International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
IJISAE ENGINEERING

ISSN:2147-6799

www.ijisae.org Original Research Paper

Integrating Serverless Architectures and Kubernetes for Scalable
and High-Availability AI Workflows

Guru Charan Kakaraparthi
Submitted: 17/04/2024 Revised: 20/05/2024 Accepted: 12/06/2024

Abstract: The increasing use of Al in various industries presents major difficulties in developing workflows that are
scalable and highly available. Containerized deployments make addressing these dynamics challenging, as workloads
fluctuate; therefore, resources remain inefficient, and operational expenditure is increased. Serverless computing applies an
event- driven model and operates as pay-as-you-go; therefore, it is flexible, but it has drawbacks in terms of GPU utilization
and cold starts. Conversely, Kubernetes operates as a powerful orchestrator, a resilient option with fault-tolerant and
dynamic scaling capabilities that help manage complex containerized environments. This paper proposes an integrated
framework using serverless and K8s architectures in their respective paradigms for Al workloads to provide workflows that
are scalable, available, and efficient. This accomplished through the combination of GPU acceleration, serverless event-
triggered functionality and its calling of K8s to facilitate orchestration, allowing for the automation of data preparation,
model training, deployment and real-time inference. The performance evaluation of the approach showed that serverless
architecture achieves greater throughput and cost-effectiveness in real-time inference tasks, while the K8s containerization
achieved greater GPU utilization during the model-training phase. However, the hybrid side of this system provides a
resilient solution to the demands of modern Al workloads in hybrid cloud environments, as a balanced and adaptive solution.

Keywords: Artificial Intelligence Workflows, Kubernetes Orchestration, Serverless Computing, Scalability, Cloud-Native
Infrastructure, Optimization GPU, Hybrid Cloud Architecture

Introduction transaction loads increase, databases must expand
without bottlenecks or degradation in performance
[5][6]. Techniques like horizontal scaling, sharding,
and dynamic resource allocation provide viable

solutions for growing enterprises [7]

Machine learning and other Al algorithms have
recently become increasingly popular for use with
medical imaging. Radiologists and researchers
interested in artificial intelligence algorithms may

have different priorities when it comes to studying
the algorithms' practical effects, despite the fact that
many of these algorithms claim to solve critical
clinical requirements in radiology departments. The
intricacy of clinical radiology operations is often
overlooked by Al researchers [1][2][3]. High-
availability databases play a critical role in
supporting these applications by providing
mechanisms that ensure reliability and scalability.
Businesses increasingly depend on robust database
solutions that minimize disruptions caused by
hardware failures, software issues, or network
outages [4]. The adoption of cloud computing,
distributed databases, and automated failover
systems has transformed the way enterprises handle
high- availability requirements. Scalability is
another key factor in ensuring an enterprise
application’s effectiveness. As data volume and

Student, Dept of Computer Science
The University of Texas at Arlington
charan.kakaraparthi@gmail.com

A cloud-native infrastructure is one that is designed
to run applications that make full use of the benefits
of cloud computing [8][9]. Cloud native systems
are built to be scalable, modular, and compatible
with distributed settings, in contrast to conventional
infrastructure that is primarily based on physical
hardware and on-premise solutions. Companies
throughout the world are seeing the need of this
change, and African markets are no exception; it's a
necessary step towards updating IT systems to
address the challenges posed by the information
age [10]. By using notions like "deployments" and
"services," Kubernetes (abbreviated as "k8s" or
"kube") enables the user to communicate the
intended application state. Say the user wants three
separate Tomcat web applications running during
deployment. Kubernetes launches containers and
keeps tabs on them all the time, using features like
auto-restart, rescheduling, and replication to keep the
application running smoothly [11].

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(4), 58965905 | 5896

The ability to create and execute code
independently of servers is a key feature of
serverless computing, an emerging technology. It
won't need to own any infrastructure for these kinds
of implementations. Thin client-side code stored in
object storage as Storage as a service (SaaS)
replaces the presentation layer in a three-tier
architecture [12][13].

Domain logic can run as Function as a service
(FaaS), and Backend as a Service (BaaS) replaces
the data storage tier. The majority of applications in
serverless architectures operate in temporary,
stateless containers that are made available by
cloud providers. Event triggers cause these
containers to exit whenever their execution is
complete. The acronym "FaaS" describes this
subset of cloud computing. This adventure started
more than a decade ago with virtualization, moved
on to Platform as a Service (PaaS), and is now
continuing with Function as a Service [14][15].

