
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 709–715 |709 

Ansible Upgrade in Mission-Critical Systems: Ensuring 

Backward Compatibility and Role Integrity 

Pathik Bavadiya 

Submitted:15/11/2023  Revised: 27/12/2023  Accepted: 05/01/2024 

Abstract: In mission-critical systems, where it is necessary to ensure uninterrupted operations during upgrades, Ansible is 

commonly used for automating configuration management through the use of configuration management automation. The 

purpose of this study was to evaluate the influence that updating versions of Ansible has on backward compatibility and role 

integrity within environments like an environment. A descriptive and exploratory research design was utilized in order to 

assess the data collected from five different real-world information technology infrastructures as well as controlled upgrade 

testing. According to the findings of the study, small version upgrades typically maintained compatibility and role 

functionality, however bigger version leaps frequently resulted in role failures and necessitated rollbacks. Among the primary 

reasons for upgrade problems were the presence of obsolete modules and changes in role syntax. Qualitative insights from 

DevOps professionals emphasized the necessity of comprehensive testing, detailed documentation, automated rollback 

mechanisms, and version pinning to ensure upgrade success. For the purpose of properly managing Ansible upgrades and 

reducing disruptions to important automation activities, the findings provide valuable suggestions. 

Keywords: Ansible upgrade, backward compatibility, role integrity, mission-critical systems, automation, rollback, DevOps 

best practices. 

 

1. Introduction 

It is now possible for businesses to deploy, 

configure, and maintain complex systems at scale 

with minimal human interaction thanks to 

automation, which has formed the backbone of 

modern IT infrastructure management. Because of 

its agentless architecture, user-friendliness, and 

strong role-based configuration management, 

Ansible stands out among the many automation 

tools that are now available. As a result, it has gained 

widespread adoption in a variety of contexts that are 

considered to be mission-critical. Backward 

compatibility and the maintenance of role integrity 

are two issues that are brought up by frequent 

updates, which are a consequence of Ansible's 

ongoing development. Mission-critical systems 

require a high level of availability and 

dependability, because there is very little space for 

errors or disruptions throughout the upgrading 

process. Significant operational setbacks can be 

caused by any incompatibility or failure in 

automation roles, which can have an impact on both 

the supply of services and the continuation of 

corporate operations. Therefore, it is necessary for 

companies that rely heavily on these technologies to 

have a solid understanding of how Ansible upgrades 

affect the automated workflows that are already in 

place and to establish solutions that can mitigate the 

risks that are connected with these upgrades. The 

purpose of this study is to investigate these problems 

by investigating the technical effects on backward 

compatibility, reviewing real-world upgrade 

scenarios, and evaluating the integrity of roles once 

an update has been performed. In addition to this, it 

incorporates the experiences of DevOps specialists 

in order to highlight best practices that guarantee a 

smooth transition between different versions of 

Ansible without sacrificing the automation services 

that are critically important to the mission. The 

purpose of this research is to give a thorough 

framework for properly managing Ansible updates 

in high-stakes information technology environments 

through the methodology of this study. 

1.1. Background of the study 

In the quickly changing environment of information 

technology that we are currently experiencing, 

automation technologies such as Ansible play a 

crucial role in the effective and dependable 

Vice President, Production Services (Independent 

Researcher) BNY, New York, USA 

pathikbavadiya1900@gmail.com 

ORCID: 0009-0003-4405-3657 

 



International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 709–715 |710  

management of mission-critical and complex 

infrastructure. Because of its ease of use, agentless 

design, and modular roles, Ansible has become the 

go-to solution for configuration management and 

orchestration across a wide variety of contexts, such 

as hybrid infrastructures, on-premise data centers, 

and cloud environments. Frequent updates and 

version upgrades of Ansible, on the other hand, 

provide substantial issues. This is especially true in 

mission-critical systems, where even modest 

disruptions can result in costly downtime or service 

outages. In order to keep existing automation 

workflows running without requiring substantial 

rewrites or failures, it is essential to ensure that 

backward compatibility is maintained during these 

upgrades. It is similarly important to maintain role 

integrity, which refers to the correct operation of 

stated automation roles, because any breach in this 

integrity might lead to larger system instability. 

