

 International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5896

Integrating Serverless Architectures and Kubernetes for Scalable

and High-Availability AI Workflows

Guru Charan Kakaraparthi

Submitted: 17/04/2024 Revised: 20/05/2024 Accepted: 12/06/2024

Abstract: The increasing use of AI in various industries presents major difficulties in developing workflows that are

scalable and highly available. Containerized deployments make addressing these dynamics challenging, as workloads

fluctuate; therefore, resources remain inefficient, and operational expenditure is increased. Serverless computing applies an

event- driven model and operates as pay-as-you-go; therefore, it is flexible, but it has drawbacks in terms of GPU utilization

and cold starts. Conversely, Kubernetes operates as a powerful orchestrator, a resilient option with fault-tolerant and

dynamic scaling capabilities that help manage complex containerized environments. This paper proposes an integrated

framework using serverless and K8s architectures in their respective paradigms for AI workloads to provide workflows that

are scalable, available, and efficient. This accomplished through the combination of GPU acceleration, serverless event-

triggered functionality and its calling of K8s to facilitate orchestration, allowing for the automation of data preparation,

model training, deployment and real-time inference. The performance evaluation of the approach showed that serverless

architecture achieves greater throughput and cost-effectiveness in real-time inference tasks, while the K8s containerization

achieved greater GPU utilization during the model-training phase. However, the hybrid side of this system provides a

resilient solution to the demands of modern AI workloads in hybrid cloud environments, as a balanced and adaptive solution.

Keywords: Artificial Intelligence Workflows, Kubernetes Orchestration, Serverless Computing, Scalability, Cloud-Native

Infrastructure, Optimization GPU, Hybrid Cloud Architecture

Introduction

Machine learning and other AI algorithms have

recently become increasingly popular for use with

medical imaging. Radiologists and researchers

interested in artificial intelligence algorithms may

have different priorities when it comes to studying

the algorithms' practical effects, despite the fact that

many of these algorithms claim to solve critical

clinical requirements in radiology departments. The

intricacy of clinical radiology operations is often

overlooked by AI researchers [1][2][3]. High-

availability databases play a critical role in

supporting these applications by providing

mechanisms that ensure reliability and scalability.

Businesses increasingly depend on robust database

solutions that minimize disruptions caused by

hardware failures, software issues, or network

outages [4]. The adoption of cloud computing,

distributed databases, and automated failover

systems has transformed the way enterprises handle

high- availability requirements. Scalability is

another key factor in ensuring an enterprise

application’s effectiveness. As data volume and

transaction loads increase, databases must expand

without bottlenecks or degradation in performance

[5][6]. Techniques like horizontal scaling, sharding,

and dynamic resource allocation provide viable

solutions for growing enterprises [7]

A cloud-native infrastructure is one that is designed

to run applications that make full use of the benefits

of cloud computing [8][9]. Cloud native systems

are built to be scalable, modular, and compatible

with distributed settings, in contrast to conventional

infrastructure that is primarily based on physical

hardware and on-premise solutions. Companies

throughout the world are seeing the need of this

change, and African markets are no exception; it's a

necessary step towards updating IT systems to

address the challenges posed by the information

age [10]. By using notions like "deployments" and

"services," Kubernetes (abbreviated as "k8s" or

"kube") enables the user to communicate the

intended application state. Say the user wants three

separate Tomcat web applications running during

deployment. Kubernetes launches containers and

keeps tabs on them all the time, using features like

auto-restart, rescheduling, and replication to keep the

application running smoothly [11].

Student, Dept of Computer Science

The University of Texas at Arlington

charan.kakaraparthi@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5897

The ability to create and execute code

independently of servers is a key feature of

serverless computing, an emerging technology. It

won't need to own any infrastructure for these kinds

of implementations. Thin client-side code stored in

object storage as Storage as a service (SaaS)

replaces the presentation layer in a three-tier

architecture [12][13].

Domain logic can run as Function as a service

(FaaS), and Backend as a Service (BaaS) replaces

the data storage tier. The majority of applications in

serverless architectures operate in temporary,

stateless containers that are made available by

cloud providers. Event triggers cause these

containers to exit whenever their execution is

complete. The acronym "FaaS" describes this

subset of cloud computing. This adventure started

more than a decade ago with virtualization, moved

on to Platform as a Service (PaaS), and is now

continuing with Function as a Service [14][15].

