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Abstract: Cloud computing forms the foundation of modern digital infrastructure, especially in multi-
cloud environments where optimized resource allocation is critical for ensuring performance,
reliability, and low-latency service delivery. This research aims to fill the gap in dynamic, intelligent
resource allocation strategies by addressing issues like high-dimensional feature noise, data drift, and
workload variability—limitations often overlooked in traditional rule-based approaches. A novel
machine learning pipeline is proposed, integrating Leaf-Wise Feature Bundling (LFB) and
Adversarial Validation Re-weighting into a LightGBM classifier. LFB reduces feature dimensionality
by clustering highly correlated attributes, while adversarial validation detects train-test distribution
shifts and assigns sample-specific weights to enhance generalization. The combined approach
significantly improves classification performance, achieving 100% accuracy on a real-world multi-
cloud dataset and outperforming baseline models. Experimental analyses confirm the robustness,
scalability, and adaptability of the model, highlighting its potential for intelligent, real-time decision-
making in complex, high-performance cloud systems.

Keywords: Cloud resource allocation, LightGBM, feature bundling, adversarial validation, multi-
cloud service placement, and machine learning.

1. Introduction autonomous systems to trusted environments.
Cloud service providers (CSPs) need to
provision computational resources effectively
to meet these requirements while minimizing
latency, ensuring throughput, and keeping
service alive. The need for inter-cloud
communication has grown more acute with the
rise of multi-cloud architectures, where
services are distributed among different cloud
[2]. providers for better fault tolerance, less

Cloud is the backbone of almost every
modern digital infrastructure across every
vertical [1]. As cloud and edge computing
technologies continue to evolve, cloud
environments become critical for various
applications — from real-time analytics and
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management strategy. Multi-cloud
environments are inherently more complex
than single cloud platforms due to differences
in provider capabilities and service-level
agreements (SLAs), as well as differences in
infrastructure components [3]. It is in such
cases that service composition — the dynamic
selection and deployment of services based on
performance and functional requirements —
becomes essential to maintaining user
satisfaction and fulfilling real-time operational
requirements. Central to this process is the
efficient allocation of resources, which
ultimately helps systems meet latency and
performance targets regardless of workload or
noise condition [4].

Although cloud orchestration and service-level
optimization have come a long way, they still
face major obstacles to realize truly optimized
resource allocation [5]. Traditional solutions
tend to be heuristic-led or have rules created
centrally, which do not adjust in a demand
context to variable workloads, unpredictable
traffic, or across cloud interworking. In
addition, these static strategies also tend to
ignore the intricate inter dependencies between
latency, resource consumption, and application
workload-specific requirements, leading to
less-than-optimal deployments at the cost of
quality of service (QoS). The added
inefficiencies compound in edge scenarios,
where resource constraints and latency
sensitivity exist even more strongly [6].

Another key challenge is the prediction of
where to place services in a distributed and
heterogeneous environment. With potentially
hundreds of deployment configurations,
figuring out the most efficient allocation path
involves tightroping CPU activity, memory
bandwidth, network latency and storage
limitations — all while adapting to near real-
time changes. Developing universally effective
allocation strategies is further complicated by
the presence of noisy or incomplete
operational data as well as varying workloads,
and multi-objective  optimization  goals
[7]. These constraints emphasize the dire need
for pragmatic, dynamic strategies that can

grow and morph with the fluidity of cloud-
based infrastructures.

To tackle these challenges, machine learning
algorithms have been proposed to optimize
resources allocation in cloud environments.
ML models can analyze and have performance
metrics data become able to learn from
history, predict future performance, and make
decisions based on data that adapt in real time
[8]. Supervised learning algorithms, for
example, may classify whether service
placements are optimal versus suboptimal as
learned from the observed latency, load
balancing efficiency and resource utilization.
Moreover, aggregate compositional model
representations could derive from feature
selection and predictive modeling techniques
which will discover key elements that
contribute to service behavior, thereby
allowing service compositions to be optimized
beforehand. Therefore, machine learning can
offer a scalable, adaptable, and intelligent
framework to implement low-latency and
high-performance cloud systems in ever more
complex computational ecosystems that are
also distributed in nature.

