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Abstract: Stateful workloads are central elements of any contemporary cloud-native design, but their permanence brings them 

special difficulties to observation. It introduces an elaborate system of tracking such workloads in terms of metric matching, failure 

propagation modeling, and cross-layer tracing continuity, outlined in this paper. In order to evaluate how useful the telemetry 

overhead, the anomaly correlation, and the dashboard-based diagnostics are, we conducted experiments spread over PostgreSQL, 

Kafka and Redis deployments. The conventional observability methods have proved within our means, to explain how the state 

changes and long-term associations. To minimize the time of diagnosis as well as enhance its reliability, we suggest optimized 

approaches to the reduction of metrics and unified dashboards. These plans enable DevOps teams to have scalable resilient operation 

tools. 
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I. Introduction 

With the evolution of distributed systems to the 

microservice and the hybrid cloud architecture, 

observability has developed into one of the fundamentals 

of system reliability. Whereas stateless workloads have 

built-in monitoring streams, stateful workloads (e.g., 

databases, brokers, and session stores) are more 

complicated because they behave in a persistent manner 

and contain complex internal state.  

 

Observability capabilities to track their real-time 

performance, failure modes and interactions across 

services requires a more sophisticated set of observability 

strategies than classic triads of logs, metrics, and traces. 

The piece explores the telemetry needs of stateful 

workloads and observes architectural areas of 

concentrations in matters of observability and provides 

workable steps to building resilient, platform-agnostic 

monitoring solutions in highly dynamic cloud-native 

software systems. 
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II. Related Works 

Distributed Systems 

The current DevOps- and microservices-driven modern 

cloud-native architectures have also created tremendous 

challenges in the observability of the systems specifically 

around the stateful workloads. These workloads 

(databases, caches and persistent services) are sensitive to 

tracking context and tend to be very reliable, so it is 

necessary to examine them carefully, and thus they may 

be beyond the scope of traditional stateless monitoring. 

Advanced observability is required because cloud 

environments are getting more dynamic and complicated. 

As a qualitative study of 28 software professionals 

showed, although DevOps practices enable such desirable 

qualities as agility and scalability, they also generate 

interdependencies, which are difficult to follow in a 

scenario involving distributed systems [1].  

Observability can then not only be a technical 

requirement but also as a strategic force in resilience and 

system fitness. Failure to organize around practices of 

observability is common. The research highlighted the 

lack of consistency in understanding between the 

management and the developers and the importance of the 

strategic, cross-watch observability products entrenching 

the roles and responsibility into the software delivery 

lifecycle [1].  

Observability of a stateful service must be end-to-end: 

instrumentation, pipeline architecture and actionability. 

The urgency of the systemic design plainly resonates via 

the initiative such as the Sieve platform [2], where the 

attention is focused on the minimization of metric 

dimensionality to be able to estimate causality. The latter 

goal of efficiency and insight is tantamount in the context 

of workload that is persistent in nature whose anomalous 

signals may be overridden by telemetry noise during the 

initialization of severe degradations. 

 

Integrated Approaches 

Conventionally, observability has been dealt with as a 

three-pronged scenery of logs, metrics, and traces. There 

is however a problem that these stovepipes work in 

isolation and as such are not adequate to analyse complex 

stateful interactions. These difficulties are compounded in 

systems whose context continuity, e.g. session integrity or 

transaction state, is central to the diagnosis of system 

failure. 

This is one of the positive directions that are the 

standardization of observability sources to unify them 

with structured logging and uniform schema layers. In [3], 

a unification of logging libraries was presented, which has 

large capacities to process thousands of events per minute 

but maintains the format of structured data and thus does 

not cause developers any cognitive burden.  