Combining serverless architectures and Kubernetes

integrates the benefits of two approaches to build

scalable, high-availability AI workflows.

Kubernetes provides strong resource management,

container orchestration, and fault- tolerant

deployment, while serverless frameworks provide

event-driven execution, scaling, and reduced

operational burden (or overhead) [16]. It can work

together to achieve efficient handling of AI

workloads with on-demand resource allocation,

lower cold-start latency, and support for high

concurrency. Organizations use this integration to

deploy AI pipelines that are both resilient and cost-

effective, addressing concerns related to

performance, scalability, and workflow automation

[17].

The following research contributions of this paper

are:

• This shows how serverless architectures

and Kubernetes work together to make AI

workflows more scalable and available in

a live setting, while also allowing both

real-time inference and batch processing.

• Using a hybrid cloud platform (Kubernetes

+ Serverless frameworks) to allow dynamic

resource sharing, cost-effective

computation, and energy- efficient AI

processing, which would fix the problems

with traditional containerized processes.

• Quantitative measures of performance

metrics (such as latency, throughput, GPU

utilisation, and energy usage) are combined

with personal views of how the system

works under different workload patterns.

This creates a comprehensive review

method for improving the AI Workflow.

• Including methods for managing resources

and setting schedules, such as prewarming

and sharing GPUs, to make sure that both

real-time and batch AI jobs run quickly.

• In mixed clouds, it's possible to find that

serverless and Kubernetes can handle AI

inference tasks that grow almost linearly

and keep a good balance between cost-

effectiveness, energy use, and workflow

flexibility.

The outline of the paper is as follows: Describes

the existing research in Section II. Explanation of

the research methods used to construct the system

is provided in Section III. Section IV showcases the

results of the produced system along with

comparative features. Section V provides the

conclusion.

Literature Review

In this section, analyzed existing work on the

coupling of serverless architecture and Kubernetes

in AI workflows. Recent works demonstrated that

the integration of serverless computing with

Kubernetes provides better scalability, fault

tolerance, and resource-efficient designs in AI

systems. This facilitated a more automated

workflow, expedited AI-enabled processes,

guaranteed high availability, while decreasing

configuration and execution time.

Miller, Siems and Debroy (2021) provides an

overview of their decision-making process for

selecting the CaaS method over Kubernetes at

Dottid, and it is open and honest about the reasons

that were considered. They hope that by adding to

the technical corpus in this way, they will

encourage further academic-industry partnerships

and research in this new field. They have heard a

lot about containerization and how to choose an

approach to container orchestration, but not nearly

as much about how to weigh the pros and cons of

each and arrive at the optimal decision [18].

Govind and González–Vélez (2021) presents a

production-ready, fault-tolerant serverless

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5898

architecture that utilizes an open-source

framework. It is built on top of a highly-available

Kubernetes topology, runs on OpenStack instances,

and has been tested with a scaled-down dataset of

real-world Azure workload traces. For three

separate typical workloads, they were able to

evaluate resilience and sustained performance

using metrics like success rate, throughput, latency,

and auto scalability, all inside a logistic model.

Based on their test results, they can say with 95%

certainty that the system can handle 70 to 90 people

at once with satisfactory performance. When the

number of transactions per second (TPS) reaches

91, the Kubernetes cluster will need to be either

expanded or scaled down in order to continue

meeting the availability and quality of service

standards [19].

Yang et al. (2020), suggest an automated lead

optimization workflow that involves the use of data

mining methods in components such as feature

extraction, molecular simulation execution, and

clustering with a convolutional variational

autoencoder. Metrics for identifying atoms that can

be modified are generated by the end-to-end

execution in the form of protein-ligand binding

affinity for the lead molecule. Their technique

offers novel suggestions for drug modification

hotspots, which may be utilized to enhance

medication efficacy, in contrast to established

methodologies. Medical researchers will find their

workflow useful since it has the ability to shorten

the lead optimization turnaround time compared to

the traditional labor-intensive procedure, which

may take months or even years, to just a few days

[20].