2. Literature Survey

Nilayam Kumar Kamila et al. [9] explain that
high-performance computing is crucial for
supporting business continuity and real-time
operational demands. Many organizations are
still working to strengthen system performance
and traffic resiliency. Machine learning aids
decision-making through prediction and
classification using historical data. The authors
integrate high-performance computing with
Al-based ML techniques on cloud platforms.
Performance and network data are used to
predict, classify, and validate traffic behavior
to ensure smooth system operations. Their
approach includes ML regression and
classification models that automatically adjust
system performance in real time. Simulation
results indicate a 38.15% faster traffic
resilience during failure recovery. The model
also achieves around 7.5% cost savings
compared to traditional non-ML designs.

Yogesh Kumar et al. [10] explain that machine
learning and artificial intelligence effectively
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solve complex challenges in areas like energy
optimization, workflow scheduling, and cloud
computing. When integrated with cloud
systems, ML  enhances data  center
performance and improves virtual machine
migration by responding to traffic fluctuations,
congestion, and bandwidth limitations. The
survey highlights advances in dynamic load
balancing, task scheduling, energy efficiency,
live migration, mobile cloud computing, and
cloud security through ML classification.
Machine  learning  provides  analytical
capabilities that help systems recognize
patterns and imitate human learning. The
paper outlines the motivation, background,
integration framework, and best practices for
applying ML in cloud platforms. It also
discusses ML-driven cloud services and the
role of Al across different cloud environments,
offering researchers valuable insights into ML
algorithms and their applications in cloud
computing.

Qian Yin et al. [11] evaluated government
service resource data from 2019 to 2021 in L
city by incorporating government cloud
platforms and cloud computing resources and
applying the DEA method to measure
allocation efficiency across regions. The study
analyzes how efficiency patterns evolved over
the years. Results show that overall efficiency
in L city is generally low but gradually
improving with yearly fluctuations. Regional
differences in efficiency are common and
reflect factors such as economic strength and
reform efforts. The findings also indicate that
higher input does not always lead to higher
efficiency, as some indicators show
insufficient input while others show redundant
output. Therefore, improving the distribution
of physical, human, and financial resources is
necessary. The study concludes that adopting
cloud platforms and cloud computing to enable
smarter online government services is key to
maximizing resource allocation efficiency.

Kapil N. Vhatkar et al. [12] note that cloud-
based microservices are widely used for their
high performance, and containers offer
benefits like portability, fast deployment, and
low overhead. However, rapid technological
growth has created challenges in automating
and managing containers, particularly in
resource allocation, which directly affects

system efficiency. To address this, the authors
propose an optimized container resource
allocation model using a new hybrid algorithm
called WR-LA, which combines the Lion
Algorithm and  Whale Optimization
Algorithm. The model optimizes allocation by
considering threshold distance, cluster balance,
system failure, and network distance. Their
results show that this optimized approach
delivers better performance than traditional
models.

José A. Troyano J et al. [13] state that growing
data centres face increasing complexity due to
diverse and rapidly changing workloads,
making resource management optimization
challenging. Existing resource-management
models perform well in controlled settings but
become inefficient as workload patterns
evolve. To improve adaptability, the authors
propose a gradient-boosting regression model
that predicts scheduling time for incoming
jobs, and a new model called Boost that selects
the most efficient resource manager based on
these predictions. They compare Boost’s
scheduling performance with two widely used
models—Apache Mesos’ two-level model and
Google Borg’s shared-state model. Simulation
results on a hyperscale data centre with
realistic workload traces show that the
proposed  approach  achieves  superior
scheduling performance.

Pedro Pinto et al. [14] highlight that increasing
cloud usage and rising request volumes create
the need for efficient resource allocation to
reduce costs and improve network
performance. With cloud—edge computing
expanding, data centers require stronger
servers and  energy-efficient  allocation
methods. The study proposes a dynamic
resource allocation approach using TSK
neuro-fuzzy systems and ant colony
optimization to minimize energy consumption.
It predicts future loads through CPU-usage
monitoring and reduces energy use by
optimizing  virtual machine  migration.
Simulations evaluate request counts, wasted
resources, and rejection rates. The method
removes non-optimal VMs and resolves
resource-granularity issues through targeted
migration. Comparative results show that this
approach  outperforms several existing
algorithms, including reinforcement learning,
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NSGA-III, whale optimization, and particle
swarm techniques.