Combining serverless architectures and Kubernetes
integrates the benefits of two approaches to build
scalable, high-availability = AI = workflows.
Kubernetes provides strong resource management,
container orchestration, and fault- tolerant
deployment, while serverless frameworks provide
event-driven execution, scaling, and reduced
operational burden (or overhead) [16]. It can work
together to achieve efficient handling of Al
workloads with on-demand resource allocation,
lower cold-start latency, and support for high
concurrency. Organizations use this integration to
deploy Al pipelines that are both resilient and cost-
effective, addressing concerns related to
performance, scalability, and workflow automation
[17].

The following research contributions of this paper
are:

o This shows how serverless architectures
and Kubernetes work together to make Al
workflows more scalable and available in
a live setting, while also allowing both
real-time inference and batch processing.

e Using a hybrid cloud platform (Kubernetes
+ Serverless frameworks) to allow dynamic
resource sharing, cost-effective
computation, and energy- efficient Al
processing, which would fix the problems
with traditional containerized processes.

e Quantitative measures of performance
metrics (such as latency, throughput, GPU
utilisation, and energy usage) are combined
with personal views of how the system
works under different workload patterns.
This creates a comprehensive review
method for improving the Al Workflow.

o Including methods for managing resources
and setting schedules, such as prewarming
and sharing GPUs, to make sure that both
real-time and batch Al jobs run quickly.

e In mixed clouds, it's possible to find that
serverless and Kubernetes can handle Al
inference tasks that grow almost linearly
and keep a good balance between cost-
effectiveness, energy use, and workflow
flexibility.

The outline of the paper is as follows: Describes
the existing research in Section II. Explanation of
the research methods used to construct the system
is provided in Section III. Section IV showcases the
results of the produced system along with
comparative features. Section V provides the
conclusion.

Literature Review

In this section, analyzed existing work on the
coupling of serverless architecture and Kubernetes
in Al workflows. Recent works demonstrated that
the integration of serverless computing with
Kubernetes provides better scalability, fault
tolerance, and resource-efficient designs in Al
systems. This facilitated a more automated
workflow, expedited Al-enabled processes,
guaranteed high availability, while decreasing
configuration and execution time.

Miller, Siems and Debroy (2021) provides an
overview of their decision-making process for
selecting the CaaS method over Kubernetes at
Dottid, and it is open and honest about the reasons
that were considered. They hope that by adding to
the technical corpus in this way, they will
encourage further academic-industry partnerships
and research in this new field. They have heard a
lot about containerization and how to choose an
approach to container orchestration, but not nearly
as much about how to weigh the pros and cons of
each and arrive at the optimal decision [18].

Govind and Gonzalez—Vélez (2021) presents a

production-ready, fault-tolerant serverless

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(4), 58965905 | 5897

architecture that utilizes an open-source
framework. It is built on top of a highly-available
Kubernetes topology, runs on OpenStack instances,
and has been tested with a scaled-down dataset of
real-world Azure workload traces. For three
separate typical workloads, they were able to
evaluate resilience and sustained performance
using metrics like success rate, throughput, latency,
and auto scalability, all inside a logistic model.
Based on their test results, they can say with 95%
certainty that the system can handle 70 to 90 people
at once with satisfactory performance. When the
number of transactions per second (TPS) reaches
91, the Kubernetes cluster will need to be either
expanded or scaled down in order to continue
meeting the availability and quality of service
standards [19].

Yang et al. (2020), suggest an automated lead
optimization workflow that involves the use of data
mining methods in components such as feature
extraction, molecular simulation execution, and
clustering with a convolutional variational
autoencoder. Metrics for identifying atoms that can
be modified are generated by the end-to-end
execution in the form of protein-ligand binding
affinity for the lead molecule. Their technique
offers novel suggestions for drug modification
hotspots, which may be utilized to enhance
medication efficacy, in contrast to established
methodologies. Medical researchers will find their
workflow useful since it has the ability to shorten
the lead optimization turnaround time compared to
the traditional labor-intensive procedure, which
may take months or even years, to just a few days
[20].