Fan and He (2020) examines the optimization of

pod scheduling in the large-scale concurrent

scenario of a Serverless framework that is based on

the Kubernetes platform. One of the most important

aspects of the serverless cloud computing paradigm

is the ability to quickly deploy and run pods in

order to maximize resource efficiency. Because

images are essential to pod deployment and

operation, and because the default scheduler in

Kubernetes uses pod-by-pod scheduling, it falls

short when it comes to resource scheduling

requirements for Serverless. To address this issue,

they offer a method that applies the same pod

simultaneous scheduling to the Serverless cloud

paradigm, with the goal of further optimizing pod

scheduling efficiency. They can significantly

decrease the pod start-up latency and ensure the

balance of node resources by preparatory

verification [21].

Ling et al. (2019) introduce Pigeon, a novel

framework that allows organizations to run

Serverless and FaaS applications in private clouds.

By adding a decoupled and more granular function-

level resource scheduler to Kubernetes, Pigeon

builds a function-oriented Serverless platform.

Additionally, a novel static pre-warmed container

method based on oversubscription is suggested to

enhance resource recycling performance for short-

lived cloud services and efficiently decrease

function starting delay. When tested against AWS

Lambda Serverless, the Pigeon framework

improved the function cold trigger rate by 26% to

80%, according to the empirical data. Throughput

improves thrice when dealing with temporary

functions compared to serverless setups based on

Kubernetes' native scheduler [22].

Rajan (2018) developed to maximize application

scalability in the cloud while minimizing

configuration overhead and achieving optimal cost.

The adoption of the serverless computing paradigm

reflects the well-conceived future of the serverless

compute model by the main cloud service

providers. Using AWS Lambda as an example, this

article provides an in-depth analysis of serverless

computing reference models and architectures, and

it goes on to experiment with the underlying

principles of how these models’ function. They

outline and discuss the many potential future

directions for serverless computing research [23].

Table I consolidates recent studies where serverless

architectures and Kubernetes have been fused

together to facilitate scalable, high-availability

designs for AI workflows. Popular technologies

involved include container orchestration

technologies, serverless frame working

technologies, and AI/ML technology. Overall, the

surveyed literature seems to imply that it improves

scaling, fault tolerance, performance, and reduces

cold-start latency. Benefits appear to include: lower

cost per inference, acceleration of AI workflows,

and emerged efficient use of resources. Limitations

seem to be domain dependent and not heavily

validated in real-world applications.

Recommendations seem to depict hybrid/multi-

cloud deployment, optimization of resources as a

result of scheduling, and adjustment of frameworks

for select AI use cases.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5899

TABLE I. SUMMARY OF RELATED WORK ON SERVERLESS ARCHITECTURES AND KUBERNETES FOR AI

WORKFLOWS

Author(s),

Year

Technologies

Used
Key Findings Benefits Limitations Recommendations

Miller,

Siems &

Debroy

(2021)

CaaS vs.

Kubernetes,

container

orchestration tools

Tradeoffs in

choosing CaaS over

Kubernetes for

industrial

deployment

Transparent discussion

of decision-making

 factor

s;

contributes to

 industry-

academia collaboration

Focused on

 one

company

(Dottid);

lacks

 generaliz

ed benchmarks

Broader

 comparati

ve studies across

industries

needed to

 establish

generalizable

guidelines

Govind

&

González–

Vélez (2021)

Kubernetes,

Serverless

framework,

OpenStack,

 Azur

e workload traces

Production-grade

fault- tolerant

 serverle

ss architecture;

sustained

performance up to

90 concurrent users

Achieved

 resilience

,

scalability, auto-

scaling validation

Breaks down

beyond 91 TPS;

limited to

OpenStack

testbed

Extend to multi-

cloud environments

and larger workload

scales for stronger

validation

Yang et al.

(2020)

Data

 minin

g, molecular

simulations,

 an

d CVAE in

particular

Automated AI-driven

lead optimization

workflow;

drastically

 reduc

ed turnaround time

Accelerated drug

discovery (months →

days); improved

hotspot identification

for drug design

Domain-specific

(drug

discovery); not

tied

 t

o

cloud/serverless

Adapt approach for

other AI

workflows

requiring

high scalability

 (e.g.,

healthcare, finance)

Fan & He

(2020)

Kubernetes,

Serverless

framework,

 po

d scheduling

algorithm

Proposed

simultaneous pod

scheduling

algorithm for large-

scale concurrent

serverless workloads

Reduced pod start-up

delays; improved

 resour

ce utilization

Only

preliminary

validation; lacks

real-world

workload

benchmarks

Test under diverse

workloads and

integrate with

production-grade

schedulers

Ling et al.