Gamal Attiya et al. [15] note that the growing
use of cloud computing brings challenges such
as scheduling, load balancing, energy
consumption, and  security.  Efficient
scheduling algorithms are essential to
distribute tasks across resources while
maintaining system balance and fast user
response. To address the multi-objective
scheduling problem, the authors propose an
enhanced Harris Hawks Optimizer called Elite
Learning HHO (ELHHO). This version
incorporates elite opposition-based learning to
improve exploration quality in the original
HHO. Additionally, a minimum completion
time algorithm is used to generate a strong
initial solution, preventing local optima and
improving QoS by reducing schedule length
and execution cost while increasing resource
utilization. Implemented in CloudSim and
tested with real datasets, ELHHO outperforms
other algorithms and significantly improves
the standard HHO’s performance.

Feiyang Liu et al. [16] explain that next-
generation aircraft require intelligent, high-
performance computing along with rapid
design, development, integration, and update
cycles. Cloud computing offers abundant
hardware and software resources, making it a
suitable foundation for airborne cloud systems
in modern avionics. However, the dynamic
and uncertain nature of cloud environments
creates significant challenges in resource
management. Deep reinforcement learning
(DRL), with its autonomous decision-making

ability, has emerged as a promising solution
for resource scheduling. The paper examines
the requirements of airborne cloud systems,
reviews  cloud resource = management
principles, and  discusses = DRL-based
scheduling strategies, models, evaluation
parameters, and experimental platforms. It also
highlights key challenges in designing DRL-
driven resource management algorithms.
Overall, the study provides technical guidance
for developing efficient airborne cloud
computing systems.

3. Proposed Leaf-Wise
LightGBM with
Validation

Bundled
Adversarial

The proposed model enhances traditional
multiclass classification by combining feature
engineering and distribution-aware training
techniques to improve accuracy and
generalization. It begins by applying Leaf-
Wise Feature Bundling (LFB), a method that
clusters and compresses highly correlated
features into aggregated bundles, effectively
reducing dimensionality and noise. Next, it
performs Adversarial Validation, where a
LightGBM classifier is trained to distinguish
between training and test data, allowing the
model to compute sample-specific weights that
emphasize instances resembling the test
distribution. These re-weighted, bundled
features are then used to train a final
LightGBM multiclass classifier, resulting in a
model that is not only efficient but also robust
against overfitting and train-test drift.

Figure 1: Workflow for Enhanced LightGBMModeling with Feature Bundling and Adversarial
Validation

Figure 1 illustrates the overall workflow for
improving model training and prediction using
LightGBM, incorporating both leaf-wise
feature bundling and adversarial validation.
The process begins with input data, which is

simultaneously =~ passed  through  two
enhancement paths: one for Leaf-Wise
Feature Bundling, which reduces
dimensionality and redundancy by grouping
similar features, and another for Adversarial
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Validation, which evaluates the distributional
similarity between training and test sets to
mitigate data drift. The insights and
transformations from both processes are then
fed into the LightGBM Training +
Prediction module, enhancing model
robustness and generalization performance.
This pipeline ensures efficient training while
maintaining high predictive accuracy.

3.1 Light GBM

LightGBM (Light Gradient Boosting Machine)
is a highly efficient gradient boosting
framework  designed for speed and
performance. Developed by Microsoft,
LightGBM is particularly well-suited for
handling large-scale data  with  high
dimensionality, making it ideal for complex
tasks such as optimized resource allocation in
cloud systems. Unlike traditional gradient
boosting models, LightGBM leverages
histogram-based algorithms that bucket
continuous feature values into discrete bins,
significantly reducing memory usage and
training time. This advantage is especially
beneficial in cloud environments where real-
time processing and minimal latency are
critical.

The LightGBM algorithm follows a leaf-wise
tree growth strategy rather than a traditional

level-wise approach. In this method,
LightGBM identifies the leaf with the
maximum loss and grows it, resulting in
deeper and more complex trees. This leaf-wise
method tends to achieve lower loss than level-
wise growth, as it can better capture intricate
patterns in the data. In the context of cloud
resource optimization, this allows for more
accurate modeling of the relationships between
various factors such as latency, CPU usage,
memory bandwidth, and workload patterns. As
cloud systems become more dynamic and
multi-dimensional, LightGBM's ability to
adaptively fit the data becomes a critical asset.

Another key benefit of LightGBM is its
support for parallel and GPU learning, making
it highly scalable for high-performance
computing scenarios. LightGBM also offers a
variety of hyperparameters that allow fine-
tuning to balance bias and variance, helping
models  generalize Dbetter in  unseen
environments. These capabilities make
LightGBM an  excellent choice for
implementing intelligent, real-time decision-
making systems in distributed cloud platforms.
When integrated with strategies like
adversarial validation and feature bundling,
LightGBM forms a robust foundation for
predictive and prescriptive analytics in cloud
resource management.