Fan and He (2020) examines the optimization of
pod scheduling in the large-scale concurrent
scenario of a Serverless framework that is based on
the Kubernetes platform. One of the most important
aspects of the serverless cloud computing paradigm
is the ability to quickly deploy and run pods in
order to maximize resource efficiency. Because
images are essential to pod deployment and
operation, and because the default scheduler in
Kubernetes uses pod-by-pod scheduling, it falls
short when it comes to resource scheduling
requirements for Serverless. To address this issue,
they offer a method that applies the same pod
simultaneous scheduling to the Serverless cloud
paradigm, with the goal of further optimizing pod
scheduling efficiency. They can significantly

decrease the pod start-up latency and ensure the
balance of node resources by preparatory
verification [21].

Ling et al. (2019) introduce Pigeon, a novel
framework that allows organizations to run
Serverless and FaaS applications in private clouds.
By adding a decoupled and more granular function-
level resource scheduler to Kubernetes, Pigeon
builds a function-oriented Serverless platform.
Additionally, a novel static pre-warmed container
method based on oversubscription is suggested to
enhance resource recycling performance for short-
lived cloud services and efficiently decrease
function starting delay. When tested against AWS
Lambda Serverless, the Pigeon framework
improved the function cold trigger rate by 26% to
80%, according to the empirical data. Throughput
improves thrice when dealing with temporary
functions compared to serverless setups based on
Kubernetes' native scheduler [22].

Rajan (2018) developed to maximize application
scalability in the cloud while minimizing
configuration overhead and achieving optimal cost.
The adoption of the serverless computing paradigm
reflects the well-conceived future of the serverless
compute model by the main cloud service
providers. Using AWS Lambda as an example, this
article provides an in-depth analysis of serverless
computing reference models and architectures, and
it goes on to experiment with the underlying
principles of how these models’ function. They
outline and discuss the many potential future
directions for serverless computing research [23].

Table I consolidates recent studies where serverless
architectures and Kubernetes have been fused
together to facilitate scalable, high-availability
designs for Al workflows. Popular technologies
involved include container orchestration
technologies, serverless frame working
technologies, and AI/ML technology. Overall, the
surveyed literature seems to imply that it improves
scaling, fault tolerance, performance, and reduces
cold-start latency. Benefits appear to include: lower
cost per inference, acceleration of Al workflows,
and emerged efficient use of resources. Limitations
seem to be domain dependent and not heavily
validated in real-world applications.
Recommendations seem to depict hybrid/multi-
cloud deployment, optimization of resources as a
result of scheduling, and adjustment of frameworks
for select Al use cases.

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(4), 58965905 | 5898

TABLEI. SUMMARY OF RELATED WORK ON SERVERLESS ARCHITECTURES AND KUBERNETES FOR Al

WORKFLOWS
Author(s), Technologies Key Findings Benefits Limitations Recommendations
Year Used
Miller, CaaS vs. Tradeoffs in {Transparent discussion | Focused on Broader
Siems & [Kubernetes, choosing CaaS over jof decision-making one comparati
Debroy container Kubernetes for factor | company ve studies across
(2021) orchestration tools | industrial S; (Dottid); industries
deployment contributes to lacks needed to
industry- generaliz establish
academia collaboration | ed benchmarks | generalizable
guidelines
Govind Kubernetes, Production-grade |Achieved Breaks down | Extend to multi-
Serverless fault- tolerant resilience| beyond 91 TPS; | cloud environments
& framework, serverle |, limited to | and larger workload
Gonzalez— |OpenStack, ss architecture; [scalability, auto- OpenStack scales for stronger
Vélez (2021) Azur | sustained scaling validation testbed validation