(2019)

Kubernetes,

Serverless

 (FaaS),

Pigeon

 framewo

rk,

oversubscription

pre- warmed

containers

Introduced private-

cloud serverless

 framewo

rk

with

 independ

ent function-level

scheduler

Reduced cold start by

26– 80%; 3x

throughput

improvement

Focused on

short- lived

 functio

ns; lacks

discussion of

long-

lived/complex

workflows

Extend framework

 to AI/ML

workflows and

hybrid/multi-cloud

scenarios

Rajan (2018) AWS

 Lambd

a, serverless

reference model

Comprehensive

study of serverless

paradigm;

identified

cost/scalability

benefits

Reduced config

overhead; cost-efficient

 scalin

g; identified future

research

areas

Primarily

conceptual;

 lack

s Kubernetes

integration

Explore Kubernetes-

native serverless

platforms to

compare with

AWS

Lambda

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5900

Fig. 1. The flow of data from training to real-

time inference, with arrows indicating resource

utilization and scaling

METHODOLOGY

This study presents an artificial intelligence

workflow that aims to leverage serverless

architectures, Kubernetes, and GPU acceleration

to enable scalable, high-availability machine

learning services. The system focuses on

automating data handling, training, deployment,

and inference in real- time. By leveraging

serverless functions for fine-grained execution,

Kubernetes for orchestration, and AI pipeline tools

for workflow management, the architecture

becomes flexible, fault-tolerant, and capable of

better utilizing resources. Data preparation, model

training, model deployment, and real-time

inference are the steps that make up the workflow,

and they may solve problems with cost, workload

variability, and latencies. In Figure 1 show the

suggested AI workflow method shown by the

flowchart.

The suggested AI process is illustrated in Figure 1

with its step-by-step operational flow:

A. Operational Flow of the Proposed AI

Workflow

The planned AI workflow's sequential

operating flow:

• Step 1: Metrics Acquisition – AI

workflows (data preprocessing, model

training, and inference) are executed

within the hybrid Kubernetes–

Serverless environment. During

execution, performance metrics such as

latency, throughput, GPU utilization,

cost, and energy consumption are

acquired using monitoring tools.

• Step 2: Cleanup, transformation, and

processing of pre-collected data into a

standardised format for training

machine learning models is known as

data pre- processing. This may include

missing value handling, normalization,

and feature engineering.

• Step 3: Training Models with

Enhanced GPU Utilization - The

foundation of machine learning model

training is optimized infrastructure that

takes advantage of high GPU utilization

to enhance speed and performance.

• Step 4: Deploying the Model with

Dynamic Scaling – Try Kubernetes

clusters method for deploying the

Machine Learning Model to its users

with serverless functions and auto-scaling

in order to flexibly allocate resources and

ensure availability for the customers!

• Step 5: Real-Time Inference – Deployed

models generate on-the-fly predictions

based on an incoming data stream,

enabling decision-making in real time.

• Step 6: Monitoring and Error Handling –

System logs and monitoring tools

monitor model performance, highlight

discrepancies, and allow performance to

be corrected by administrator(s).

B. Core Features and Operational Goals

The proposed architecture seeks to improve AI

workflows by incorporating serverless computing

and Kubernetes, the system also meets a set of

crucial operational objectives:

• End-to-End AI Workflow Automation

– Using automated pipelines to optimize

data pretreatment, model training, and

real-time inference [29].

• Dynamic Resource Scaling – Employing

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5901

autoscaling provided by Kubernetes and

serverless event-driven triggers to adjust

to variable workloads.

• GPU-Accelerated Performance –

Leveraging available GPU resources for

training and inference applications to

reduce the time to execution [24].

• High Availability and Fault Tolerance

– Allowing continuous operations with

Kubernetes pod recreation and

OpenStack resource redundancy.

• Responsive and Adaptive Interfaces –

Providing user dashboards and APIs that

conform to device types and workloads

[25].

