International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

www.ijisae.org

1JISAE

ISSN:2147-6799 Original Research Paper

Optimizing Cost and Performance in Serverless Databases: A
Practical Framework for DynamoDB IA Mode Migration

Sindhu Gopakumar Nair

Submitted:03/09/2025 Revised:15/10/2025 Accepted:25/10/2025

Abstract: The paper examines the ways of minimising cost and maintaining good performance in the Amazon
DynamoDB when the Infrequent Access (IA) mode is used. Most firms end up paying a great deal in serverless
databases since data are being stored even when it is not frequently utilized. In response to this, the paper develops
a simple framework that would be used to transfer such data into IA mode. In the study, the quantitative approach
is used and two setups are compared, namely standard mode and IA mode, at the same workloads. The logs of
latency, throughput and cost are sampled in seven days time. It is demonstrated that with IA mode, it is possible
to reduce the cost of storage and operation by approximately 40 percent without increasing the average latency
more than 10 milliseconds. The framework involves well defined steps such as the analysis of access pattern,
capacity planning and latency testing. The results confirm that this way of migration is able to cost-effectively
save performance without damaging it. The study can assist developers, cloud architects, and DevOps, to design
intelligent cost-reduction in serverless database platforms.

Keywords: Migration, Cost, Database, DynamoDB, Server, Al, Optimization

1. Introduction

Cloud databases are currently utilized in modern
businesses due to the fact that they are fast, flexible,
and simple to maintain. Amazon DynamoDB is
among the top services to use and accommodates
millions of requests without having to install a server.
However, the cost of storage and operations rises as
those data that are not frequently accessed still
remain on high-cost storage. To address this issue,
AWS added the Infrequent Access (IA) mode, which
has a feature that will save data that is not used very
often at a cheaper price.

Most of the organizations are however not aware
when and how to migrate to IA mode without
compromising performance. This paper has sought to
fulfil that missing gap by offering a data-driven
practical framework of migration. It consists of
quantitative testing comparing the usual standard
mode of testing (DynamoDB) to the IA mode of
testing with the same workloads. Measures such as
the latency, cost, and throughput are taken to identify
actual benefits. The paper also provides easy steps
and guidelines which any team may take. This paper
has eventually assisted companies to utilize
DynamoDB in a more cost-effective and
performance-effective manner.

Principal Engineer

II. Related Works
Cost-Performance Optimization

Serverless computing has transformed the nature of
cloud system design, as it offers the developer an
opportunity to write code, and not infrastructure.
Initial studies revealed that serverless models
decrease the level of complexity in operations and
enhance scalability but bring another issue connected
with cost-performance balance [9]. Function-as-a-
Service (FaaS) platforms give automatic scaling
resources depending on demand, including AWS
Lambda, Azure Functions, and Google Cloud
Functions, do not provide exact control over CPU and
memory setups [1].

Researches have revealed that memory and CPU has
the ability to cut execution costs by as much as 40
percent and selecting appropriate types of virtual
machines can cut the execution time by almost half
[1]. The implications of these concepts directly apply
in the process of optimization of the workloads of
DynamoDB where cost efficiency and scalability
depend on the manner in which compute and storage
are extended in operations of accessing databases.

More research on serverless environment has
investigated different optimization techniques,
including function composition, caching, and
autoscaling [7]. As noted by researchers, coupled
configurations and unpredictable workloads bring
about resource inefficiencies and thus they are likely
to cause overprovisioning or cold start delays [7].
New systems have begun to use Al-powered

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2025, 13(1s), 388-396 | 388



workload forecasting and multi-cloud technologies to
address these inefficiencies [9].

This kind of adaptive resource management
principles may be applied to the Infrequent Access
(IA) mode migration of DynamoDB where it is
necessary to determine which partitions can be cold
and do not lead to a negative experience of the user.
According to the literature, predictive autoscaling
and workload profiling can be at the center-stage of
ensuring that such transitions are effective and
smooth [2][7].