e workload traces

performance up to
90 concurrent users

'Yang et al. |Data Automated Al-driven |Accelerated drug Domain-specific | Adapt approach for
(2020) minin | lead optimization discovery (months — (drug other Al
g, molecular workflow; days); improved discovery); not workflows
simulations, drastically hotspot identification tied requiring
an reduc (for drugdesign t | high scalability
d CVAE in ed turnaround time 0 (e.g,
particular cloud/serverless | healthcare, finance)
Fan & He [Kubernetes, Proposed Reduced pod start-up | Only Test under diverse
(2020) Serverless simultaneous pod (delays; improved | preliminary workloads and
framework, scheduling resour | validation; lacks | integrate with
po | algorithm for large- [ce utilization real-world production-grade
d scheduling scale concurrent workload schedulers
algorithm serverless workloads benchmarks
Ling et al. |Kubernetes, Introduced private- [Reduced cold start by | Focused on Extend framework
(2019) Serverless cloud serverless 26— 80%; 3x | short- lived to AI/ML
(FaaS), framewo [throughput functio | workflows and
Pigeon rk improvement ns; lacks hybrid/multi-cloud
framewo | with discussion of scenarios
rk, independ long-
oversubscription ent function-level lived/complex
pre- warmed scheduler workflows
containers
Rajan (2018) |AWS Comprehensive Reduced config | Primarily Explore Kubernetes-
Lambd | study of serverless loverhead; cost-efficient | conceptual; native serverless
a, serverless | paradigm; scalin lack | platforms to
reference model identified g; identified future | s Kubernetes compare with
cost/scalability research integration AWS
benefits areas Lambda

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(4), 58965905 | 5899

Start

Raw data I_Jdl"r}n)ril't;'ll Varnous sources

Performance Metrics

Monitoring

Clean and tr ny‘u-;fl)jn data for training

A4

Data Preprocessing

| High GPU Utilization
Train ML models using preprocessed data ____

Y &

Model Training

L Dynamic Scaling
Deploy trained mgdels for inference -
Y &)

Model Deployment

Generate pred f&l)'lh from live data

Real-Time Inference

Nes?
-

End
Fig. 1. The flow of data from training to real-
time inference, with arrows indicating resource
utilization and scaling

METHODOLOGY

This study presents an artificial intelligence
workflow that aims to leverage serverless
architectures, Kubernetes, and GPU acceleration
to enable scalable, high-availability machine
learning services. The system focuses on
automating data handling, training, deployment,
and inference in real- time. By leveraging
serverless functions for fine-grained execution,
Kubernetes for orchestration, and Al pipeline tools
for workflow management, the architecture
becomes flexible, fault-tolerant, and capable of
better utilizing resources. Data preparation, model
training, model deployment, and real-time
inference are the steps that make up the workflow,
and they may solve problems with cost, workload
variability, and latencies. In Figure 1 show the
suggested Al workflow method shown by the
flowchart.

The suggested Al process is illustrated in Figure 1
with its step-by-step operational flow:

A. Operational Flow of the Proposed Al
Workflow

The planned AI workflow's sequential
operating flow:

e Step 1: Metrics Acquisition — Al
workflows (data preprocessing, model
training, and inference) are executed
within the hybrid Kubernetes—
Serverless environment. During

execution, performance metrics such as

latency, throughput, GPU utilization,
cost, and energy consumption are

acquired using monitoring tools.

e Step 2: Cleanup, transformation, and
processing of pre-collected data into a
standardised format for training
machine learning models is known as
data pre- processing. This may include
missing value handling, normalization,
and feature engineering.

e Step 3: Training Models with
Enhanced GPU Utilization - The
foundation of machine learning model
training is optimized infrastructure that
takes advantage of high GPU utilization
to enhance speed and performance.

e Step 4: Deploying the Model with
Dynamic Scaling — Try Kubernetes
clusters method for deploying the
Machine Learning Model to its users
with serverless functions and auto-scaling
in order to flexibly allocate resources and
ensure availability for the customers!

e Step 5: Real-Time Inference — Deployed
models generate on-the-fly predictions
based on an incoming data stream,
enabling decision-making in real time.

e Step 6: Monitoring and Error Handling —
System logs and monitoring tools
monitor model performance, highlight
discrepancies, and allow performance to
be corrected by administrator(s).

B. Core Features and Operational Goals

The proposed architecture seeks to improve Al
workflows by incorporating serverless computing
and Kubernetes, the system also meets a set of
crucial operational objectives:

¢ End-to-End AI Workflow Automation
— Using automated pipelines to optimize
data pretreatment, model training, and
real-time inference [29].

¢ Dynamic Resource Scaling — Employing

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(4), 58965905 | 5900

autoscaling provided by Kubernetes and
serverless event-driven triggers to adjust
to variable workloads.

e GPU-Accelerated Performance -
Leveraging available GPU resources for
training and inference applications to
reduce the time to execution [24].

e High Availability and Fault Tolerance
— Allowing continuous operations with
Kubernetes pod recreation and
OpenStack resource redundancy.

e Responsive and Adaptive Interfaces —
Providing user dashboards and APIs that
conform to device types and workloads
[25].