LightGBM Algorithm

Input:

e Dataset D ={(x; y)} 1

e Learning rate n

e Number of boosting rounds T

e  Maximum depth / number of leaves
e Loss function L(y;f(x))

Step-by-Step Procedure:

Step 1: Initialize the model

e Start with a constant model (e.g., the average target value for regression, or log-odds for

binary classification).

e Let initial prediction fO(x)f 0(x) minimize the loss function:

n
fo(x)=arg minE L(y;0)
=1

Step 2: For each boosting round t=1 to T:
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1. Compute Gradients (First-order derivatives):

i—

_ ALy fq (x2)
df1(x;)

2. Compute Hessians (Second-order derivatives):

Ly, (X))

i

dfq (Xi)z

3. Construct Decision Tree using Histogram-based method:
o Bucket continuous features into discrete bins (to speed up split finding).

o Use leaf-wise tree growth:

= Start with a single leaf.

= At each step, choose the leaf with the highest split gain and split it.
=  Continue until a maximum number of leaves or depth is reached.
4. For each node/leaf, compute the best split using gain:

1 GL)2+(GR)2_ ©@*7

Gain= 20 Hi+A  Hp+A H+

Where:
o G=)g;, H=Jh;
o Gy, H;: gradient and hessian for left child
o Gp, Hg: gradient and hessian for right child
o A:regularization term

o v: cost of adding a leaf

5. Update the model with the newly trained tree:

(0= LD+ 0. T(%)

Where 7;(x) is the prediction from the newly trained tree.

Step 3: Final Model

e After T boosting rounds, the final model is:

T
Fo9=f604n. ) T
=1

3.2 Leaf-Wise Feature Bundling

In cloud systems, the resource allocation
problem often involves processing large-scale
datasets with thousands of features —
representing CPU wusage, memory, I/O
bandwidth, network latency, application-
specific parameters, and more. However, many
of these features are sparse or rarely interact
with one another. Processing them individually
can increase memory consumption and slow

down model training. Feature bundling
addresses this problem by combining mutually
exclusive or low-correlated features into a
single feature bundle, thereby reducing
dimensionality without significantly affecting
model performance. This bundling is
especially valuable in cloud resource
optimization, where high-speed decision-
making is critical.
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In LightGBM, leaf-wise feature bundling is
designed to align with the algorithm’s tree-
building strategy. It starts by analyzing the
dataset to detect which features are rarely
active together (i.e., sparse features that don’t
overlap). These features are bundled into a
shared slot or memory index, which is then
used during histogram construction. This
technique ensures that only non-conflicting
features are combined, preserving the
accuracy of the splits made by the tree while
minimizing redundant computations. Because
LightGBM grows trees by choosing the leaf
with the highest loss reduction, bundling helps
it accelerate computation during this search
phase, improving both training efficiency and
scalability.

By implementing feature bundling in a leaf-
wise fashion, LightGBM maintains the balance
between computational speed and predictive
accuracy, which is crucial in multi-cloud and
edge environments where real-time adaptation
is required. This approach not only reduces
memory usage but also increases the model's
throughput and responsiveness during training
and inference. In dynamic cloud ecosystems
with noisy or heterogeneous data, feature
bundling ensures that the system remains
lightweight and fast without compromising on
decision quality. As a result, it supports low-
latency resource allocation, better workload
distribution, and higher overall cloud
performance.

Leaf-Wise Feature Bundling: Algorithm

Step 1: Compute

Compute the Pearson correlation coefficient between each pair of features:

cov(f; £)

P o) o)

Where:

o cov(f; f)is the covariance between features i and j.

e o(t;)is the standard deviation of (£,

Take the absolute value to form a similarity matrix S eR” "

S= |pi

Step 2: Convert to Distance Matrix

Convert the similarity matrix SS into a distance matrixDD using:

Dy=1- 5=1- | py

Thus, higher distance means weaker correlation.

Step 3: Hierarchical Clustering of Features

Use hierarchical agglomerative clustering (e.g., average linkage) on the distance matrix DD to

group features into clusters.

