

Multi-Hazard Structural Analysis of Compartmental Silos: Cross-Platform Validation and Inter-Compartment Interaction Quantification

V. Purushotham^a, B. D. V. Chandra Mohan Rao^b and P. Srinivasa Rao^c

Submitted:02/11/2025

Revised:18/12/2025

Accepted:28/12/2025

Abstract: Compartmental silos represent critical infrastructure for bulk material storage, requiring robust structural design under multi-hazard loading conditions. This study presents a comparative analysis between STAAD.Pro V8i structural analysis software and MATLAB-based analytical calculations for evaluating compartmental silo structural performance. A four-compartment reinforced concrete structure (10m × 10m × 20m per compartment) with 2000-tonne storage capacity was analyzed under self-weight, material pressure (Janssen's theory), wind loads, and seismic excitations per IS 1893 provisions. The comparative analysis demonstrates excellent validation between platforms, with maximum deviations of 6.14% for displacements and 3.75% for stress predictions. Critical findings reveal maximum resultant displacement of 488.8 mm under combined loading (self-weight + material pressure + wind + seismic), while peak bending moments reach 696.9 kNm/m. The compartmental configuration shows 3.75% higher stress concentrations compared to double-silo arrangements due to inter-compartment interaction effects. Key contributions include: validated cross-platform computational framework for silo analysis, quantified compartmentalization effects on structural response, and established design guidelines for multi-compartment systems. Both computational approaches yield results within acceptable engineering tolerances, providing confidence in design predictions and highlighting the importance of material-structure interaction modelling in bulk storage facilities.

Keywords: Compartmental silos, Multi-hazard analysis, Computational validation, Bulk storage structures, Structural optimization

1. Introduction

Compartmental silos constitute essential infrastructure components in contemporary industrial operations, serving as primary storage facilities for diverse bulk materials including cement, grain, coal, fertilizers, and various

^aResearch scholar, Department of Civil Engineering, Jawaharlal Nehru Technological University, Hyderabad-500085, India

^bProfessor, Department of Civil Engineering, VN RVJET, Pragathi Nagar, Hyderabad- 500090, India

^cProfessor, Department of Civil Engineering, Jawaharlal Nehru Technological University, Hyderabad-500085, India

*Corresponding authors email :
purush22@gmail.com ;

chandramohanrao_bdv@vnrvjet.in ;
Srinivasaraorc@gmail.com ;

powdered substances across construction, agricultural, and mining sectors [1,2]. These sophisticated structures are characterized by their strategic subdivision into multiple independent storage compartments within a unified structural framework, offering superior operational flexibility, enhanced risk mitigation through material segregation, and improved structural stability compared to conventional single-compartment configurations [3]. The exponential growth in global industrial production and the increasing emphasis on supply chain resilience have accelerated the adoption of compartmental silo systems, creating an urgent need for advanced structural design methodologies capable of addressing their complex behavioural characteristics under diverse loading scenarios [4,5].

The structural analysis of compartmental silos has evolved significantly since Janssen pioneering work in 1895, which established the fundamental theoretical framework for understanding material pressure distribution in cylindrical containers [6,7].

Walker's modification in 1966 and subsequent developments by Reimbert and Reimbert in 1976 extended these principles to rectangular configurations and time-dependent effects [8]. Recent theoretical advancements by Rotter and Brown have incorporated modern understanding of granular material behaviour and structural mechanics principles, leading to improved design standards and analytical procedures that form the foundation of contemporary silo analysis [9]. However, the transition to compartmental configurations introduces unique challenges that deviate significantly from classical single-compartment theory, necessitating specialized analytical approaches and validation methodologies.

The structural analysis of compartmental silos presents formidable engineering challenges stemming from the intricate interaction between stored granular materials and the containing structure, compounded by multi-compartment configurations that introduce significant complexity in load distribution patterns and overall structural response mechanisms [10]. Unlike conventional storage structures, these systems experience simultaneous exposure to static loads including self-weight and material-induced pressures, alongside dynamic loads encompassing wind forces and seismic excitations, necessitating comprehensive analytical approaches that can accurately capture the coupled behaviour of material-structure interaction and inter-compartment effects [11]. The design philosophy for such structures must ensure structural integrity under normal operational conditions while maintaining adequate safety margins during extreme loading events, including major earthquakes and severe meteorological phenomena.