C. Development Framework and Technical

Resources

The design utilizes a contemporary cloud-native

stack that provides scalability, performance, and

extensibility:

• Frontend: HTML, CSS, and JavaScript

for interactive dashboards that render the

visualization of performance, monitoring,

and AI pipeline states [26].

• Backend: Serverless tools Knative and

OpenFaaS on Kubernetes clusters for

event-driven function execution and to

manage AI workloads.

• AI/ML Frameworks: TensorFlow and

PyTorch for model development and

training; Kubeflow for workflow

orchestration; TensorFlow Serving for

scalable inference.

• Infrastructure: Hybrid cloud structure

utilizing OpenStack (Nova for compute,

Neutron for networking, and Cinder for

storage) with GPU-enabled Kubernetes

nodes for orchestration.

• Monitoring and Benchmarking Tools:

Prometheus and Grafana for real-time

analytics; Sysbench for resource

benchmarking; and TensorFlow Profiler

for GPU and training analysis [27][28].

RESULTS AND DISCUSSION

The integrated AI workflow system was built

using Kubernetes for orchestration, Knative for

serverless function, and Kubeflow for workflow

automation with TensorFlow and PyTorch for

model training and inference. MySQL and

MongoDB provided structured and unstructured

data persistence, while OpenStack Cinder directed

all persistent storage. An HP Omen laptop running

Ubuntu 22.04 LTS, with hardware components

including an AMD Ryzen 9 7940HS CPU, 32GB

of DDR5 RAM, a 1TB NVMe SSD, and an

NVIDIA RTX 4070 GPU, was used for both the

implementation and testing. This configuration

supplied a suitable, high-performing environment

to simulate a hybrid cloud deployment in order to

benchmark the system latency and throughput, and

test for scalability across the AI workflow pipelines.

A. Performance Monitoring and Evaluation

This section shows the primary performance

data of the intended AI workflow system.

Utilization of resources, latency and throughput

assessed using both monitoring dashboards and

comparison graphed data, to demonstrate how the

proposed serverless-Kubernetes integrations

allow for better scalability.

Fig. 2. A bar chart comparing latency and

throughput between serverless and

containerized workflows

Figure 2 bar chart shows the serverless

workflows will generally have higher latency

and higher throughput than containerized

workflows. As workload increases from low to

high, latency and throughput will both increase

for both workflow types. While on all levels of

workload, serverless latency is higher than

containerized latency, serverless throughput is

significantly higher than containerized

throughput, particularly at moderate and high

workloads, suggesting that while serverless is

marginally slower per request, it is able to support

a much higher volume of requests.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5902

Fig. 3. Line graph showing GPU utilization for

serverless vs. containerized workflows

Figure 3 Line graph shows that containerized

workflows are more efficient at fully utilizing the

GPU than serverless workflows across all tested

AI tasks. Containerized training and inference

tasks utilize a larger proportion of the GPU

compared to serverless, regardless of workload

being tested.

For serverless workloads, GPU utilization reaches a

maximum of 75% during high-load training before

dropping significantly for low-load inference

workloads. However, GPU utilization for

containerized workloads remains higher at around

90% for high-load training tasks. This means that

the containerized environment is more efficient at

utilizing these resources than the serverless

environment for these tasks.

Fig. 4. A cost comparison table or graph for

serverless and containerized workflows

In Figure 4, the bar chart indicates that

serverless workflows are generally cheaper for real-

time inference tasks, whereas containerized

workflows are cheaper for batch processing tasks.

The cost per request for real-time inference

scenarios shows that serverless is cheaper –

approximately $0.15 for serverless workflows

versus $0.20 for containerized workflows. The

costs for batch processing scenarios portray the

opposite picture - the cost per request for both

serverless and containerized workflows is

approximately $0.25 and $0.18, respectively.

These results suggest that the best economical

workflow choice often depends on the specific

workload scenario

Fig. 5. A bar chart comparing energy

consumption for serverless and containerized

workflows

Figure 5 chart indicates that serverless

workflows are more energy-efficient during an

idle state than a containerized workflow,

however, they use slightly less power when

under peak workloads. The serverless workflow

uses approximately 20 watts during idle states,

about half the 40-watt energy usage associated

with the containerized workflow. Under peak

workloads, the energy usage for both types of

architecture rises, with the serverless workflow

using around 80 watts and the containerized

workload using pretty much over 85 watts

respectively. This indicates that serverless

architecture allows for significant energy usage

savings when not in use, although the energy

consumption approaches the same level when

loads are heavy.