Let t € [0,1] be the clustering threshold. Two features £, £; are grouped together if:

D 1]5 T
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This results in a partition of features:

={C, Gy, ..., C;}, whereUX , ¢;={1,2, .., n}

Each cluster C; contains the indices of correlated features.

Step 4: Aggregate Each Feature Cluster

For each cluster C;S{1,....,n}, create a new bundled feature b, by summing its constituent

=3

features:

So the transformed data matrix becomes:

je

X=[by, b,,..., ble R™X, k<n

3.3 Adversarial Validation

Re-Weighting

Adversarial Validation Re-Weighting is a
technique used to improve the generalization
ability of machine learning models, especially
in scenarios where there is a distribution shift
between training and deployment
environments — which is common in dynamic
cloud systems. In such cases, traditional
training approaches may overfit to the specific

characteristics of the training data and perform
poorly on unseen real-world data. To address
this, adversarial validation simulates a binary
classification task that distinguishes between
training and validation data points. If the
classifier performs well, it indicates that the
two distributions differ significantly. The
insight from this adversarial classifier is then
used to re-weight training samples, giving
more importance to examples that resemble
the deployment (validation) set.

Adversarial Validation Re-Weightingalgorithm

Step 1: Create Adversarial Dataset

Combine training and test sets to form a binary classification problem:

o Let Xpame€ R””a"’f“dandXtest € Ritestd
e Define labels:

Yadv= {

e Construct dataset:

0, forX;aim
1, forX;ee:

Xaav= [X traim X, test] ( verti Cal]y stack ed)
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Step 2: Train Adversarial Classifier

Train a binary classifier (e.g., LightGBM) to distinguish between train/test samples.

e Learn a function:

f‘;dV(X) =p (.yadl/: 1 |X)

e Output is the estimated probability of being a test sample, i.c., pi=£,,,(x,)

Step 3: Compute Sample Weights
For each training sample x; € X;.in:

e Compute weight:

where:

o p/~Probability that x; is from test
o w/—o when p—1, so clip to avoid instability:

w;=min|——
! (1 ;

Step 4: Train Final Model with Weights

DPi

4 WmaX )

Use the computed weights w; as sample weight during model training to emphasize training

examples that are more "test-like."

In the context of cloud resource allocation,
workloads and system states are often non-
stationary — meaning that the statistical
properties of the data can change rapidly due
to user behavior, infrastructure updates, or
application diversity. Adversarial validation re-
weighting allows the model to focus on
learning from those parts of the training data
that are more representative of the current
operational environment. This makes the
prediction of resource needs (such as CPU
cycles, memory bandwidth, or I/O throughput)
more robust and context-aware. By learning to
minimize the classification gap between
training and validation samples, the
LightGBM model adapts to temporal or spatial
drifts in cloud workloads, ensuring better
performance during deployment.

Moreover, when combined with the leaf-wise
strategy of LightGBM, this technique
enhances the precision of decision boundaries

in high-dimensional spaces where subtle
variations in resource metrics may have
significant implications for service
performance. Instead of treating all training
samples equally, adversarial re-weighting
injects a notion of relevance and adaptability,
helping the model to stay effective even when
incoming data shifts unexpectedly. This
contributes to more reliable auto-scaling, VM
placement, and fault-tolerant scheduling
decisions — ultimately supporting intelligent,
data-driven management in complex cloud
infrastructures.

The proposed model introduces a robust and
optimized pipeline for multi-cloud service
placement classification using LightGBM,
with  enhancements in both  feature
representation and training robustness. Starting
with a structured preprocessing stage, the
model loads and cleanses the dataset by
removing irrelevant identifiers and encoding
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categorical variables such as service type,
cloud provider, and edge node identifiers. It
also applies standard scaling to numerical
features to ensure uniformity across feature
ranges. This preprocessing forms the
foundational step before integrating more
advanced techniques designed to improve
generalization and performance across real-
world distributions.

A major contribution of the proposed pipeline
is the Leaf-Wise Feature Bundling
mechanism. Instead of relying on individual
features that may be noisy or redundant, the
model clusters highly correlated features and
bundles them into aggregated sum features.
This reduces the feature dimensionality and
enhances feature interpretability — while
preserving essential information. Hierarchical
clustering is applied based on the absolute
correlation matrix, and the bundled features
are generated by summing over each feature
cluster. This not only simplifies the model's
input structure but also helps mitigate
overfitting by reducing noise and redundant
patterns in the data.