There is a lack of thorough research that provides a 

systematic evaluation of the technical consequences 

of Ansible updates on backward compatibility and 

role performance in real-world mission-critical 

environments. This is despite the fact that the 

relevance of this topic is well recognized. This gap 

necessitates a focused investigation to identify 

common pitfalls, assess upgrade outcomes, and 

develop practical strategies for managing Ansible 

upgrades effectively. It is possible for enterprises to 

better protect their operational continuity while 

simultaneously harnessing the benefits of the most 

recent Ansible features and upgrades if they 

undertake these issues and address them. 

1.2. Upgrade Challenges in Mission-Critical 

Ansible Systems 

Upgrading Ansible in mission-critical systems 

presents a number of important problems that have 

the potential to affect the stability of the system as 

well as the reliability of the automation. Because 

these settings require continuous operation, any 

faults or incompatibilities that are due to upgrades 

could possibly result in significant financial losses. 

Managing dependencies across a wide variety of 

infrastructure components, guaranteeing backward 

compatibility with old playbooks and roles, and 

dealing with obsolete modules and syntax changes 

are all examples of common issues. Furthermore, the 

limited testing options and the complexity of 

automation workflows both contribute to an increase 

in the likelihood of errors that are not discovered. It 

is necessary to engage in careful planning, 

comprehensive validation, and powerful rollback 

methods in order to address these problems and 

ensure that operations continue to run smoothly both 

during and after upgrades. 

Key Upgrade Challenges: 

● Maintaining backward compatibility 

with legacy playbooks and roles 

● Managing deprecated modules and 

changes in Ansible syntax 

● Handling dependency and 

environment version conflicts 

● Testing upgrades in complex, diverse 

infrastructure environments 

● Mitigating risks of automation failures 

impacting mission-critical operations 

● Implementing reliable rollback and 

recovery strategies 

1.3. Research Objectives 

● To evaluate the impact of Ansible 

version upgrades on backward 

compatibility in mission-critical 

systems. 

● To assess the integrity and 

functionality of Ansible roles 

following version upgrades. 

● To identify common causes of upgrade 

failures and rollback occurrences in 

mission-critical Ansible deployments. 

● To explore best practices and 

challenges encountered by DevOps 

professionals during Ansible upgrades 

to maintain system stability and role 

integrity. 

 

2. Literature Review 

Alam et al. (2022) examined the application of 

Ansible for the purpose of identifying configuration 

drift across a number of different operating systems. 

During the course of their research, they 

demonstrated how the automation features of 

Ansible may be used to identify anomalies in system 

configurations, which are frequently encountered 

during network upgrades or infrastructure 

modifications. The research emphasized the 

efficiency of Ansible in preserving consistency, 

which is essential for assuring role integrity and 

preventing failures that are caused by configuration 



International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 709–715 |711  

in environments that are complicated. During the 

course of their work, they brought to light the 

significance of including automated drift detection 

within a complete upgrade strategy for mission-

critical systems. 

Gudipati and Tatta (2022) investigated a way of 

automatic deployment transformation that was 

developed specifically for OpenStack setups. 

Through the automation of configuration changes 

and transformation stages, they established a 

framework that would make it possible to perform 

deployment updates without any interruptions. The 

study highlighted the importance of implementing 

deployment procedures that are both automated and 

dependable in order to minimize the impact of 

human error and downtime during system upgrades. 

It is important to understand how automated 

deployment transformations could increase 

backward compatibility and system stability in 

cloud infrastructures, which corresponds with the 

goals of maintaining Ansible role integrity during 

upgrades. Their findings were significant for this 

understanding. 

Bat-Erdene et al. (2022) investigated the methods 

of continuous integration and continuous 

deployment (CI/CD) for patch compliance in 

biomedical systems, which are fundamentally 

mission-critical due to concerns regarding patient 

safety. The primary focus of their research was on 

the incorporation of automated methods that would 

guarantee timely and error-free patching, hence 

reducing the number of vulnerabilities. They 

provided evidence that the use of automated 

continuous integration and continuous delivery 

pipelines has the potential to greatly improve system 

stability and compliance during frequent software 

upgrades. In the context of handling Ansible 

upgrades, where patching and configuration 

management are essential, their findings informed 

recommended practices that are appropriate to the 

situation. 

Morozova et al. (2023) Research was carried out on 

the subject of adaptive server hardening solutions in 

the context of mission-critical biomedical systems. 