TABLE II. COMPARATIVE PERFORMANCE ANALYSIS OF SERVERLESS AND CONTAINERIZED AI WORKFLOWS

Metric / Scenario Serverless

Workflow

Containerized

Workflow

Notes / Observations

Cold Start Latency 100–300 ms N/A Only applicable to serverless functions

Throughput Up to 20% higher Baseline Serverless scales dynamically under

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5903

high load

GPU Utilization – Training ~75% 85–90% Serverless struggles due to ephemeral

functions

GPU Utilization – Inference Comparable Comparable Steady utilization across both

workflows

Cost – Real-time Inference 15–20% lower Baseline Serverless is cost-efficient via pay-as-

you-go

Energy – Idle Workload Up to 25% lower Baseline Event-driven deallocation reduces

energy use

Energy – Peak Workload Comparable Comparable Both consume similar energy under

high load

Table II presents a comparative analysis of

serverless and containerized AI workflows across

key performance metrics. Serverless workflows

have cold start latencies of 100–300 ms, which are

not incurred with containerized workflows.

Serverless architectures can have throughputs that

are up to 20% higher than containerized

architectures under high- demand conditions. Due

to dynamic scaling, while serverless workflows

achieve slightly lower GPU utilization, (~75%),

when compared to containerized workflows (85-

90%), this can be directly attributed to limited

ephemeral functions. When considering cost, it can

save on expenses between 15– 20% for real-time

inference on serverless workflows due to the pay-

as-you-go model. Serverless workflows also

consume up to 25% less energy on idle workloads

showing a relative benefit to event-driven

executions.

B. Discussion

An efficient AI workflow must be scalable,

adaptable, and resource-efficient in order to

handle workloads that range from compute-

intensive training tasks to real-time inference.

Cloud-native serverless computing can balance

these needs and when combined with

Kubernetes, supports dynamic scaling, event-

driven execution, and optimized GPU

consumption for the workloads and workloads at

hand. Their research highlights that, compared to

containerized approaches, serverless workflows

deliver higher throughput and cost efficiency on

real-time workloads, while containerized

workflows achieve lower latency and optimized

GPU consumption on training workloads; and

although energy consumption is lower for

serverless workloads when idle, both

architectures reach similar energy consumption

under peak workloads. In summary, the research

demonstrates that a hybrid serverless and

Kubernetes approach can strike a balance in cost,

performance, and resource consumption, and

create an adaptable and resilient framework for

high availability AI workloads.

CONCLUSION AND FUTURE SCOPE

The increase in AI-driven services has initiated a

need for developing environments that are

scalable, highly available, and efficient. This work

shows that serverless architectures, in conjunction

with optimizations from Kubernetes

orchestration, provide a viable option for meeting

this need. Utilizing performance benchmarks, it is

demonstrated that serverless workloads achieve

greater throughput and reduced cost for real-time

inference, while containerized workloads achieve

greater performance in GPU utilization for training

workloads, combined with overall efficiency.

Additionally, serverless workloads consume less

energy while in idle states, making them a good fit

for adaptive and event-driven applications. In

conclusion, the hybrid approach demonstrates a

compromise for all dimensions of performance,

cost, and energy consumption and has evidenced

itself as being a resilient and flexible framework

for high-availability AI workloads in hybrid cloud

environments. Future work will expand upon this

study by evaluating the versatile hybrid serverless–

Kubernetes framework across greater, multiple

clouds, and with a wider variety of workloads. Will

also focus their efforts on minimizing cold-start

latency, finding better GPU allocation strategies

for serverless workloads, and applying different

scheduling algorithms to improve responsiveness

during heavy workloads. Additionally, will

investigate the ability to integrate security and

compliance into the workflow to ready the system

for sensitive production fields such as healthcare,

finance, and autonomous systems.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5904

References

[1] D. J. Blezek, L. Olson-Williams, A. Missert,

and P. Korfiatis, “AI Integration in the

Clinical Workflow,” J. Digit. Imaging, vol.