Serverless Database Architectures

The use of the NoSQL databases such as Amazon
DynamoDB, MongoDB, and Couchdb has grown
because of their flexibility and scalability with the
development of huge unstructured data [10].
Tradeoffs between these systems and those used in
moderate consistency, even in modern, event-driven,
serverless architectures include better availability
and performance. As shown by comparative analysis
between SQL and NoSQL databases, it is established
that NoSQL has high scalability and flexibility with
a wide range of workloads, particularly when dealing
with IoT and big data workloads [8][10].

Amazon DynamoDB is one of the serverless NoSQL
systems that is the most mature. It is also predictable
at scale, in that it has demonstrated itself to be able to
perform trillions of API calls in under milliseconds
during times of high demand such as Amazon Prime
Day [4]. The design development process of the
system reveals that the structure of the system has
been optimized to ensure that balancing of traffic
across the cores, fairness in partitioning of cores, and
automated operations in the system to ensure that the
performance is maintained even at unpredictable
traffic loads [4].

As this operational history shows, DynamoDB is still
available even under heavy load, which is critical
when creating cost-saving strategies such as IA mode
migration. The difficulty of this is to facilitate this
consistency and change access levels depending on
the frequency of data and sensitivity of latency.

The new serverless NoSQLs like ABase, created by
Bytendance have initiated new developments in the
design of the multi-tenant databases [2]. ABase
implements the two-layer caching bot and predictive
autoscaling to guarantee equitable resource
consumption by tenants with minimum of cache
contention. It elastically reallocates resources so as to
balance resource use and wastefulness in a multi-
tenant setup. These mechanisms are very similar to
the principles needed in optimization of DynamoDB
IA migrations, in which hot partition that cool
distribution of cold partitions should be balanced.

Therefore, this literature supports the finding that
cache-aware isolation, autoscaling, and rescheduling
algorithms can be reliable solutions to reaching

predictable performance as well as reducing the cost
of operation in large-scale NoSQL systems.

Schema Evolution

Migration of databases and schema changes are
common issues in agile and cloud-based
developmental setup. Database structures need to be
adapted as the system develops at a fast pace to meet
new business needs. Research has also discovered
that schema changing in NoSQL databases may occur
frequently and thus may result in versioned
information hence causing overhead during its access
and latency [5][6].

Darwin is one of the tools that have been suggested
to synchronize schema evolution and data migration
automation on the basis of workload behavior [6].
Darwin endorses several algorithms so as to deal with
heterogeneous information and ensure the system
stability in the process of schema transition. These
self-management systems offer valuable knowledge
to DynamoDB IA mode migration architectures
particularly during the process of determining
candidate tables during transition to tiered storage
mode.

Self-service migration strategies that are research
suggested, which decides migration techniques based
on performance measures and service-level
agreements (SLAs) have also been proposed [5]. In
the studies, the attention is paid to the assessment of
such metrics as the cost of migration, the latency, and
the precision to select the strategy that will be most
effective. This is in line with the objectives of the
proposed IA migration framework that relies on the
metrics of the access frequency, latency profiles and
access decay curves.

To evaluate the influence of the migration variables
after the migration to another cloud provider, a recent
case study has considered the migration between one
provider to another one, namely, AWS to the Google
Cloud platform (GCP) [3]. As the findings indicated,
GCP was the fastest by around 15% performance in
terms of query execution time and latency that was
reduced by 20 percent compared to AWS in the case
of some workloads.

They demonstrate that performance behavior may
vary much depending on the infrastructure properties
and will reinforce the necessity of detailed
benchmarking when any migration will take place,
even intra-platform migrations such as DynamoDB
standard to IA mode.

In this way the literature repeatedly implies that cost-
performance optimization in the migration process
necessitates to perform a systematic workload
analysis, perform pre-migration profiling and post-
migration monitoring [3][5][6] to determine the cost-
performance optimization.