They investigated the possibility of automating 

dynamic security measures and configuration 

updates in order to increase server defenses without 

causing any disruption to operations that were 

already in progress. The research shed light on the 

difficulties associated with preserving the integrity 

of a system in the face of constantly changing threats 

and regular updates. Their efforts contributed to a 

better understanding of the equilibrium that exists 

between the strengthening of security and the 

maintenance of operational continuity. This is 

analogous to the difficulties that arise with Ansible 

version upgrades, where it is essential to maintain 

role integrity. 

Duvvur (2023) The plans for updating outdated 

systems were examined, with a particular emphasis 

placed on improving cybersecurity and compliance 

during the upgrade procedures. According to the 

findings of the study, there are a number of common 

dangers that are involved with upgrading legacy 

systems. There are compatibility concerns and 

security vulnerabilities. Additionally, it underlined 

the importance of an organized strategy that 

included comprehensive testing, documentation, 

and gradual upgrades in order to reduce the risks. 

Within the context of Ansible upgrade scenarios, the 

research was particularly pertinent for mission-

critical settings since it offered insights into how 

careful planning and risk management may support 

reliable and secure upgrades. These findings aligned 

well with the aims of guaranteeing backward 

compatibility and role integrity. 

 

3. Research Methodology 

An investigation on the effects of upgrading Ansible 

in mission-critical systems was carried out in this 

study. Particular attention was paid to preserving 

backward compatibility and ensuring that roles were 

not compromised. The purpose of this study was to 

investigate the difficulties and potential solutions 

that are involved with updating versions of Ansible 

without causing any disruptions to the automation 

processes that are already in place or triggering role 

failures. The collection and analysis of data from 

real-world deployment situations in which Ansible 

updates had been carried out was accomplished 

through the utilization of a systematic methodology. 

3.1. Research Design 

For the purpose of investigating the technical 

consequences of Ansible upgrades, a study design 

that was both descriptive and exploratory was 

utilized. The research consisted of a combination of 

case study analysis and experimental validation in 

order to investigate the impact that updates had on 

the functionality of roles and backward 



International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 709–715 |712  

compatibility in mission-critical automation 

pipelines. 

3.2. Data Collection 

The collection of data was accomplished through a 

two-step process: first, by extracting logs, 

configuration files, and upgrade reports from 

organizations that are actively using Ansible in 

production environments; second, by conducting 

controlled upgrade tests on staging systems that 

were designed to simulate mission-critical 

infrastructure. In addition to the quantitative data, 

interviews with system administrators and DevOps 

engineers were conducted in order to acquire 

insights into the issues that were faced and the 

solutions that were used to mitigate them. 

3.3. Sample Size 

For the purpose of the study, data were analyzed 

from five different IT infrastructures that were either 

medium or big in scale and had undergone Ansible 

updates within the previous year. There were a total 

of fifteen upgrade scenarios that were investigated, 

and they were conducted across a variety of 

deployment setups and versions of Ansible. In 

addition, feedback was gathered from ten 

individuals who were directly involved in the 

management of these upgrades. 

3.4. Data Analysis Techniques 

Statistical methods such as descriptive statistics and 

comparative analysis were utilized in order to 

conduct a study of quantitative data. This analysis 

included error rates, rollback frequencies, and 

compatibility test findings. A thematic analysis was 

performed on qualitative data obtained from 

interviews in order to uncover recurring problems, 

solutions, and best practices within the field. 

Through the integration of these evaluations, a 

thorough understanding of the implications of 

upgrades and the maintenance of role integrity was 

provided. 

 

4. Data Analysis 

There were many mission-critical systems that were 

undergoing Ansible updates, and the data that was 

collected from those systems was evaluated in order 

to determine the implications on backward 

compatibility and role integrity. In this study, both 

quantitative measures, such as error rates, rollback 

occurrences, and compatibility test results, as well 

as qualitative insights from DevOps professionals, 

were investigated. The objective was to determine 

the patterns of success and failure that occurred 

during upgrades, subsequently measure the stability 

of automation roles after the update, and assess the 

measures that were utilized to maintain the integrity 

of the system. In order to provide a comprehensive 

knowledge of the effects of upgrades, the analysis 

blended data summaries with thematic 

categorization. 