Another key innovation is the Adversarial
Validation Re-weighting technique, which

addresses potential distribution shifts between
training and testing data. A LightGBM
classifier is trained to distinguish between
training and test sets, and the output
probabilities are used to compute sample-
specific weights. These weights are inversely
proportional to the likelihood of a training
sample belonging to the test set, effectively
giving more importance to training samples
that resemble the test distribution. This re-
weighting scheme improves the model's
generalization ability. Finally, the enhanced
LightGBM classifier is trained with these
weights and bundled features, resulting in a
model that is not only efficient and robust but
also highly adaptive to domain shifts, as
reflected in the improved classification report.

4. Experimental Results

In this section, we provide a detailed analysis
of the results obtained from the proposed
approach during the ongoing simulations. The
dataset utilized for these simulations was
sourced from the Multi-Cloud Service
Composition Dataset [17]. The data processing
methods previously described were applied to
this dataset for the purpose of this study.

Hierarchical Clustering Dendrogram (threshold=0.5)
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Network_Bandwidth (Mbps)

Figure 2: Hierarchical Clustering Dendrogram of Cloud Service Parameters

Figure 2 presents a hierarchical clustering
dendrogram that groups various cloud service
parameters based on their pairwise correlation
distances (1 - |corr|). The x-axis represents
different features such as Service Type,

Cloud Provider, Service Latency,
Throughput, QoS_Score, CPU_Utilization,
among others, while the y-axis shows the
distance metric used for clustering. A red
dashed line at a threshold of 0.5 highlights the
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cut-off used to determine distinct clusters. This
visualization helps in identifying which
features  exhibit similar  behavior or
characteristics, potentially aiding

dimensionality reduction or feature selection
in machine learning tasks related to cloud
service optimization and performance analysis.

Adversarial Validation: P(test) Distribution

70 4

60

Count

20 1

10 A

0.
0.000 0025 0.050 0.075

0.100 0125 0.150 0175 0.200
P{test)

Figure 3: Adversarial Validation — Probability of Test Sample Distribution

Figure 3 illustrates the distribution of the
predicted probability that each sample belongs
to the test set, denoted as P(test), as obtained
from an adversarial validation classifier. The
histogram indicates how distinguishable the
training and test datasets are. A well-
overlapped distribution near zero, as seen here,

suggests that the training and test data come
from similar distributions, minimizing the risk
of data drift or distribution shift. This is a key
quality check in machine learning pipelines to
ensure the model’s generalization performance
won't be compromised due to dataset
mismatch.

Sample Weights Distribution

80+ —

70 1

Count

T
0.00 0.05 0.10

T
0.15 0.20 0.25

w = p/{1-p) (clipped to max 10)

Figure 4: Distribution of Sample Weights Based on Adversarial Validation

Figure 4 shows the distribution of sample
weights derived from adversarial validation,

where the weight for each sample is calculated

as w= ﬁ, with pp being the probability that

the sample belongs to the test set. The values

are clipped to a maximum of 10 to manage
extreme cases. This weighting scheme helps
re-balance the training data by assigning
higher importance to samples more similar to
the test set. The histogram reveals that most
weights are relatively small, indicating a
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majority of training samples are well-aligned
with the test distribution, while a smaller

number of samples receive higher weights,
highlighting their test-like characteristics.

Learning Curves

0.12 4
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Multi-class LogLoss
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T T T T T
100 125 150 175 200

Boosting Round

Figure 5: Learning Curves for Multi-class LogLossAcross Boosting Rounds

Figure 5 presents the learning curves for both
training and test datasets using multi-class
Logloss as the performance metric across

progressive learning and model convergence.
The close alignment between the two curves
suggests minimal overfitting, with the model

boosting rounds. The x-axis represents the generalizing well to unseen data. This
number of boosting rounds, while the y-axis behavior is typically observed in well-
shows the Logloss values. The curves regularized  gradient boosting  models,
demonstrate a consistent decline in LogLoss affirming the model’s robustness and
for both training and test sets, indicating effectiveness.
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Figure 6: t-SNE Visualization of Bundled Features in the Training Set

Figure 6 depicts a t-SNE (t-distributed
Stochastic Neighbor Embedding) visualization
of the high-dimensional bundled features from
the training set, projected into a 2D space.
Each point represents a sample, colored by its

class label—blue for Class 0 and orange for
Class 1. The purpose of this visualization is to
explore how well the classes are separated in
the feature space after dimensionality
reduction. The scattered and overlapping
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distribution suggests limited natural separation
between the two classes, indicating that the
features might not have strong discriminative

power or that further feature engineering may
be necessary to improve class separability for
downstream classification tasks.
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Figure 7: Uniform Feature Distribution Across Bundles