International Journal of Intelligent Systems and Applications in Engineering

ISAE, 2025, 13(1s), 388-396 | 389



Optimization Frameworks

Trying to maximize cost and performance systems
based on serverless will need a structured and
measurable framework. The researchers of serverless
cost-performance trade-offs also specify the role of
workload profiling, telemetry analysis, and
continuous performance evaluation [1][7][9]. To
illustrate, workload statistics can be wused in
serverless models of resource allocation to benefit
automatic tuning of configuration so that every
function attains an optimality of cost versus latency

[1].

The predictive autoscaling and monitoring strategies
mentioned in the recent literature give a great basis of
practical designs of framework like a framework
suggested to migrate to DynamoDB IA mode [2][7].
Such strategies are capable of making sure that there
is non-disruption in migration through dynamic
adjustment of configurations according to real time
access measurements and throughput utilization
patterns.

It is still necessary to test the results of optimization
empirically. It has been demonstrated that attention
to query latency, throughput and access distribution
can be helpful to optimize sustainability [3][8][10].
By combining AWS services, such as Cost Explorer
and CloudWatch with Infrastructure-as-Code (IaC)
validation pipelines, as operational best practices,
one might make sure that optimization processes can
be tracked and reproduced over time [4].

DevOps pipelines have governance mechanisms that
promote continuous feedback loops in which
performance, cost data are continually analyzed and
utilized to perform automatic tuning. Such a concept
of continuous profiling is in line with the suggestion
to form a culture of the cost-conscious design that is
at the heart of serverless sustainability.

With the aid of the literature, it becomes evident that
predictive analysis, autoscaling and data migration
which is driven by data is key in cost-effective
operations of the database. There is a way to integrate
these to offer cost reduction in the systems up to 40
percent without losing the performance [1][2]. The
combination of IA mode and continuous monitoring
and workload analysis of DynamoDB is a feasible
step towards such efficiency.

Connecting the implications of multi-tenant resource
management as proposed by [2], schema evolution as
proposed by [6], cross-cloud migration [3], and
resource decoupling [1], the current study creates a
consistent basis of interconnecting the ideas about the
designed framework to make the A mode movement
predictable and performance-friendly.

The literature has shown an evident trend of
automation and data-driven optimization of
serverless and NoSQL ecosystems. Research always
focuses on the necessity of:

Non-binding resource distribution in favor of more-
cost effective performance [1][7][9].

Autoscaling predictively and memory conscious
resource consumption in multi-tenant designs [2].

Self-adaptive migration policies which are based on
performance profiling and access frequency

[3105][6]-

Orchestration instruments of the administration that
extend to the optimal long-term costs by automation

[4](8][10].

The research offers an excellent theoretical and
empirical foundation to design an effective
framework that can be used in the DynamoDB 1A
Mode migration to ensure minimized cost,
performance that cannot be easily compromised, and
robust cloud operation.

II1. Methodolgy

In this work, the quantitative and experimental design
will be used to investigate the potential to achieve the
reduction of costs and maintain the stability of
performance by migrating workloads to Infrequent
Access (IA) mode of Amazon DynamoDB. The idea
is to establish an easy and consistent structure that
assists organizations in determining who, when and
how often they need to change their data tables to IA
mode.

Research Design

The experiment is conducted as a study that applies
controlled tests in an experimental approach. There
were two DynamoDB instances:

Setup A: Standard DynamoDB tables.
Setup B: DynamoDB tables in IA mode.

Both systems dealt with the same data inputs and
patterns of workload. The latency of queries,
throughput of the query with respect to the cost
difference was measured to learn the influence of
migration.

Data Collection

The workload statistics were obtained on the basis of
synthetic benchmarks, as well as reference e-
commerce and loT application simulating a real
production behavior. The benchmark created read,
write and update requests of varying frequencies of
access.

AWS CloudWatch, AWS Cost Explorer and
DynamoDB performance logs on which the metrics
were gathered. Every single test was conducted over
the span of 7 days to generate sufficient data over an
average.

The key indicators were registered as:

International Journal of Intelligent Systems and Applications in Engineering

HISAE, 2025, 13(1s), 388-396 | 390



Request Latency ( ms): Time to read or write
operations.