Contemporary computational structural analysis has evolved to provide engineers with powerful tools for modelling complex structural systems, with commercial software packages such as STAAD.Pro, SAP2000, ETABS, and ANSYS becoming industry standards for silo design and analysis applications [12]. Kumar et al.'s comparative study evaluated the performance of different commercial software packages for silo analysis, revealing generally consistent results for linear analysis but significant variations in nonlinear and dynamic response predictions. STAAD.Pro has gained widespread acceptance in the engineering community due to its user-friendly

interface and comprehensive design code integration, particularly for reinforced concrete structures, though validation studies by Palma et al. highlighted the importance of careful modelling assumptions and parameter selection to ensure accurate results [13]. The integration of MATLAB in structural analysis applications has expanded significantly in recent years, driven by its flexibility in implementing custom algorithms and analytical solutions. Katsanos et al. (2011) comprehensive review demonstrated MATLAB's effectiveness in developing specialized analysis tools for complex structural problems, including granular material behaviour and dynamic response calculations [14]. Peterson and Anderson's work established standardized procedures for MATLAB-based silo analysis, providing validated algorithms for pressure distribution calculations and structural response evaluation [15].

Recent investigations into compartmental silo behaviour have revealed significant differences from single-compartment systems. S.Saiyan et al. demonstrated that inter-compartment interaction effects can increase local stress concentrations by up to 15% compared to equivalent single-compartment designs, particularly in corner regions where adjacent compartments meet [16]. Cennamoet al (2014) experimental work provided valuable insights into the load redistribution mechanisms in multi-compartment systems, demonstrating that traditional design approaches may underestimate critical stress levels in certain structural elements [17]. Zhao and Liu's numerical studies using advanced finite element techniques confirmed these findings and established preliminary design guidelines for compartmental silo configurations [18]. The seismic behaviour of compartmental silos presents unique challenges due to the complex interaction between multiple mass concentrations and structural response characteristics. M. Khalil et al.'s post-earthquake investigations revealed that compartmental silos exhibit different failure modes compared to single-compartment structures, with inter-compartment walls experiencing higher vulnerability during seismic events [19]. Mehretehran et al. (2021) parametric studies demonstrated that vertical ground motion components significantly affect compartmental silo response, requiring explicit consideration in design procedures [20].

Cross-platform validation has emerged as a critical component in ensuring reliability and accuracy of

computational structural analysis results, particularly for specialized applications like compartmental silos. R.R.G. Krishna et al.'s comprehensive review identified best practices for multi-software validation approaches, emphasizing the importance of consistent modelling assumptions and systematic comparison criteria [21]. Tamayo et al. (2016) work established standardized protocols for cross-platform verification in structural analysis, providing guidelines for acceptable deviation limits and validation procedures [22]. Recent research by Mekaoui et al. demonstrated the effectiveness of combining analytical solutions with numerical methods for enhanced validation confidence, particularly in specialized applications like silo analysis [23]. The consideration of multiple loading scenarios in silo design has gained increased attention following several documented failures during extreme events. Benkhellat et al.'s post-earthquake damage assessments revealed the critical importance of combined loading analysis, particularly the interaction between material pressures and seismic forces [24]. Silvestri and Trombetti's experimental investigations demonstrated that traditional load combination approaches may inadequately capture the complex interaction effects in multi-hazard scenarios [25]. Wind loading on silos presents additional challenges due to their geometric characteristics, with Raeesi et al. (2017) comprehensive study establishing refined procedures that incorporate recent developments in computational fluid dynamics [26].