Figure 7 shows the count of original features
included in each feature bundle, with each bar
representing a unique bundle identified by its
Bundle ID (1 through 13). The y-axis indicates
the number of original features per bundle,
which is consistently equal to 1 for all bundles.
This uniform distribution implies that the
bundling strategy used here assigns exactly

one original feature to each bundle, likely in

preparation for techniques like feature
bagging, ensemble modeling, or t-SNE
visualization. Such consistency ensures

balanced representation and may help in
avoiding bias during downstream model
training or analysis.

Top 20 Feature Importances (Leaf-Wise Bundles)
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Figure 8: Top Feature Importances by Leaf-Wise Bundles

Figure 8 displays the top feature importances
ranked by their cumulative contribution to the
decision paths in a tree-based model, grouped
by leaf-wise feature bundles. Each horizontal
bar represents a feature bundle (e.g., bundle 5,
bundle 3, etc.), with the length corresponding
to its importance score. Bundle 5 stands out as
the most influential, followed by bundle 3 and

bundle 4, indicating their dominant role in
model predictions. The sharp drop-off in
importance after the top few bundles
highlights the relative irrelevance of lower-
ranked bundles, providing insights for
potential feature selection or dimensionality
reduction efforts in future modeling stages.
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Table 1: Classification Report

Precision Recall F1-Score
0 1.00 1.00 0.99
1 1.00 1.00 0.99
Accuracy 1.00
Table 1 presents the classification report, 0.99 for each class. The overall classification
showing that the model achieved perfect accuracy is 1.00, indicating excellent model
precision and recall scores of 1.00 for both performance on the given dataset.

classes 0 and 1, resulting in a high F1-score of
Normalized Confusion Matrix
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Figure 9: Normalized Confusion Matrix for Binary Classification
Figure 9 presents a normalized confusion correct predictions for both Class 0 and Class
matrix for a binary classification model, 1. The off-diagonal values are 0.00,
showing perfect classification performance. confirming there were no misclassifications.
The matrix is normalized such that each row This result suggests that the model achieved
sums to 1, reflecting the proportion of flawless accuracy on the evaluated dataset,
correctly and incorrectly predicted samples per although such performance may also warrant
class. The top-left and bottom-right cells each investigation for potential data leakage or
contain a value of 1.00, indicating 100% overfitting.

Table 2: Comparative Analysis

Models Accuracy
Linear Regression [18] 96.0%
SVM [19] 96.0%
KNN [20] 96.0%
Logistic Regression [21] 97.0%
Proposed(Light GBM) 100%
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Table 2 presents a comparative analysis of
various machine learning models based on
their classification accuracy. Traditional
models such as Linear Regression, Support
Vector Machine (SVM), and K-Nearest
Neighbors (KNN) each achieved an accuracy
of 96.0%, while Logistic Regression slightly
outperformed them with a 97.0% accuracy.
However, the proposed model based on Light
Gradient Boosting Machine (LightGBM)
significantly outperformed all the baseline
models, achieving a perfect classification
accuracy of 100%. This demonstrates the
superior learning capability and efficiency of
the LightGBM model in capturing complex
patterns and relationships within the dataset,
making it a highly suitable choice for the given
task.

5. Conclusion

The proposed research presents a robust and
novel machine learning framework for
optimized resource allocation in multi-cloud
environments, integrating Leaf-Wise Feature
Bundling (LFB) and Adversarial Validation
Re-Weighting within the LightGBM model.
The novelty lies in combining LFB to reduce
dimensionality by aggregating correlated
features, with adversarial re-weighting to
enhance generalization under distributional
shifts—an approach not commonly applied
together in cloud resource optimization. This
dual strategy improves both training efficiency
and deployment robustness. Experimental
results demonstrated superior performance,
achieving 100% classification accuracy and
outperforming baseline models like SVM and
Logistic Regression (96-97% accuracy). The
learning curves and validation distributions
further confirmed the model’s stability and
reliability. By addressing challenges such as
feature sparsity, data drift, and dynamic
workload variability, this research delivers a
scalable, interpretable, and adaptive solution
for intelligent service placement in high-
performance cloud systems.
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