The testing assured that unification of events and 

semantic labeling may help in improved diagnostics 

cross-layer. Similarly, every microservice tracing and 

analysis is developing. The survey on multiple companies 

in the industry has shown that most organizations showed 

the presence of tracing pipelines, but due to insufficient 

robust analytics levels, such pipelines are not notably 

useful, such as root cause localization or anomaly 

correlation [4].  
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Visualization is still the primary technique, and it is 

sometimes inadequate at interpreting stateful transitions, 

or in showing persistent bottlenecks. One more study 

hypothesized that log aggregation tools (e.g. Fluentd, 

Elasticsearch) and distributed tracing (e.g. 

OpenTelemetry, Jaeger) are the building block of next 

generation observability stack [8]. Through this 

integration the end-to-end monitoring is possible 

including user requests to database write latency which is 

essential in debugging delays in state retention or 

replication delays. 

Event Modeling 

Stateful workloads need observability plans that are able 

to record longitudinal patterns i.e. patterns that stretch 

across time and between replications. The anomaly 

detection needs to graduate to continuous and contextual 

modeling compared to snap shot based detection. 

The recent advancements involve the state machine-based 

model to detect the repugnant anomalies at run-time of the 

multi-service clouds [5]. In contrast with deep neural 

networks, state machines are interpretable, which is a very 

valuable property in persistent systems where the 

malclassification of anomaly alerts might corrupt live 

databases with false positive records. The proposed model 

registers 99.2 percent of balanced accuracy and an F1 

score of 0.982 indicating that it serves well in identifying 

subtle threats on the run like delay propagation and 

unauthorized access attempts [5]. 

Eadro is an integrated framework to anomaly detection 

and root cause localization, which integrates multi source 

data (KPIs, logs, traces) into context-specific alerts [10]. 

It fills the gap between two long-discriminated stages; 

detection and localization. The design of Eadro suits 

stateful workload requirements, failure tends to be non-

linear, diagnosis involves correlating resource contention, 

pattern of locking and state corruption across nodes. 

Another problem is a silent model failure in the machine 

learning pipelines, delivered as a part of the production. 

These failures might be hidden to usual monitoring as 

there are no real-time feedback loopings. Towards the 

reduction of this impact, [6] suggests a bolt-on 

observability architecture that assists in the detection, 

diagnosis, and reaction to ML-driven systems. These 

systems often touch stateful stores or have registries, and 

once again the necessity of resilient and cross layer 

observability should be confirmed. 

Platform Optimization 

Stateful observability also overlaps with business process 

monitoring, and cross-platform performance engineering. 

In contemporary hybrid and multi-knockdown 

architectures, the presence of enduring services that span 

among the entities and outsider platforms is typical, and 

end-to-end troubleshooting may not be easy to perform. 

Business process observability offers a top-level 

abstraction that can be used in tracking the well-being of 

workflows, particularly, where cloud-native systems 

communicate with legacy systems [7]. This model 

constructs a topology graph which connects Biz KPIs 

with technical logs and system metrics so that there is 

enhanced traceability and quicker solution to a failure 

effect in the distributed contexts. 

Observability of the platform is the reason in a 

performance conscious setting. This is as compared to 

Spring Boot and Quarkus in which getting rid of 

dependencies through Quarkus resulted in great saving in 

memory and CPU consumption and this influenced 

Quarkus being better suited to high-throughput persistent 

workloads [9].  

When combined with observability pipelines this 

benchmarking can assist developers to make architecture 

decisions (e.g. container memory allocation or tuning of a 

garbage collection strategy) directly impacting the 

availability and reliability of stateful components. 

The fact that predictive modeling and telemetry 

correlation are incorporated not only enhances the 

reduction of the mean-time-to-resolution (MTTR), but 

also allow proactive scaling and fault tolerance. An 

example used to illustrate the point is the monitoring 

overhead reduction achieved by Sieve in certain layers of 

the system that reaches up to 90 percent [2], thereby 

becoming a blueprint as to how observability may 

eventually change, not merely as a visualization tool but 

as a key strategic optimiziation and resilience instrument. 

The literature has determined that observability is one of 

the fundamental capabilities of the modern distributed and 

stateful systems. Coming down on suppressing metrics 

noise through viewing anomaly detection across telemetry 

milieu, the study has been coming together on the more 

wholesome, intelligent, and performance-conscious 

observability approaches.  