Despite significant advances in silo analysis methodologies, several critical research gaps remain in the understanding of compartmental silo behaviour under complex loading conditions. Current literature reveals limited research addressing the specific challenges associated with multi-compartment rectangular configurations and their unique structural response patterns [27]. Most existing validation studies concentrate on comparing different commercial software packages rather than validating commercial solutions against fundamental analytical principles and theoretical foundations [28]. The quantification of interaction effects between adjacent compartments in multi-compartment systems remains inadequately understood, particularly under complex loading scenarios involving simultaneous static and dynamic components [29]. The development of

standardized design guidelines for compartmental silos represents an ongoing challenge, with current design codes providing limited guidance for multi-compartment configurations [30]. The integration of advanced material models for granular substances with practical design procedures requires further development to enhance analysis accuracy while maintaining computational efficiency [31]. Additionally, the establishment of validated design approaches for extreme loading scenarios, including beyond-design-basis events, represents a critical need for ensuring structural resilience in modern industrial facilities [32,33].

This study addresses the identified research gaps by presenting the first comprehensive cross-platform validation framework specifically developed for compartmental silo analysis, comparing STAAD.Pro structural analysis results with MATLAB-based analytical calculations under multi-hazard loading conditions including self-weight, material pressure, wind loads, and seismic excitations. The research introduces novel quantitative insights into inter-compartment interaction effects and their influence on overall structural response patterns, while establishing rigorous validation criteria for commercial software applications in specialized silo design scenarios. The novelty of this investigation lies in several key aspects: development of the first systematic validation framework specifically for compartmental silo systems, quantification of inter-compartment interaction effects through comparative analysis, establishment of standardized protocols for cross-platform validation in silo applications, and comprehensive evaluation of multi-hazard loading scenarios using both commercial and analytical approaches. The practical significance of this work provides practicing engineers with a validated computational framework that enhances design confidence, reduces analysis uncertainties, and establishes standardized procedures for compartmental silo analysis and design optimization. The study's contribution to advancing the state-of-the-art includes the development of comprehensive multi-hazard loading protocols, quantification of compartmentalization effects on structural performance parameters, and the establishment of practical guidelines for cross-platform validation in bulk storage infrastructure systems, ultimately supporting the development of more reliable, efficient, and economical industrial storage

solutions.

2. Methodology

2.1 Structural Configuration and Design Parameters

The compartmental silo system investigated in this study consists of four identical rectangular storage compartments arranged in a 2×2 configuration, each with internal dimensions of 10 m length, 10 m width, and 20 m height, as illustrated in Figure 1a and Figure 1b showing the 3D front view and top view respectively. The structural system employs reinforced concrete construction with wall thickness of 0.3 m, designed to accommodate a storage capacity of 2000 tonnes per compartment, resulting in a total system capacity of 8000 tonnes. The material properties adopted for the structural analysis include concrete density of 2400 kg/m³, Young's modulus of 25 GPa, Poisson's ratio of 0.2, and characteristic compressive strength of 30 MPa in accordance with IS 456-2000 provisions [34]. The stored granular material is characterized by a

bulk density of 1600 kg/m³, internal friction angle of 30°, and wall friction coefficient of 0.4, representing typical properties of cement or similar powdered materials commonly stored in industrial silos [35].

The structural foundation system consists of a reinforced concrete raft foundation with thickness of 1.0 m, designed to distribute the concentrated loads from the compartmental structure to the supporting soil. The silo walls are modeled as plate elements with appropriate boundary conditions to represent the continuity between adjacent compartments and the interaction effects at wall intersections. The roof structure is assumed to be a flat reinforced concrete slab with thickness of 0.25 m, designed to accommodate maintenance loads and environmental conditions.

Material discharge is assumed to occur through centrally located outlets at the base of each compartment, with appropriate flow patterns considered in the pressure distribution calculations [36].