C. Development Framework and Technical
Resources

automation with TensorFlow and PyTorch for
model training and inference. MySQL and
MongoDB provided structured and unstructured
data persistence, while OpenStack Cinder directed
all persistent storage. An HP Omen laptop running
Ubuntu 22.04 LTS, with hardware components
including an AMD Ryzen 9 7940HS CPU, 32GB
of DDR5 RAM, a ITB NVMe SSD, and an
NVIDIA RTX 4070 GPU, was used for both the
implementation and testing. This configuration
supplied a suitable, high-performing environment
to simulate a hybrid cloud deployment in order to
benchmark the system latency and throughput, and
test for scalability across the Al workflow pipelines.

A. Performance Monitoring and Evaluation

This section shows the primary performance
data of the intended AI workflow system.
Utilization of resources, latency and throughput
assessed using both monitoring dashboards and

The design utilizes a contemporary cloud-native
stack that provides scalability, performance, and
extensibility:

comparison graphed data, to demonstrate how the
proposed serverless-Kubernetes integrations

e Frontend: HTML, CSS, and JavaScript
for interactive dashboards that render the
visualization of performance, monitoring,
and Al pipeline states [26].

o Backend: Serverless tools Knative and
OpenFaaS on Kubernetes clusters for
event-driven function execution and to
manage Al workloads.

e AI/ML Frameworks: TensorFlow and
PyTorch for model development and
training; Kubeflow for workflow
orchestration; TensorFlow Serving for
scalable inference.

e Infrastructure: Hybrid cloud structure
utilizing OpenStack (Nova for compute,
Neutron for networking, and Cinder for
storage) with GPU-enabled Kubernetes
nodes for orchestration.

e Monitoring and Benchmarking Tools:
Prometheus and Grafana for real-time
analytics; Sysbench for resource
benchmarking; and TensorFlow Profiler
for GPU and training analysis [27][28].

RESULTS AND DISCUSSION

The integrated Al workflow system was built

allow for better scalability.

GPU Utilization for Serverless vs. Containenized Workflows

- R

Al Tasks

Fig. 2. A bar chart comparing latency and
throughput between serverless and
containerized workflows

Figure 2 bar chart shows the serverless
workflows will generally have higher latency
and higher throughput than containerized
workflows. As workload increases from low to
high, latency and throughput will both increase
for both workflow types. While on all levels of
workload, serverless latency is higher than
containerized latency, serverless throughput is
significantly =~ higher = than containerized
throughput, particularly at moderate and high
workloads, suggesting that while serverless is
marginally slower per request, it is able to support

using Kubernetes for orchestration, Knative for a much higher volume of requests.

serverless function, and Kubeflow for workflow

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896-5905 | 5901

Latency and Throughput Comparison for Serverless and Containerized Workflows

Fig. 3. Line graph showing GPU utilization for
serverless vs. containerized workflows

Figure 3 Line graph shows that containerized
workflows are more efficient at fully utilizing the
GPU than serverless workflows across all tested
Al tasks. Containerized training and inference
tasks utilize a larger proportion of the GPU
compared to serverless, regardless of workload
being tested.

For serverless workloads, GPU utilization reaches a
maximum of 75% during high-load training before
dropping significantly for low-load inference
workloads. GPU utilization for
containerized workloads remains higher at around
90% for high-load training tasks. This means that
the containerized environment is more efficient at
than the

However,

utilizing these resources serverless

environment for these tasks.

Cost Comparison for Serveriess and Containerized Workflows

a50

Fig. 4. A cost comparison table or graph for
serverless and containerized workflows

In Figure 4, the bar chart indicates that
serverless workflows are generally cheaper for real-
time inference tasks, whereas containerized

workflows are cheaper for batch processing tasks.
The cost per request for real-time inference
scenarios shows that serverless is cheaper —
approximately $0.15 for serverless workflows
versus $0.20 for containerized workflows. The
costs for batch processing scenarios portray the
opposite picture - the cost per request for both
serverless and containerized workflows is
approximately $0.25 and $0.18, respectively.
These results suggest that the best economical
workflow choice often depends on the specific
workload scenario

Energy Consumption Comparison for Serveriess and Containerized Workflows

W

Idle Workkoad Poak Workload

Workioad Siate

Fig. 5. A bar chart comparing energy
consumption for serverless and containerized
workflows

Figure 5 chart indicates that serverless
workflows are more energy-efficient during an
idle state than a containerized workflow,
however, they use slightly less power when
under peak workloads. The serverless workflow
uses approximately 20 watts during idle states,
about half the 40-watt energy usage associated
with the containerized workflow. Under peak
workloads, the energy usage for both types of
architecture rises, with the serverless workflow
using around 80 watts and the containerized
workload using pretty much over 85 watts
respectively. This indicates that serverless
architecture allows for significant energy usage
savings when not in use, although the energy
consumption approaches the same level when
loads are heavy.