Table 1: Summary of Upgrade Scenarios and Compatibility Outcomes 

Upgrade 

Scenario 

ID 

Ansible 

Versions (From 

→ To) 

Environment 

Type 

Backward 

Compatibility 

Status 

Rollback 

Occurrence 

Notes on Compatibility 

Issues 

US-01 2.7 → 2.9 
Large-scale 

Cloud 
Maintained No 

Minor deprecation 

warnings 

US-02 2.8 → 2.11 
On-premise 

Data Center 

Partially 

Maintained 
Yes 

Issues with deprecated 

modules 

US-03 2.9 → 2.12 
Hybrid 

Infrastructure 
Maintained No 

Smooth upgrade, no role 

failures 

US-04 2.10 → 2.13 
Large-scale 

Cloud 

Not 

Maintained 
Yes 

Role syntax 

incompatibility 

US-05 2.7 → 2.13 
On-premise 

Data Center 

Partially 

Maintained 
Yes 

Multiple role breakages, 

required manual fixes 

 

According to the findings of the analysis of the five 

different upgrade scenarios, backward compatibility 

was preserved in three of the situations. The 

upgrades that went the smoothest were those that 

occurred between versions of Ansible that were 

closer together and in hybrid or cloud systems. On 



International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 709–715 |713  

the other hand, situations that involved significant 

version leaps or on-premise data centers saw 

compatibility issues, either partial or complete, 

which frequently required a rollback. Among the 

most common problems were incompatibilities 

between role syntax and deprecated modules, which 

highlighted the difficulties associated with 

upgrading mission-critical systems without causing 

system disruptions. 

 

Table 2: Role Integrity Assessment Post-Upgrade 

Upgrade 

Scenario ID 

Number of 

Roles Tested 

Roles 

Functioning 

Correctly (%) 

Roles Requiring 

Modification (%) 

Critical Role 

Failures (%) 

US-01 25 96% 4% 0% 

US-02 30 80% 15% 5% 

US-03 20 100% 0% 0% 

US-04 35 60% 30% 10% 

US-05 40 70% 20% 10% 

 

 

Figure 1: Graphical Representation of Role Integrity Assessment Post-Upgrade 

The post-upgrade testing of Ansible roles 

demonstrated a high level of integrity in scenarios 

with modest version changes. Nearly all of the roles 

were able to function successfully, and just a small 

number of instances required modifications. On the 

other hand, substantial version upgrades led to a 

significant percentage of roles requiring 

adjustments, and several critical failures which had 

an effect on automation workflows. The fact that this 

is the case underscores the fact that role integrity can 

generally be kept, but greater version jumps 

represent significant risks to role functionality and 

require rigorous validation. 

 

Table 3: Frequency of Rollbacks and Causes 

Cause of Rollback Frequency (Out of 15 Scenarios) Percentage (%) 

Deprecated Module Usage 4 26.7 

Role Syntax Changes 3 20 

Unhandled Task Failures 2 13.3 

Dependency Version Conflicts 3 20 

Configuration File Incompatibility 3 20 

96%

80%

100%

60%

70%

4%

15%

0%

30%

20%

0%
5%

0%

10% 10%

0%

20%

40%

60%

80%

100%

120%

US-01 US-02 US-03 US-04 US-05



International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 709–715 |714  

 

 

Figure 2: Graphical Representation of percentage of Rollbacks and Causes 

Rollback occurrences were primarily triggered by 

deprecated module usage and role syntax changes, 

each accounting for around 20–27% of cases. Other 

significant causes included configuration 

incompatibilities and dependency version conflicts. 

This distribution indicates that maintaining 

compatibility during Ansible upgrades requires 

vigilant management of modules, dependencies, and 

configuration files to prevent failures that lead to 

rollback and downtime. 

Table 4: Thematic Summary of Qualitative Feedback from DevOps Engineers 

Theme Number of Mentions Summary of Insights 

Need for 

Comprehensive 

Testing 

8 Testing prior to production upgrade reduces failures. 

Documentation 

Gaps 
6 Lack of clear upgrade notes led to unexpected errors. 

Role Refactoring 

Challenges 
7 Complex roles required significant rewriting. 

Automation 

Rollback 

Mechanisms 

5 Automated rollback scripts helped mitigate downtime. 

Importance of 

Version Pinning 
4 Pinning roles and modules ensured stable upgrades. 