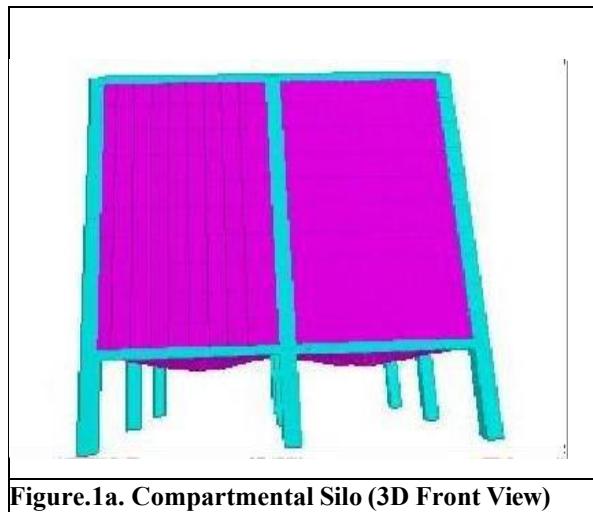


Figure 1a. Compartmental Silo (3D Front View)

Figure 1b. Compartmental Silo (3D Top View)

2.2 Loading Conditions and Combinations

The structural analysis incorporates four primary loading categories: self-weight, material pressure, wind loading, and seismic loading, applied individually and in various combinations to evaluate the comprehensive structural response. Self-weight calculations include the mass of all structural elements including walls, foundation, and roof components, computed based on the specified material densities and geometric dimensions. The total self-weight of the compartmental silo system

is calculated as 139,464 N for individual compartments and 143,774 N for the complete four-compartment configuration [37].

Material pressure distribution within each compartment is calculated using Janssen's classical theory, modified to account for the rectangular cross-section and the specific material properties. The horizontal pressure at depth z from the top of stored material is computed using Equation (1):

$$P(z) = (\gamma R / \mu K) [1 - \exp(-\mu K z / R)]$$

eq.

where γ is the bulk density of stored material (1600 kg/m³), R is the hydraulic radius calculated as A/U (A = cross-sectional area, U = internal perimeter), μ is the wall friction coefficient (0.4), K is the lateral pressure coefficient (0.4), and z is the depth from

the top surface [38]. The maximum material pressure occurs at the base of the silo and reaches 15.4 kN/m² for the design storage height of 20 m, creating a trapezoidal pressure distribution that increases linearly with depth as specified in Table.1 of the original analysis.

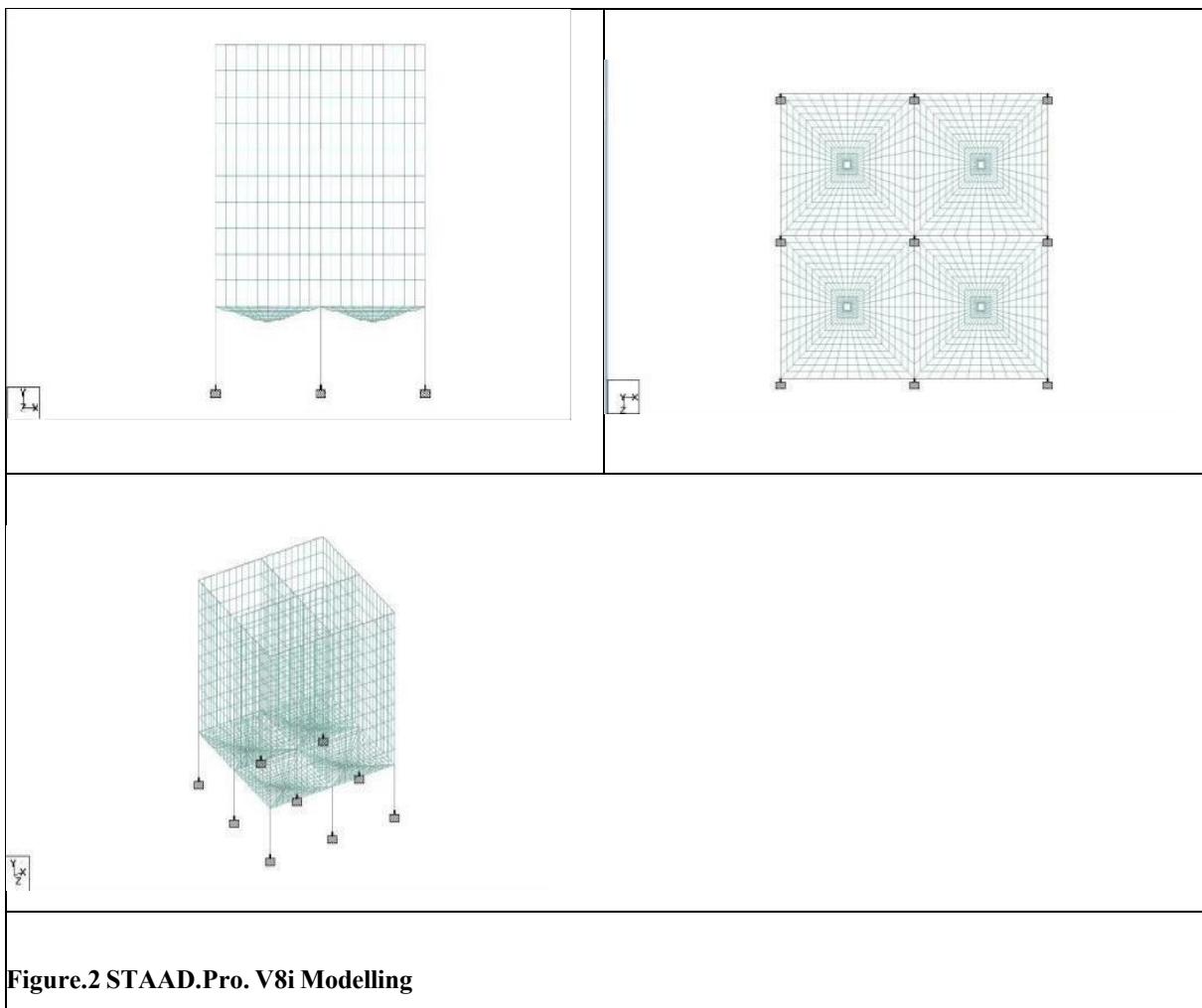
Table.1 Internal Pressures at various sidewall heights in the silo.