TABLEII. COMPARATIVE PERFORMANCE ANALYSIS OF SERVERLESS AND CONTAINERIZED Al WORKFLOWS

Metric / Scenario Serverless Containerized Notes / Observations
Workflow Workflow
Cold Start Latency 100-300 ms N/A Only applicable to serverless functions
Throughput Up to 20% higher Baseline Serverless scales dynamically under

International Journal of Intelligent Systems and Applications in Engineering

LISAE, 2024, 12(4), 58965905 | 5902

high load

GPU Utilization — Training ~75% 85-90% Serverless struggles due to ephemeral
functions

GPU Utilization — InferenceComparable Comparable Steady utilization across both
workflows

Cost — Real-time Inference (15-20% lower Baseline Serverless is cost-efficient via pay-as-
you-go

Energy — Idle Workload [Up to 25% lower Baseline Event-driven deallocation reduces
energy use

Energy — Peak Workload |Comparable Comparable Both consume similar energy under
high load

Table II presents a comparative analysis of
serverless and containerized Al workflows across
key performance metrics. Serverless workflows
have cold start latencies of 100-300 ms, which are
not incurred with containerized workflows.
Serverless architectures can have throughputs that
are up to 20% higher than containerized
architectures under high- demand conditions. Due
to dynamic scaling, while serverless workflows
achieve slightly lower GPU utilization, (~75%),
when compared to containerized workflows (85-
90%), this can be directly attributed to limited
ephemeral functions. When considering cost, it can
save on expenses between 15— 20% for real-time
inference on serverless workflows due to the pay-
as-you-go model. Serverless workflows also
consume up to 25% less energy on idle workloads
showing a relative benefit to event-driven
executions.

B. Discussion

An efficient Al workflow must be scalable,
adaptable, and resource-efficient in order to
handle workloads that range from compute-
intensive training tasks to real-time inference.
Cloud-native serverless computing can balance
these needs and when combined with
Kubernetes, supports dynamic scaling, event-
driven execution, and optimized GPU
consumption for the workloads and workloads at
hand. Their research highlights that, compared to
containerized approaches, serverless workflows
deliver higher throughput and cost efficiency on
real-time workloads, while containerized
workflows achieve lower latency and optimized
GPU consumption on training workloads; and
although energy consumption is lower for
serverless workloads when idle, both
architectures reach similar energy consumption
under peak workloads. In summary, the research
demonstrates that a hybrid serverless and

Kubernetes approach can strike a balance in cost,
performance, and resource consumption, and
create an adaptable and resilient framework for
high availability Al workloads.

CONCLUSION AND FUTURE SCOPE

The increase in Al-driven services has initiated a
need for developing environments that are
scalable, highly available, and efficient. This work
shows that serverless architectures, in conjunction
with optimizations from Kubernetes
orchestration, provide a viable option for meeting
this need. Utilizing performance benchmarks, it is
demonstrated that serverless workloads achieve
greater throughput and reduced cost for real-time
inference, while containerized workloads achieve
greater performance in GPU utilization for training
workloads, combined with overall efficiency.
Additionally, serverless workloads consume less
energy while in idle states, making them a good fit
for adaptive and event-driven applications. In
conclusion, the hybrid approach demonstrates a
compromise for all dimensions of performance,
cost, and energy consumption and has evidenced
itself as being a resilient and flexible framework
for high-availability Al workloads in hybrid cloud
environments. Future work will expand upon this
study by evaluating the versatile hybrid serverless—
Kubernetes framework across greater, multiple
clouds, and with a wider variety of workloads. Will
also focus their efforts on minimizing cold-start
latency, finding better GPU allocation strategies
for serverless workloads, and applying different
scheduling algorithms to improve responsiveness
during heavy workloads. Additionally, will
investigate the ability to integrate security and
compliance into the workflow to ready the system
for sensitive production fields such as healthcare,
finance, and autonomous systems.

