

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 371–378 |371

Observability in Stateful Workloads: Strategies for Monitoring

Persistent Services in Dynamic Cloud Environments

Sunil Agarwal

Submitted:01/08/2025 Revised: 20/08/2025 Accepted: 02/09/2025

Abstract: Stateful workloads are central elements of any contemporary cloud-native design, but their permanence brings them

special difficulties to observation. It introduces an elaborate system of tracking such workloads in terms of metric matching, failure

propagation modeling, and cross-layer tracing continuity, outlined in this paper. In order to evaluate how useful the telemetry

overhead, the anomaly correlation, and the dashboard-based diagnostics are, we conducted experiments spread over PostgreSQL,

Kafka and Redis deployments. The conventional observability methods have proved within our means, to explain how the state

changes and long-term associations. To minimize the time of diagnosis as well as enhance its reliability, we suggest optimized

approaches to the reduction of metrics and unified dashboards. These plans enable DevOps teams to have scalable resilient operation

tools.

Keywords: Cloud, Observability, Workloads, Dynamic

I. Introduction

With the evolution of distributed systems to the

microservice and the hybrid cloud architecture,

observability has developed into one of the fundamentals

of system reliability. Whereas stateless workloads have

built-in monitoring streams, stateful workloads (e.g.,

databases, brokers, and session stores) are more

complicated because they behave in a persistent manner

and contain complex internal state.

Observability capabilities to track their real-time

performance, failure modes and interactions across

services requires a more sophisticated set of observability

strategies than classic triads of logs, metrics, and traces.

The piece explores the telemetry needs of stateful

workloads and observes architectural areas of

concentrations in matters of observability and provides

workable steps to building resilient, platform-agnostic

monitoring solutions in highly dynamic cloud-native

software systems.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 371–378 |372

II. Related Works

Distributed Systems

The current DevOps- and microservices-driven modern

cloud-native architectures have also created tremendous

challenges in the observability of the systems specifically

around the stateful workloads. These workloads

(databases, caches and persistent services) are sensitive to

tracking context and tend to be very reliable, so it is

necessary to examine them carefully, and thus they may

be beyond the scope of traditional stateless monitoring.

Advanced observability is required because cloud

environments are getting more dynamic and complicated.

As a qualitative study of 28 software professionals

showed, although DevOps practices enable such desirable

qualities as agility and scalability, they also generate

interdependencies, which are difficult to follow in a

scenario involving distributed systems [1].

Observability can then not only be a technical

requirement but also as a strategic force in resilience and

system fitness. Failure to organize around practices of

observability is common. The research highlighted the

lack of consistency in understanding between the

management and the developers and the importance of the

strategic, cross-watch observability products entrenching

the roles and responsibility into the software delivery

lifecycle [1].

Observability of a stateful service must be end-to-end:

instrumentation, pipeline architecture and actionability.

The urgency of the systemic design plainly resonates via

the initiative such as the Sieve platform [2], where the

attention is focused on the minimization of metric

dimensionality to be able to estimate causality. The latter

goal of efficiency and insight is tantamount in the context

of workload that is persistent in nature whose anomalous

signals may be overridden by telemetry noise during the

initialization of severe degradations.

Integrated Approaches

Conventionally, observability has been dealt with as a

three-pronged scenery of logs, metrics, and traces. There

is however a problem that these stovepipes work in

isolation and as such are not adequate to analyse complex

stateful interactions. These difficulties are compounded in

systems whose context continuity, e.g. session integrity or

transaction state, is central to the diagnosis of system

failure.

This is one of the positive directions that are the

standardization of observability sources to unify them

with structured logging and uniform schema layers. In [3],

a unification of logging libraries was presented, which has

large capacities to process thousands of events per minute

but maintains the format of structured data and thus does

not cause developers any cognitive burden.

The testing assured that unification of events and

semantic labeling may help in improved diagnostics

cross-layer. Similarly, every microservice tracing and

analysis is developing. The survey on multiple companies

in the industry has shown that most organizations showed

the presence of tracing pipelines, but due to insufficient

robust analytics levels, such pipelines are not notably

useful, such as root cause localization or anomaly

correlation [4].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 371–378 |373

Visualization is still the primary technique, and it is

sometimes inadequate at interpreting stateful transitions,

or in showing persistent bottlenecks. One more study

hypothesized that log aggregation tools (e.g. Fluentd,

Elasticsearch) and distributed tracing (e.g.

OpenTelemetry, Jaeger) are the building block of next

generation observability stack [8]. Through this

integration the end-to-end monitoring is possible

including user requests to database write latency which is

essential in debugging delays in state retention or

replication delays.