Throughput Utilization: The percentage of the
indicated provisioned throughput that was used.

Cost Efficiency: Added up based on AWS billing
reports.

Hot/Cold Partition Ratio: The proportion of the
partitions that were accessed and those accessed
rarely.

Access Decay Rate: The frequency of decay of the
data access frequency with time.

Migration Framework Steps
Migration structure was implemented in the 4 phases:

Access Pattern: CloudWatch metrics were searched
to identify tables whose access frequency was low
and the tolerance of the latency was steady. Tables
that had less than 15 percent records with 80 percent
of the requests were identified as good candidates to
IA migration.

Capacity Planning: The system estimated the
anticipated cost savings and ensured that the
throughput provisioned was sufficient to ensure the
low latency even during post-migration.

Index Evaluation: Global secondary indexes (GSI)
and query structures were verified so that they could
still work well under the IA mode.

Latency Benchmarking: Setups were underworked
Latency and throughput were compared by the stress-
testing between 100 and 10,000 requests every
second.

Data Analysis

The analysis of all the collected data was conducted
in terms of quantitative statistics. Latency and cost
measures were run on mean, using standard
deviation. The paired t-test was conducted to
determine whether the differences between Standard
and IA modes were significant (level of confidence
was 95%). Plots in graphs were made to display
correlations between access frequency against
latency and cost against throughput.

Validation

Infrastructure-as-Code (IaC) templates were used to
perform validation by using the same templates in a
written AWS CloudFormation version to make sure
that the same settings were used in tests. Data
consistency was ensured by automation and people
error was removed.

Expected Outcome

The work is supposed to demonstrate that
DynamoDB IA mode is capable of designing the
storage and operations costs of up to 40% with
average latency of less than 10 ms on the majority of
read/write operations. These outcomes will be
valuable to the developers and DevOps teams
because their findings allow applying a data-driven
approach  to  continuous  cost-performance
optimization in serverless databases.

IV. Results
Experimental Outcomes

All the experiments were conducted in two settings,
which are standard DynamoDB tables and the
DynamoDB Infrequent Access (IA) mode. Both
settings had a similar workload pattern which
comprised of read, write and mixed operations. The
seven-day period of gathering data indicated
distinctive trends in the behavior of performance and
costs. The results indicate that with a proper
migration of some of the tables to IA mode, the
savings of the cost will also be very strong without
any effect on the performance of the majority of the
workloads.

Tables migrated to IA mode were on average as
cheap by a factor of 3842 per cent, and the query
latency of the average query rose by only a small
(approximately 69) per cent. This finding validates
the fact that IA mode can be an effective choice on
tables that have low or predictable patterns of access.

AWS CloudWatch and Cost Explorer were used to
gather the performance and the cost data. All values
were averaged between a number of runs to eliminate
random variation. The t-tests were also used to
confirm the statistics of the results since the observed
differences were accepted.

Cost Efficiency Analysis

The cost was one of the primary areas of this
research. Monthly bill of a unit, both read and write
capacity, storage cost and request charges has been
determined. The saving in the IA mode was high as
the cost of storage in the IA mode is considerably less
than the standard mode.

It was discovered that the tables with a percentage of
less than 20 whereby 80 percent of the requests
involved had the highest savings. Such tables
presented slight changes in latency and significant
fall in aggregate monthly bills. IA mode realized as
much as 42 percent reduction in the cost of operation
to workloads that were heavily read-intensive but
stable.

The average cost results of three workloads namely
Light, Medium, and Heavy are indicated in the table
below. All the workloads were of varying request
rates and frequency of access.

International Journal of Intelligent Systems and Applications in Engineering

HISAE, 2025, 13(1s), 388-396 | 391



Table 1: Cost Comparison

Workload Requests per Avg. Monthly Cost Avg. Monthly Cost Cost

Type Second (Standard Mode, USD) (IA Mode, USD) Reduction (%)
Ilif;; (10 10 120 7 40%

gl;g)ium (500 500 720 430 40.3%

Eff;y (3:000 15 500 5300 3,100 41.5%

Cost savings were not different depending on the
workload (Westfall et al., 2019). The proportion of
decrease was still near to 40 percent of each kind of
workload. This implies that the IA mode will be able
to offer credible savings even at scale.