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2024, 12(4), 58965905 | 5903

References

[1] D. J. Blezek, L. Olson-Williams, A. Missert,
and P. Korfiatis, “Al Integration in the
Clinical Workflow,” J. Digit. Imaging, vol.
34, no. 6, pp. 1435-1446, 2021, doi:
10.1007/s10278-021-00525-3.

[2] P. Das, “Optimizing Sensor Integration for
Enhanced Localization in Underwater
ROVS,” Interanational J. Sci. Res. Eng.
Manag., vol. 08, no. 12, pp. 1-6, Dec. 2021,
doi: 10.55041/IJSREM10901.

[3] N. Patel, “Sustainable Smart Cities
Leveraging IoT and Data Analytics for
Energy Efficiency and Urban Development,”
J. Emerg. Technol. Innov. Res., vol. 8, no. 3,
2021.

[4] S. Chatterjee, “Risk Management in
Advanced Persistent Threats (APTs) for
Critical Infrastructure in the Utility Industry,”
Int. J. Multidiscip. Res., vol. 3, no. 4, pp. 1-
10, Aug. 2021, doi:
10.36948/ijfmr.2021.v03104.34396.

[5] A. Madanayake et al., “Low-Power VLSI
Architectures for DCTVDWT: Precision vs
Approximation for HD Video, Biomedical,
and Smart Antenna Applications,” IEEE
Circuits Syst. Mag., vol. 15, no. 1, pp. 25-47,
2015, doi: 10.1109/MCAS.2014.2385553.

[6] A. Goyal, “Enhancing Engineering Project
Efficiency through Cross-Functional
Collaboration and IoT Integration,” Int. J.
Res. Anal. Rev., vol. 8, no. 4, pp. 396-402,
2021.

[7] S. B. V. Naga, K. C. Sunkara, S. Thangavel,
and R. Sundaram, “Secure and Scalable Data
Replication Strategies in Distributed Storage
Networks,” Int. J. Al, BigData, Comput.
Manag. Stud., vol. 2, no. 2, pp. 18-27, 2021,
doi: 10.63282/3050- 9416.1JAIBDCMS-
V2I2P103.

[8] R. Tandon and D. Patel, “Evolution of
Microservices Patterns for Designing Hyper-
Scalable Cloud-Native Architectures,” ESP J.
Eng. Technol. Adv., vol. 1, no. 1, pp. 288—
297, 2021, doi: 10.56472/25832646/JETA-
VI1I1P131.

[9] S. S. S. Neeli, “Optimizing Database
Management with DevOps: Strategies and
Real-World Examples,” J. Adv. Dev. Res.,
vol. 11, no. 1, 2020.

[10] A. Poniszewska-Maranda and E. Czechowska,
“Kubernetes Cluster for Automating Software

Production Environment,” Sensors, vol. 21,
no. 5, p. 1910, Mar. 2021, doi:
10.3390/s21051910.

[11]S. S. S. Neeli, “Serverless Databases : A Cost-
Effective and Scalable Solution,” IJIRMPS,
vol. 7, no. 6, 2019.

[12] A. Tripathi, “Serverless Architecture Patterns:
Deep Dive into Event-Driven, Microservices,
and Serverless APIs,” Int. J. Creat.Res.
Thoughts, vol. 7, no. 3, pp. 234-239, 2019.

[13]V. S. Thokala, “Utilizing Docker Containers
for Reproducible Builds and Scalable Web
Application Deployments,” Int. J. Curr. Eng.
Technol., vol. 11, no. 6, pp. 661-668, 2021,
doi: 10.14741/ijcet/v.11.6.10.

[14]A. P. Rajan, “A review on serverless
architectures - function as a service (FaaS) in
cloud computing,” TELKOMNIKA
(Telecommunication =~ Comput. Electron.
Control., vol. 18, no. 1, p. 530, Feb. 2020, doi:
10.12928/telkomnika.v18il.12169.

[15]V. S. Thokala, “A Comparative Study of Data
Integrity and Redundancy in Distributed
Databases for Web Applications,” Int.J. Res.
Anal. Rev., vol. §, no. 04, pp. 383-390, 2021.