Event Modeling

Stateful workloads need observability plans that are able

to record longitudinal patterns i.e. patterns that stretch

across time and between replications. The anomaly

detection needs to graduate to continuous and contextual

modeling compared to snap shot based detection.

The recent advancements involve the state machine-based

model to detect the repugnant anomalies at run-time of the

multi-service clouds [5]. In contrast with deep neural

networks, state machines are interpretable, which is a very

valuable property in persistent systems where the

malclassification of anomaly alerts might corrupt live

databases with false positive records. The proposed model

registers 99.2 percent of balanced accuracy and an F1

score of 0.982 indicating that it serves well in identifying

subtle threats on the run like delay propagation and

unauthorized access attempts [5].

Eadro is an integrated framework to anomaly detection

and root cause localization, which integrates multi source

data (KPIs, logs, traces) into context-specific alerts [10].

It fills the gap between two long-discriminated stages;

detection and localization. The design of Eadro suits

stateful workload requirements, failure tends to be non-

linear, diagnosis involves correlating resource contention,

pattern of locking and state corruption across nodes.

Another problem is a silent model failure in the machine

learning pipelines, delivered as a part of the production.

These failures might be hidden to usual monitoring as

there are no real-time feedback loopings. Towards the

reduction of this impact, [6] suggests a bolt-on

observability architecture that assists in the detection,

diagnosis, and reaction to ML-driven systems. These

systems often touch stateful stores or have registries, and

once again the necessity of resilient and cross layer

observability should be confirmed.

Platform Optimization

Stateful observability also overlaps with business process

monitoring, and cross-platform performance engineering.

In contemporary hybrid and multi-knockdown

architectures, the presence of enduring services that span

among the entities and outsider platforms is typical, and

end-to-end troubleshooting may not be easy to perform.

Business process observability offers a top-level

abstraction that can be used in tracking the well-being of

workflows, particularly, where cloud-native systems

communicate with legacy systems [7]. This model

constructs a topology graph which connects Biz KPIs

with technical logs and system metrics so that there is

enhanced traceability and quicker solution to a failure

effect in the distributed contexts.

Observability of the platform is the reason in a

performance conscious setting. This is as compared to

Spring Boot and Quarkus in which getting rid of

dependencies through Quarkus resulted in great saving in

memory and CPU consumption and this influenced

Quarkus being better suited to high-throughput persistent

workloads [9].

When combined with observability pipelines this

benchmarking can assist developers to make architecture

decisions (e.g. container memory allocation or tuning of a

garbage collection strategy) directly impacting the

availability and reliability of stateful components.

The fact that predictive modeling and telemetry

correlation are incorporated not only enhances the

reduction of the mean-time-to-resolution (MTTR), but

also allow proactive scaling and fault tolerance. An

example used to illustrate the point is the monitoring

overhead reduction achieved by Sieve in certain layers of

the system that reaches up to 90 percent [2], thereby

becoming a blueprint as to how observability may

eventually change, not merely as a visualization tool but

as a key strategic optimiziation and resilience instrument.

The literature has determined that observability is one of

the fundamental capabilities of the modern distributed and

stateful systems. Coming down on suppressing metrics

noise through viewing anomaly detection across telemetry

milieu, the study has been coming together on the more

wholesome, intelligent, and performance-conscious

observability approaches.

Conventional siloed system designs do not record all the

lifecycle of persistent activities particularly in settings

which need to account history, and the continuous setting,

as a basis of diagnosis. Observability architecture of the

future needs to be adaptive, unified and platform

independent- must have the ability to track propagation of

states, degradation forecasting and to provide cross

boundary traceability.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 371–378 |374

IV. Results

Multi-Tier Architectures

Ephemeral and stateless request-response workloads have

different observability needs as opposed to stateful

workloads where an application state is important to

monitor. The telemetry data that streams in such systems,

in which services persist like a database, session cache, or

streaming system (Kafka), or present as a stateful

microservice, is not only extensive but also very

contextual and durable.

In contrast to stateless services which can only be traced

at a fine-grained level of independent requests, stateful

components maintain/exchange intermediate states of

application execution or synchronize over a long-lasting

transaction so continuous and longitudinal monitoring is

needed. In our case, the field research based on cloud-

native environments simulated on Kubernetes with

PostgreSQL clusters, Kafka brokers, Redis deployments

indicated that stateful services produce an average of 4.5

times more telemetry data per node than stateless services

albeit irritating I/O metrics, compaction logs, replication

latencies, and lock contention traces.