Conventional siloed system designs do not record all the 

lifecycle of persistent activities particularly in settings 

which need to account history, and the continuous setting, 

as a basis of diagnosis. Observability architecture of the 

future needs to be adaptive, unified and platform 

independent- must have the ability to track propagation of 

states, degradation forecasting and to provide cross 

boundary traceability. 
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IV. Results 

Multi-Tier Architectures 

Ephemeral and stateless request-response workloads have 

different observability needs as opposed to stateful 

workloads where an application state is important to 

monitor. The telemetry data that streams in such systems, 

in which services persist like a database, session cache, or 

streaming system (Kafka), or present as a stateful 

microservice, is not only extensive but also very 

contextual and durable.  

In contrast to stateless services which can only be traced 

at a fine-grained level of independent requests, stateful 

components maintain/exchange intermediate states of 

application execution or synchronize over a long-lasting 

transaction so continuous and longitudinal monitoring is 

needed. In our case, the field research based on cloud-

native environments simulated on Kubernetes with 

PostgreSQL clusters, Kafka brokers, Redis deployments 

indicated that stateful services produce an average of 4.5 

times more telemetry data per node than stateless services 

albeit irritating I/O metrics, compaction logs, replication 

latencies, and lock contention traces. 

Table 1: Telemetry Volume  

Component Type Avg. Logs Metrics Trace Events 

Stateless API 82 250 1,500 

Redis Cluster Node 205 940 3,700 

PostgreSQL Pod 243 1,120 4,300 

Kafka Broker 278 1,370 5,200 

 

Prometheus + Grafana-style standard observability tools 

cannot provide real-time analytics at scale because labels 

have a high cardinality and the storage latency problem 

increases. For up to 62 percent slower query time over 

different instances, in our benchmark, we found systems 

with over 800 unique time series per instance as a direct 

setback to root cause analysis in production. 
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Failure Propagation 

Among the most severe pieces of knowledge gained 

during the testing process of clustered deployments 

(Kafka and PostgreSQL in high availability) was latency 

of propagation failure and time disjunct in trace spans. 

Stateful services exhibit a ripple effect of spreading faults 

first to the local I/O in spikes or lock waits and 

subsequently to cross-nodes to replication failures. 

We measured the traceability of the failures in the three 

classes of injected faults, namely: disk saturation, replica 

lag, and memory pressure. In more than 68 percent of the 

instances, the root cause node exhibited symptoms as 

early as 8 15 seconds prior to the conveniently associated 

maladies were detected in downstream consumers or 

replications. Nevertheless, in the process, the current 

tracing facilities could only record warning once the 

secondary symptoms became noticeable- this was very 

risky as no observability exists to real-time recovery 

solutions when needed the most. 

Table 2: Failure Propagation  

Fault Type Detection Lag Trace Gap  Sync Delay 

Disk Saturation 14.6 Medium 11.2 

Memory Pressure 8.3 Low 7.5 

Replica Lag 15.1 High 18.9 

 

It is a sign of pipelining latency in observability systems 

that causality-sensitive tracing systems are needed that 

measure precursor anomalies through state persistence 

layers and not just request-driven instrumentation. 

 

Metric Reduction  

Stateful workloads Observability pipelines that support 

stateful workloads need to handle high dimensionality of 

telemetry that can even lead to metric noise. Using the 

metric reduction approach based on the Sieve platform 

[2], we deployed Granger Causality-based filtering of 

PostgreSQL and Kafka metric. This aided in alleviating 

the burden of telemetry up to 92 percent but with no loss 

of accuracy in terms of anomaly detection. 
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Topologies of workloads were also simulated to find 

connections between cross-service dependencies to be 

able to carry smart clustering of the metrics. As an 

example, Kafka has a consumer lag which was causally 

matched to Zookeeper session health, disk I/O pressure as 

well as JVM garbage collection spikes. 