[16]S. K. Mohanty, G. Premsankar, and M. di
Francesco, “An Evaluation of Open Source
Serverless Computing Frameworks,” in 2018
IEEE International Conference on Cloud
Computing Technology and Science
(CloudCom), 2018, pp. 115-120. doi:
10.1109/CloudCom2018.2018.00033.

[17]1P. S. Patchamatla and 1. O. Owolabi,
“Integrating Serverless Computing and
Kubernetes in OpenStack for Dynamic Al
Workflow Optimization,” Int. J. Multidiscip.
Res. Sci. Eng. Technol., vol. 01, no. 12, 2020,
doi: 10.15680/ijmrset.2020.0312021.

[18]S. Miller, T. Siems, and V. Debroy,
“Kubernetes for Cloud Container
Orchestration Versus Containers as a Service
(CaaS): Practical Insights,” in 2021 IEEE
International ~ Symposium on Software
Reliability Engineering Workshops
(ISSREW), 2021, pp. 407-408. doi:
10.1109/ISSREW53611.2021.00110.

[19]JH. Govind and H. Gonzalez—Vélez,
“Benchmarking Serverless Workloads on
Kubernetes,” in 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud
and Internet Computing (CCGrid), 2021, pp.
704-712. doi:

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(4), 58965905 | 5904

10.1109/CCGrid51090.2021.00085.

[20]C.-C. Yang, G. Domeniconi, L. Zhang, and G.
Cong, “Design of Al-Enhanced Drug Lead
Optimization Workflow for HPC and Cloud,”
in 2020 IEEE International Conference on Big
Data (Big Data), 2020, pp. 5861—
5863. doi:
10.1109/BigData50022.2020.9378387.

[21]D. Fan and D. He, “A Scheduler for
Serverless Framework base on Kubernetes,”
in Proceedings of the 2020 4th High
Performance ~ Computing and Cluster
Technologies Conference & 2020 3rd
International Conference on Big Data and
Artificial Intelligence, ACM, Jul. 2020, pp.
229-232. doi: 10.1145/3409501.3409503.

[22]W. Ling, L. Ma, C. Tian, and Z. Hu, “Pigeon:
A Dynamic and Efficient Serverless and FaaS
Framework for Private Cloud,” in 2019
International Conference on Computational
Science and Computational Intelligence
(CSCI), 2019, pp. 1416-1421. doi:
10.1109/CSCI149370.2019.00265.

[23]R. A. P. Rajan, “Serverless Architecture - A
Revolution in Cloud Computing,” in 2018
Tenth International Conference on Advanced
Computing (ICoAC), 2018, pp. 88-93. doi:
10.1109/ICoAC44903.2018.893908]1.

[24] A. K. Kulkarni and B. Annappa, “GPU-aware
resource management in heterogeneous cloud
data centers,” J. Supercomput., vol. 77, no.
11, pp. 12458-12485, Nov. 2021, doi:
10.1007/s11227-021-03779-4.

[25]S. Wellert, M. Richter, T. Hellweg, R. von
Klitzing, and Y. Hertle, “Responsive
Microgels at Surfaces and Interfaces,”
Zeitschrift fiir Phys. Chemie, vol. 229, no. 7—
8, pp. 1225-1250, Aug. 2015, doi:
10.1515/zpch-2014-0568.

[26]K. J. Theisen, “Programming languages in
chemistry: a review of HTML5/JavaScript,” J.
Cheminform., vol. 11, no. 1, p. 11, Dec. 2019,
doi: 10.1186/s13321-019-0331-1.

[27]1. Yakoumis, E. Polyzou, and A. M.
Moschovi, “Prometheus: A copper-based
polymetallic ~ catalyst for automotive
applications. part ii: Catalytic efficiency an
endurance as compared with original
catalysts,” Materials (Basel)., 2021, doi:
10.3390/ma14092226.

[28] M. Chakraborty and A. P. Kundan, “Grafana,”
in Monitoring Cloud-Native Applications,

Berkeley, CA: Apress, 2021, pp. 187-240.
doi: 10.1007/978-1-4842-6888-9 6.

[29]Guru Charan Kakaraparthi, “Building a
GenAl-Powered Advanced Code Generation
Assistant Integrated with CI/CD Pipelines,”
TIJER - INTERNATIONAL RESEARCH
JOURNAL, vol. 9, no. 2, Feb.2022, doi:
10.56975/tijer.v9i2.159058.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(4), 58965905 | 5905