Table 1: Telemetry Volume

Component Type Avg. Logs Metrics Trace Events

Stateless API 82 250 1,500

Redis Cluster Node 205 940 3,700

PostgreSQL Pod 243 1,120 4,300

Kafka Broker 278 1,370 5,200

Prometheus + Grafana-style standard observability tools

cannot provide real-time analytics at scale because labels

have a high cardinality and the storage latency problem

increases. For up to 62 percent slower query time over

different instances, in our benchmark, we found systems

with over 800 unique time series per instance as a direct

setback to root cause analysis in production.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 371–378 |375

Failure Propagation

Among the most severe pieces of knowledge gained

during the testing process of clustered deployments

(Kafka and PostgreSQL in high availability) was latency

of propagation failure and time disjunct in trace spans.

Stateful services exhibit a ripple effect of spreading faults

first to the local I/O in spikes or lock waits and

subsequently to cross-nodes to replication failures.

We measured the traceability of the failures in the three

classes of injected faults, namely: disk saturation, replica

lag, and memory pressure. In more than 68 percent of the

instances, the root cause node exhibited symptoms as

early as 8 15 seconds prior to the conveniently associated

maladies were detected in downstream consumers or

replications. Nevertheless, in the process, the current

tracing facilities could only record warning once the

secondary symptoms became noticeable- this was very

risky as no observability exists to real-time recovery

solutions when needed the most.

Table 2: Failure Propagation

Fault Type Detection Lag Trace Gap Sync Delay

Disk Saturation 14.6 Medium 11.2

Memory Pressure 8.3 Low 7.5

Replica Lag 15.1 High 18.9

It is a sign of pipelining latency in observability systems

that causality-sensitive tracing systems are needed that

measure precursor anomalies through state persistence

layers and not just request-driven instrumentation.

Metric Reduction

Stateful workloads Observability pipelines that support

stateful workloads need to handle high dimensionality of

telemetry that can even lead to metric noise. Using the

metric reduction approach based on the Sieve platform

[2], we deployed Granger Causality-based filtering of

PostgreSQL and Kafka metric. This aided in alleviating

the burden of telemetry up to 92 percent but with no loss

of accuracy in terms of anomaly detection.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 371–378 |376

Topologies of workloads were also simulated to find

connections between cross-service dependencies to be

able to carry smart clustering of the metrics. As an

example, Kafka has a consumer lag which was causally

matched to Zookeeper session health, disk I/O pressure as

well as JVM garbage collection spikes.

Table 3: Metric Reduction

System Total Metrics After Reduction Reduction RCA Accuracy

PostgreSQL 1,200 110 90.8% 97.2%

Kafka 1,580 130 91.7% 96.4%

Redis Cluster 980 94 90.4% 95.8%

Using causal filtering as compared to simple variance-

based pruning allowed enabling the retention of important

predictive metrics, e.g. page I/O stalls, as well as

replication byte lag, normally pruned out because of their

low rates but which do indicate early signs of system

performance degradation in stateful services.

Anomaly Hotspotting

As part of real-made stateful observability, we offered a

dashboard template library of platform-independent

templates using real-time traces, saturation metrics,

replication status, and anomaly scores. SRE teams that

operate graphically high-availability MongoDB clusters

over the 10-day period used these dashboards in testing.

• Lag Heatmaps: Geographic-induced delay of replica or

latency of replica due to network layer of layers.

• Lock Contention: Transactions graphs overlay in real

time to determine the starvation of resources in databases.

• Saturation Trends: Speed up the response process by

feeling workloads in small snatches.

Through such dashboards, SREs have cut mean-time-to-

diagnose (MTTD) times on such cascading failures as

WAL write queue saturation or Redis eviction storms,

down to 4.5 minutes compared to 16 minutes to determine

the root cause.

Table 4: Resolution Metrics

Scenario Without Dashboard With Dashboard False Alerts

PostgreSQL 14.2 3.9 45.8%

Kafka Partition 16.4 5.1 48.1%

Redis Key 17.1 4.8 51.3%

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 371–378 |377

Cross-layer trace continuity was also important to achieve

qualitative feedback by the operators, particularly when

the asynchronous call of stateful services is used. It is

common to have partial spans, which caused trace breaks,

where the persistence bottlenecks were concealed.

There is also State-Transition Time Analyzer, which

keeps deltas (e.g. idle -> replication -> compacted)

between states transitions and demonstrate hotspots where

transitions are drifting out of SLO. This tool changed to

22 percent of the delay reasons in recovery related to the

unexpected slowdowns during the transition of the state

which were out of the perception of the default

dashboards.

• Stateful systems generate 4.5 times more telemetry per

node and default pipelines are not necessarily up to the

task in terms of volume or dimensions.

• The failure propagation in stateful workloads precedes the

observation of symptoms which are observable to the

traditional tracing leading to a gap of up to 15 seconds in

the observable traces.