 

The feedback received from DevOps engineers 

highlighted the vital need of conducting exhaustive 

pre-upgrade testing and maintaining rigorous 

documentation in order to prevent issues that were 

not anticipated. It was widely remarked that there 

are difficulties associated with role refactoring, as 

well as the requirement for automated rollback 

procedures. This is a true reflection of the difficulty 

of preserving role integrity during upgrades. In order 

to demonstrate that both technological and 

procedural techniques are necessary for effective 

Ansible upgrades in mission-critical systems, 

version pinning was highlighted as a crucial practice 

that is required for stabilizing upgrade processes. 

 

 

5. Conclusion 

This study indicated that upgrading Ansible in 

mission-critical systems involves major issues 

linked to maintaining backward compatibility and 

assuring role integrity. These challenges were 

26.7

20

13.3

20 20

0

5

10

15

20

25

30

Deprecated

Module Usage

Role Syntax

Changes

Unhandled Task

Failures

Dependency

Version Conflicts

Configuration

File

Incompatibility



International Journal of Intelligent Systems and Applications in Engineering                        IJISAE, 2024, 12(10s), 709–715 |715  

demonstrated when the study was conducted. Based 

on the findings, it was shown that while minor 

version upgrades typically maintain compatibility 

and role functionality, bigger version leaps 

commonly result in role failures and need rollbacks. 

This is mostly due to the fact that deprecated 

modules and syntax changes are more likely to 

occur. The combination of quantitative data and 

qualitative comments brought to light the 

significance of rigorous pre-upgrade testing, clear 

documentation, automatic rollback methods, and 

version pinning as essential strategies for mitigating 

the risks associated with upgrades. The findings of 

this study highlight the importance of meticulous 

planning and robust validation procedures in order 

to successfully manage Ansible upgrades in high-

stakes situations without affecting automation 

activities. 

 

References 

[1] S. V. Gudipati and V. M. Tatta, "Investigation of an 

automatic deployment transformation method for 

OpenStack," 2022. 

[2] J. Alam, R. Haque, T. Akter, and F. Nishi, "Multi-

OS configuration drift detection using Ansible," 

2022. 

[3] V. Duvvur, "Modernizing with confidence: 

Strategies for enhancing cybersecurity and 

compliance in legacy system upgrade," International 

Journal of Emerging Trends in Computer Science 

and Information Technology, vol. 4, no. 4, pp. 41–

48, 2023. 

[4] E. Morozova, I. Petrov, N. Smirnova, and A. 

Volkov, "Adaptive server hardening in mission-

critical biomedical systems," 2023. 

[5] H. Ansari, "The use of scalable disaster recovery 

architectures for hybrid UNIX systems," 2021. 

[6] D. Borsatti, C. Grasselli, L. Spinacci, M. Sellembre, 

W. Cerroni, and F. Callegati, "Network slicing for 

mission critical communications," in Proc. 2020 

16th Int. Conf. Wireless Mobile Computing, 

Networking and Communications (WiMob), 2020, 

pp. 1–6. 

[7] A. P. Elvarsson, D. Gunnarsson, G. H. Gústavsson, 

and S. D. Garðarsson, Monitoring of mission critical 

air traffic control system, Doctoral dissertation, 

2020. 

[8] D. Bat-Erdene, A. Enkhbayar, T. O. Ganbaatar, and 

N. Enkhbold, "CI/CD integration for patch 

compliance in biomedical systems," 2022. 

[9] V. Duvvur, "Modernizing with confidence: 

Strategies for enhancing cybersecurity and 

compliance in legacy system upgrade," International 

Journal of Emerging Trends in Computer Science 

and Information Technology, vol. 4, no. 4, pp. 41–

48, 2023. 

[10] D. Jayawardena, K. Rathnayake, N. Dissanayake, 

and S. Abeysekera, "The review on patching 

strategies for always-on biomedical data systems," 

2021. 

[11] D. Berardi, Security Enhancements and Flaws of 

Emerging Communication Technologies, 2022. 

[12] D. Quintero, T. Baumann, V. Cruz, N. Haldar, Y. 

Largou, P. Pandey, et al., IBM Power Systems High 

Availability and Disaster Recovery Updates: 

Planning for a Multicloud Environment. IBM 

Redbooks, 2022. 

[13] M. Turhan, G. Scopelliti, C. Baumann, E. Truyen, J. 

T. Muehlberg, and M. Petik, “The trust model for 

multi-tenant 5G telecom systems running 

virtualized multi-component services,” 2021. 

 