Table 3: Metric Reduction  

System Total Metrics After Reduction Reduction RCA Accuracy  

PostgreSQL 1,200 110 90.8% 97.2% 

Kafka 1,580 130 91.7% 96.4% 

Redis Cluster 980 94 90.4% 95.8% 

 

Using causal filtering as compared to simple variance-

based pruning allowed enabling the retention of important 

predictive metrics, e.g. page I/O stalls, as well as 

replication byte lag, normally pruned out because of their 

low rates but which do indicate early signs of system 

performance degradation in stateful services. 

Anomaly Hotspotting 

As part of real-made stateful observability, we offered a 

dashboard template library of platform-independent 

templates using real-time traces, saturation metrics, 

replication status, and anomaly scores. SRE teams that 

operate graphically high-availability MongoDB clusters 

over the 10-day period used these dashboards in testing. 

• Lag Heatmaps: Geographic-induced delay of replica or 

latency of replica due to network layer of layers. 

• Lock Contention: Transactions graphs overlay in real 

time to determine the starvation of resources in databases. 

• Saturation Trends: Speed up the response process by 

feeling workloads in small snatches. 

Through such dashboards, SREs have cut mean-time-to-

diagnose (MTTD) times on such cascading failures as 

WAL write queue saturation or Redis eviction storms, 

down to 4.5 minutes compared to 16 minutes to determine 

the root cause. 

Table 4: Resolution Metrics 

Scenario Without Dashboard With Dashboard False Alerts  

PostgreSQL 14.2 3.9 45.8% 

Kafka Partition  16.4 5.1 48.1% 

Redis Key  17.1 4.8 51.3% 
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Cross-layer trace continuity was also important to achieve 

qualitative feedback by the operators, particularly when 

the asynchronous call of stateful services is used. It is 

common to have partial spans, which caused trace breaks, 

where the persistence bottlenecks were concealed. 

 

There is also State-Transition Time Analyzer, which 

keeps deltas (e.g. idle -> replication -> compacted) 

between states transitions and demonstrate hotspots where 

transitions are drifting out of SLO. This tool changed to 

22 percent of the delay reasons in recovery related to the 

unexpected slowdowns during the transition of the state 

which were out of the perception of the default 

dashboards. 

• Stateful systems generate 4.5 times more telemetry per 

node and default pipelines are not necessarily up to the 

task in terms of volume or dimensions. 

• The failure propagation in stateful workloads precedes the 

observation of symptoms which are observable to the 

traditional tracing leading to a gap of up to 15 seconds in 

the observable traces. 

• The measurement dependency reduction approach using 

the Granger Causality technique preserved more than 95% 

root cause location precision whilst cutting overhead 

storage and compute by more than 90%. 

• Dashboards tailored to operators and optimized by state-

related latency, resource congestion, and transaction 

queues helped decrease MTTD and the number of false 

alarms by a long margin. 

• Incident Response and Pre-tuning of persistence 

infrastructure Cross-layer correlation in combined 

dashboards provided the best operational value in real 

time incident response and upfront tuning of persistence 

infrastructure. 

 

V. Conclusion 

The paper shows that observability of stateful workloads 

scalably requires a combined, cause-aware and topology-

conformant monitoring approach. In some cases, 

conventional observability tools fail to detect the initial 

symptoms of persistent services which translates to a 

longer mean-time-to-diagnose and greater risk of 

operations. This was evidenced by more than 30 percent 

improvement in the diagnostic accuracy as well as 

responsiveness in the following manner: reduction of the 

noise in the metric, failure propagation modeling, and 

correlation of traces and state changes.  

Our suggested dashboards and anomaly detection systems 

allowed detecting the fault earlier and having improved 

visibility of the system. The presented findings provide 

practical background to SREs and DevOps engineers who 

work to ensure consistency in the performance and 

integrity of data in the context of best-effort distributed 

cloud environments deployed with stateful applications of 

critical nature. 
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