. 3,

2022.

[8] Codefresh, “CI/CD Pipelines for

Microservices,” 2022. [Online]. Available:

https://codefresh.io/learn/cicd-pipelines-for-

microservices

[9] SpringerOpen, “A method for monitoring the

coupling evolution of microservice-based

systems,” Journal of the Brazilian Computer

Society, vol. 27, no. 1, 2021.

[10] Opsera, “Container orchestration, Kubernetes,

and the CI/CD pipeline,” 2022. [Online].

Available:

https://www.opsera.io/blog/container-

orchestration-kubernetes-and-the-ci-cd-

pipeline

https://learn.microsoft.com/en-us/azure/devops/pipelines/apps/cd/azure/microservices
https://learn.microsoft.com/en-us/azure/devops/pipelines/apps/cd/azure/microservices
https://learn.microsoft.com/en-us/azure/devops/pipelines/apps/cd/azure/microservices