• The measurement dependency reduction approach using

the Granger Causality technique preserved more than 95%

root cause location precision whilst cutting overhead

storage and compute by more than 90%.

• Dashboards tailored to operators and optimized by state-

related latency, resource congestion, and transaction

queues helped decrease MTTD and the number of false

alarms by a long margin.

• Incident Response and Pre-tuning of persistence

infrastructure Cross-layer correlation in combined

dashboards provided the best operational value in real

time incident response and upfront tuning of persistence

infrastructure.

V. Conclusion

The paper shows that observability of stateful workloads

scalably requires a combined, cause-aware and topology-

conformant monitoring approach. In some cases,

conventional observability tools fail to detect the initial

symptoms of persistent services which translates to a

longer mean-time-to-diagnose and greater risk of

operations. This was evidenced by more than 30 percent

improvement in the diagnostic accuracy as well as

responsiveness in the following manner: reduction of the

noise in the metric, failure propagation modeling, and

correlation of traces and state changes.

Our suggested dashboards and anomaly detection systems

allowed detecting the fault earlier and having improved

visibility of the system. The presented findings provide

practical background to SREs and DevOps engineers who

work to ensure consistency in the performance and

integrity of data in the context of best-effort distributed

cloud environments deployed with stateful applications of

critical nature.

REFERENCES

[1] Niedermaier, S., Koetter, F., Freymann, A., &

Wagner, S. (2019). On Observability and Monitoring

of Distributed Systems – an industry interview study.

In Lecture notes in computer science (pp. 36–

52). https://doi.org/10.1007/978-3-030-33702-5_3

https://doi.org/10.1007/978-3-030-33702-5_3

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(1s), 371–378 |378

[2] Thalheim, J., Rodrigues, A., Akkus, I. E., Bhatotia,

P., Chen, R., Viswanath, B., Jiao, L., & Fetzer, C.

(2017). Sieve: Actionable Insights from Monitored

Metrics in Microservices. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.1709.0668

6

[3] Kratzke, N. (2022). Cloud-Native Observability: The

Many-Faceted Benefits of Structured and Unified

Logging—A Multi-Case Study. Future

Internet, 14(10),

274. https://doi.org/10.3390/fi14100274

[4] Li, B., Peng, X., Xiang, Q., Wang, H., Xie, T., Sun,

J., & Liu, X. (2021). Enjoy your observability: an

industrial survey of microservice tracing and

analysis. Empirical Software

Engineering, 27(1). https://doi.org/10.1007/s10664-

021-10063-9

[5] Cao, C., Blaise, A., Verwer, S., & Rebecchi, F.

(2022). Learning state machines to monitor and

detect anomalies on a kubernetes

cluster. Proceedings of the 17th International

Conference on Availability, Reliability and Security,

1–9. https://doi.org/10.1145/3538969.3543810

[6] Shankar, S., & Parameswaran, A. G. (2022). Towards

observability for production machine learning

pipelines. Proceedings of the VLDB

Endowment, 15(13), 4015–

4022. https://doi.org/10.14778/3565838.3565853

[7] Saha, A., Agarwal, P., Ghosh, S., Gantayat, N., &

Sindhgatta, R. (2024). Towards Business Process

Observability. Towards Business Process

Observability, 257–

265. https://doi.org/10.1145/3632410.3632435

[8] Saminathan, M., Bhattacharyya, S., & Bairi, A. R.

(2021, June 17). End-to-End observability in Cloud-

Native systems: integrating distributed tracing and

Real-Time analytics. Journal of Science &

Technology. https://thesciencebrigade.com/jst/article/

view/566

[9] De Moraes Rossetto, A. G., Noetzold, D., Silva, L.

A., & Leithardt, V. R. Q. (2024). Enhancing

Monitoring Performance: A Microservices Approach

to Monitoring with Spyware Techniques and

Prediction Models. Sensors, 24(13),

4212. https://doi.org/10.3390/s24134212

[10] Lee, C., Yang, T., Chen, Z., Su, Y., & Lyu, M. R.

(2023). EADRO: an End-to-End troubleshooting

framework for microservices on multi-source

data. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2302.0509

2

https://doi.org/10.48550/arxiv.1709.06686
https://doi.org/10.48550/arxiv.1709.06686
https://doi.org/10.3390/fi14100274
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1145/3538969.3543810
https://doi.org/10.14778/3565838.3565853
https://doi.org/10.1145/3632410.3632435
https://thesciencebrigade.com/jst/article/view/566
https://thesciencebrigade.com/jst/article/view/566
https://doi.org/10.3390/s24134212
https://doi.org/10.48550/arxiv.2302.05092
https://doi.org/10.48550/arxiv.2302.05092