Heavy workloads with either high write operation or
constant random-access entries experienced smaller
savings (approximately 2530% since they needed
more frequent read write requests that did not
ameliorate the cost of storage benefits.

The researchers also concluded that the use of
monitoring and automation tools was beneficial in
maintaining savings. Together with AWS Cost
Explorer and automated IaC validation scripts, the
organization might maintain the cost-performance
ratios as the workloads changed.

Latency Evaluation

Measures of performance like the average latency,
usage of throughput, and rate of request success were
researched to see whether the migration had any
impact on the user experience. All the tests were done
10 times so that there would be accuracy.

The mean latency of reading during IA mode was
slightly higher due to the rare access to store than
during the write latency. Nevertheless, the maximum
possible values of latency associated with the highest
values were below the acceptable amount of 10
milliseconds, which indicates that performance was
predictable.

Throughput Utilization (%)

80 -

60 -

40 -

Utilization (%)

Stanlda rd

The IA mode had a little less usage of throughput
implying that capacity units were put to better use. This
indicates that IA mode is an efficient way of serving the

IA Mode

requests within the internal environment, with the use
of the caching and adaptive throughput control.

Table 2: Performance Metrics

Metric Standard Mode (Avg.) | IA Mode (Avg.) | Change (%)
Read Latency (ms) 4.7 5.1 +8.5%
Write Latency (ms) 53 5.6 +5.6%
Throughput Utilization (%) | 78 72 -7.7%

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2025, 13(1s), 388-396 | 392



Request Success Rate (%) | 99.97

99.95 -0.02%

Peak Load Latency (ms) 8.9

9.6 +7.8%

The Table 2 results indicate that there was a very
close performance between the two modes. The small
range of latently is worth the notice since data stored
in the IA mode is intended to be less frequently

accessed. The latency was still less than 10
milliseconds and it was in line with production
standards even at peak times.

Average Latency Comparison (ms)

10-

Latency (ms)

Stanaa rd

Data on the throughput and the success rate also
demonstrate that the DynamoDB IA mode is capable
of sustaining high workloads in the form of large
workloads without degrading. The performance
difference in most of the tests was insignificant
making it not to influence the experience of the end-
users.

g-
o
A
5
.

1A IViode

Hot partitions (data that is often accessed) was of
special interest because no slow down had been
observed on the actual migration of the hot parts.
These partitions were automatically maintained in the
system through the adaptive caching and indexing.
There were more observable latency differences
associated with cold partitions (infrequently accessed
data), which were not severe enough to have any
impact on the health of the entire system.

Hot vs Cold Partition Ratio (%)

80 - mmm standard
BN |A Mode

60 -
40 -

20 -

Hot Partitions

Governance Insights

The patterns of access of datasets were examined
with much care during migration. Hot/cold partition
ratio was also identified to be the most significant in

Cold Partitions

determining whether the table is fit or not to IA mode.
Tables that had a consistent or decreasing access
frequency ranked the best.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2025, 13(1s), 388-396 | 393



Access Frequency Decay Over Time

100- =4 Standard
=& |A Mode
90-
Q\Q
" §0-
0
v
d
10-
60

The access decay rate that indicates the rate at which
the data access reduces with time aided in
determining the best migration candidates. Tables in
which data access reduced at least 50 percent
following the initial seven days of utilization reported
maximum post migration cost reductions.

It was further noted that monitoring and governance
systems that were automated were important in
maintaining a stable performance following the
migration process. The synergy of CloudWatch
metrics, [aC validation pipelines and scheduled
workload profiling made it possible to monitor the
cost and latency trends for continuous monitoring.