34, no. 6, pp. 1435–1446, 2021, doi:

10.1007/s10278-021-00525-3.

[2] P. Das, “Optimizing Sensor Integration for

Enhanced Localization in Underwater

ROVS,” Interanational J. Sci. Res. Eng.

Manag., vol. 08, no. 12, pp. 1–6, Dec. 2021,

doi: 10.55041/IJSREM10901.

[3] N. Patel, “Sustainable Smart Cities :

Leveraging IoT and Data Analytics for

Energy Efficiency and Urban Development,”

J. Emerg. Technol. Innov. Res., vol. 8, no. 3,

2021.

[4] S. Chatterjee, “Risk Management in

Advanced Persistent Threats (APTs) for

Critical Infrastructure in the Utility Industry,”

Int. J. Multidiscip. Res., vol. 3, no. 4, pp. 1–

10, Aug. 2021, doi:

10.36948/ijfmr.2021.v03i04.34396.

[5] A. Madanayake et al., “Low-Power VLSI

Architectures for DCT\/DWT: Precision vs

Approximation for HD Video, Biomedical,

and Smart Antenna Applications,” IEEE

Circuits Syst. Mag., vol. 15, no. 1, pp. 25–47,

2015, doi: 10.1109/MCAS.2014.2385553.

[6] A. Goyal, “Enhancing Engineering Project

Efficiency through Cross-Functional

Collaboration and IoT Integration,” Int. J.

Res. Anal. Rev., vol. 8, no. 4, pp. 396–402,

2021.

[7] S. B. V. Naga, K. C. Sunkara, S. Thangavel,

and R. Sundaram, “Secure and Scalable Data

Replication Strategies in Distributed Storage

Networks,” Int. J. AI, BigData, Comput.

Manag. Stud., vol. 2, no. 2, pp. 18–27, 2021,

doi: 10.63282/3050- 9416.IJAIBDCMS-

V2I2P103.

[8] R. Tandon and D. Patel, “Evolution of

Microservices Patterns for Designing Hyper-

Scalable Cloud-Native Architectures,” ESP J.

Eng. Technol. Adv., vol. 1, no. 1, pp. 288–

297, 2021, doi: 10.56472/25832646/JETA-

V1I1P131.

[9] S. S. S. Neeli, “Optimizing Database

Management with DevOps: Strategies and

Real-World Examples,” J. Adv. Dev. Res.,

vol. 11, no. 1, 2020.

[10] A. Poniszewska-Marańda and E. Czechowska,

“Kubernetes Cluster for Automating Software

Production Environment,” Sensors, vol. 21,

no. 5, p. 1910, Mar. 2021, doi:

10.3390/s21051910.

[11] S. S. S. Neeli, “Serverless Databases : A Cost-

Effective and Scalable Solution,” IJIRMPS,

vol. 7, no. 6, 2019.

[12] A. Tripathi, “Serverless Architecture Patterns:

Deep Dive into Event-Driven, Microservices,

and Serverless APIs,” Int. J. Creat.Res.

Thoughts, vol. 7, no. 3, pp. 234–239, 2019.

[13] V. S. Thokala, “Utilizing Docker Containers

for Reproducible Builds and Scalable Web

Application Deployments,” Int. J. Curr. Eng.

Technol., vol. 11, no. 6, pp. 661–668, 2021,

doi: 10.14741/ijcet/v.11.6.10.

[14] A. P. Rajan, “A review on serverless

architectures - function as a service (FaaS) in

cloud computing,” TELKOMNIKA

(Telecommunication Comput. Electron.

Control., vol. 18, no. 1, p. 530, Feb. 2020, doi:

10.12928/telkomnika.v18i1.12169.

[15] V. S. Thokala, “A Comparative Study of Data

Integrity and Redundancy in Distributed

Databases for Web Applications,” Int.J. Res.

Anal. Rev., vol. 8, no. 04, pp. 383–390, 2021.

[16] S. K. Mohanty, G. Premsankar, and M. di

Francesco, “An Evaluation of Open Source

Serverless Computing Frameworks,” in 2018

IEEE International Conference on Cloud

Computing Technology and Science

(CloudCom), 2018, pp. 115–120. doi:

10.1109/CloudCom2018.2018.00033.

[17] P. S. Patchamatla and I. O. Owolabi,

“Integrating Serverless Computing and

Kubernetes in OpenStack for Dynamic AI

Workflow Optimization,” Int. J. Multidiscip.

Res. Sci. Eng. Technol., vol. 01, no. 12, 2020,

doi: 10.15680/ijmrset.2020.0312021.

[18] S. Miller, T. Siems, and V. Debroy,

“Kubernetes for Cloud Container

Orchestration Versus Containers as a Service

(CaaS): Practical Insights,” in 2021 IEEE

International Symposium on Software

Reliability Engineering Workshops

(ISSREW), 2021, pp. 407–408. doi:

10.1109/ISSREW53611.2021.00110.

[19] H. Govind and H. González–Vélez,

“Benchmarking Serverless Workloads on

Kubernetes,” in 2021 IEEE/ACM 21st

International Symposium on Cluster, Cloud

and Internet Computing (CCGrid), 2021, pp.

704–712. doi:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(4), 5896–5905 | 5905

10.1109/CCGrid51090.2021.00085.

[20] C.-C. Yang, G. Domeniconi, L. Zhang, and G.

Cong, “Design of AI-Enhanced Drug Lead

Optimization Workflow for HPC and Cloud,”

in 2020 IEEE International Conference on Big

Data (Big Data), 2020, pp. 5861–

5863. doi:

10.1109/BigData50022.2020.9378387.

[21] D. Fan and D. He, “A Scheduler for

Serverless Framework base on Kubernetes,”

in Proceedings of the 2020 4th High

Performance Computing and Cluster

Technologies Conference & 2020 3rd

International Conference on Big Data and

Artificial Intelligence, ACM, Jul. 2020, pp.

229–232. doi: 10.1145/3409501.3409503.

[22] W. Ling, L. Ma, C. Tian, and Z. Hu, “Pigeon:

A Dynamic and Efficient Serverless and FaaS

Framework for Private Cloud,” in 2019

International Conference on Computational

Science and Computational Intelligence

(CSCI), 2019, pp. 1416–1421. doi:

10.1109/CSCI49370.2019.00265.

[23] R. A. P. Rajan, “Serverless Architecture - A

Revolution in Cloud Computing,” in 2018

Tenth International Conference on Advanced

Computing (ICoAC), 2018, pp. 88–93. doi:

10.1109/ICoAC44903.2018.8939081.

[24] A. K. Kulkarni and B. Annappa, “GPU-aware

resource management in heterogeneous cloud

data centers,” J. Supercomput., vol. 77, no.

11, pp. 12458–12485, Nov. 2021, doi:

10.1007/s11227-021-03779-4.

[25] S. Wellert, M. Richter, T. Hellweg, R. von

Klitzing, and Y. Hertle, “Responsive

Microgels at Surfaces and Interfaces,”

Zeitschrift für Phys. Chemie, vol. 229, no. 7–

8, pp. 1225–1250, Aug. 2015, doi:

10.1515/zpch-2014-0568.

[26] K. J. Theisen, “Programming languages in

chemistry: a review of HTML5/JavaScript,” J.

Cheminform., vol. 11, no. 1, p. 11, Dec. 2019,

doi: 10.1186/s13321-019-0331-1.

[27] I. Yakoumis, E. Polyzou, and A. M.

Moschovi, “Prometheus: A copper-based

polymetallic catalyst for automotive

applications. part ii: Catalytic efficiency an

endurance as compared with original

catalysts,” Materials (Basel)., 2021, doi:

10.3390/ma14092226.

[28] M. Chakraborty and A. P. Kundan, “Grafana,”

in Monitoring Cloud-Native Applications,

Berkeley, CA: Apress, 2021, pp. 187–240.

doi: 10.1007/978-1-4842-6888-9_6.

[29] Guru Charan Kakaraparthi, “Building a

GenAI-Powered Advanced Code Generation

Assistant Integrated with CI/CD Pipelines,”

TIJER - INTERNATIONAL RESEARCH

JOURNAL, vol. 9, no. 2, Feb.2022, doi:

10.56975/tijer.v9i2.159058.