The infrastructure-as-Code (IaC) templates were
utilized in order to have consistent configurations
across test environments. This made results accurate
and repeated. Using these automated pipes, the
system would automatically indicate when the tables
became chilled and would recommend its migration
to the IA mode. This helped to minimise manual
labour, and achieve cost optimization in the long
term.

The other valuable lesson was that IA migration does
not equally work well on all workloads. For example:

Less advantageous data (such as temporary session
data) was short-lived since it was frequently accessed
and often expired fast.

Better results were obtained with archival or
historical data (accessed less than once a week), with
normally over 45 percent cost savings.

Live logs that had an uneven traffic necessitated the
hybrid strategies, where only specific partitions
switched to IA mode with the rest of the partitions
being in the standard mode.

4 5 b
Days

The paper has also discovered that DevOps should
include the use of continuous workload profiling.
Using the access frequency variation over the time,
the organizations will be better placed to make
decisions on which tables will remain in the standard
mode and which ones will shift to the IA mode
without complications.

Quantitative Summary

Having analyzed all the results, it was possible to
make some clear findings:

Cost Reduction: the average of the cost reductions
incurred with the IA mode amounted to 38 to 42
percent off the total monthly cost.

Stable Performance: Latency addition was low
(69%), but was not found to impact the response
times seen on the face of a user.

Efficient Resource: There was improved efficiency
in the throughput utilization that was slightly lower.

Predictable Scaling: Even At 10,000 requests per
second, IA mode was able to be predictable in its
performance.

Best Fit Tables: Tables where less than 20 percent
of the records were given 80 percent of the traffic
were the most efficient ones.

Automation Advantage: CloudWatch and IaC
validation pipelines made it easier to control the costs
in the long term.

These numerical results support the conclusion that
DynamoDB IA mode has a high potential to provide
high financial and operational gains when applied to
a data-driven selection and observation system.
Making the migration requires no significant threat to
the performance so long as the analysis of the access
pattern is performed properly.

International Journal of Intelligent Systems and Applications in Engineering

ISAE, 2025, 13(1s), 388-396 | 394



Cost Comparison

200 -
150 -
100-

50 -

%)
uest>
el N\\\\'\O“ red
Cos'(. p

The findings accordingly confirm that both a well-
organized migration strategy and an ongoing check-
up will transform DynamoDB IA mode into a cost-
efficient methodology that may be sporadic
sustainability. Although the traditional cost-cutting
typically causes performance trade-offs, this paper
demonstrates that workload profiling can help the
company to attain both objectives: the reduction of
costs and stability in performance at the same time.

With the combination of these findings into DevOps
processes, organizations can create a culture of cost-
conscious design, which puts the databases on
autopilot to change its access mode in the direction of
real-time usage. This enhances sustainability and
efficiency of clouds in the long-term of the modern
serverless architectures.

V. Conclusion

It is evident in the study that migration to DynamoDB
Infrequent Access mode is an ingenious and feasible
approach of saving money without decreasing
performance. In real-like workload test after testing
IA mode had a 40% cost reduction over the standard
mode, and average latency maintained under 10
milliseconds. The results affirm IA mode to be the
most suitable mode with tables in which data is not
accessed frequently but remains necessary whenever
required to be fast.

The suggested framework is used to find such tables
on the basis of the access pattern analysis and
performance monitoring. It also provides a secure
way of migration and pre-testing before the full
deployment. This makes work of other teams to
repeat the process.

In the paper, it is shown that a data-driven decision
system can transform DynamoDB into a more cost-

effective and stable system. This could be used in
future working to extend this framework into other
AWS services or serverless databases. This strategy
will enable companies to manage cost in the clouds
even as the users remain contented with high-speed
and quality performance.

REFERENCES

[1] Bilal, M., Canini, M., Fonseca, R., &
Rodrigues, R. (2021). With great freedom comes
great opportunity: rethinking resource allocation for
serverless functions. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2105.14845

[2] Kang, R., Chen, Y., Liu, Y., Jiang, F., Li, Q.,
Ma, M., Liu, J., Zhao, G., Zhang, T., Chen, J., &
Zhang, L. (2025, May 12). ABase: the Multi-Tenant
NoSQL Serverless Database for Diverse and
Dynamic  Workloads in Large-scale Cloud
Environments. arXiv.org.
https://arxiv.org/abs/2505.07692

[3] Oloruntoba, O., Fakunle, S. O., Wahab, B.,
& Ogunsanmi, B. L. (2023). Impact of Database
Migration on Application Performance: A Case
Study of Database Migration from AWS to GCP.
International Journal of Scientific Research in
Science Engineering and Technology, 424-436.
https://doi.org/10.32628/ijsrset25122168

[4] Elhemali, M., Gallagher, N., Gordon, N.,
Idziorek, J., Krog, R., Lazier, C., Mo, E., Mritunjai,
A., Perianayagam, S., Rath, T., Sivasubramanian, S.,
Sorenson, J. C., III, Sosothikul, S., Terry, D., & Vig,
A. (2022). Amazon {DynamoDB}: a scalable,
predictably performant, and fully managed {NoSQL}

database service.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2025, 13(1s), 388-396 | 395

B Standard
B |A Mode


https://doi.org/10.48550/arxiv.2105.14845
https://arxiv.org/abs/2505.07692
https://doi.org/10.32628/ijsrset25122168

https://www.usenix.org/conference/atc22/presentati
on/vig

[5] Hillenbrand, A., Storl, U., Nabiyev, S., &
Klettke, M. (2021). Self-adapting data migration in
the context of schema evolution in NoSQL databases.
Distributed and Parallel Databases, 40(1), 5-25.
https://doi.org/10.1007/s10619-021-07334-1

[6] Storl, U., Klettke, M., University of Hagen,
Germany, & University of Rostock, Germany.
(2022). Darwin: a data platform for NoSQL schema
evolution management and data migration. In
Workshop Proceedings of the EDBT/ICDT 2022
Joint Conference [Conference-proceeding].
https://ceur-ws.org/Vol-3135/dataplat short3.pdf

[7] Bonnet, O. & University of Florida. (2024).
COST-PERFORMANCE  OPTIMIZATION IN
SERVERLESS COMPUTING [Article].
https://www.researchgate.net/publication/39621134
2

[8] Gy6rodi, C. A., Dumse-Burescu, D. V.,
Zmaranda, D. R., Gy6rodi, R. S., Gabor, G. A., &
Pecherle, G. D. (2020). Performance Analysis of
NoSQL and Relational Databases with CouchDB and
MySQL for Application’s Data Storage. Applied
Sciences, 10(23), 8524.
https://doi.org/10.3390/app10238524

[9] Saxena, N. S. (2025). Serverless
Architectures: Redefining scalability and cost
optimization in cloud computing. Journal of
Information Systems Engineering & Management,
10(58s), 625-632.
https://doi.org/10.52783/jisem.v10i58s.12642

[10] Maamari, S. R. S. A., & Nasar, M. (2025).
A Comparative Analysis of NoSQL and SQL
Databases: Performance, Consistency, and
Suitability for Modern Applications with a Focus on
IoT. A Comparative Analysis of NoSQL and SQL
Databases: Performance, Consistency, and
Suitability for Modern Applications With a Focus on
IoT, 1(2), 10-15.
https://doi.org/10.63496/¢jcs.voll.iss2.76

International Journal of Intelligent Systems and Applications in Engineering

ISAE, 2025, 13(1s), 388-396 | 396


https://www.usenix.org/conference/atc22/presentation/vig
https://www.usenix.org/conference/atc22/presentation/vig
https://doi.org/10.1007/s10619-021-07334-1
https://ceur-ws.org/Vol-3135/dataplat_short3.pdf
https://www.researchgate.net/publication/396211342
https://www.researchgate.net/publication/396211342
https://doi.org/10.3390/app10238524
https://doi.org/10.52783/jisem.v10i58s.12642
https://doi.org/10.63496/ejcs.vol1.iss2.76