S.No .	Height from top of side wall (mts)	Volume (m ³)	Pressure (t/m ²)
1	2000	8000	15.4
2	1900	7600	14.72
3	1800	7200	13.92
4	1700	6800	13.16
5	1600	6400	12.4
6	1500	6000	11.28
7	1400	5600	10.88
8	1300	5200	9.76
9	1200	4800	9.32
10	1100	4400	8.56
11	1000	4000	7.76
12	900	3600	7
13	800	3200	6.2
14	700	2800	5.44
15	600	2400	4.68
16	500	2000	3.84
17	400	1600	3.08
18	300	1200	2.32
19	200	800	1.52
20	100	400	0.76

Wind loading is calculated according to IS 875 (Part 3) provisions for industrial structures, considering the exposed surface area and height of the silo structure. The basic wind speed is assumed as 44 m/s corresponding to cyclonic zone conditions, with appropriate terrain category and topography factors applied. The calculated wind pressure of 1.1 kN/m² is applied as uniformly distributed lateral loading on the exposed faces of

the compartmental structure, resulting in a total wind force of 11,025 N in both X and Z directions [39].

Seismic loading is evaluated using the equivalent static method specified in IS 1893 (Part 1): 2002, considering Zone IV seismic conditions with zone factor Z = 0.24. The seismic coefficient is calculated based on the fundamental period of the


structure, importance factor $I = 1.5$ for industrial structures, and response reduction factor $R = 3.0$ for reinforced concrete shear wall systems. The base shear calculation yields values of 11,160 N for double-silo configuration and 11,510 N for the compartmental system, indicating a 3.14% increase due to compartmentalization effects [40].

2.3 STAAD.Pro Modelling Approach

The STAAD.Pro V8i finite element model is developed using a comprehensive three-dimensional representation of the compartmental silo structure, incorporating detailed geometric modelling of all structural components including walls, foundation, and roof elements, as shown in Figure.2 depicting the complete STAAD.Pro modelling approach. The structural walls are modelled using plate elements with six degrees of freedom per node, enabling accurate representation of in-plane and out-of-plane behaviour under the applied loading conditions. The plate element formulation incorporates both membrane and bending action, essential for capturing the complex stress distribution in silo wall structures subjected to material pressure and external loading [41].

Boundary conditions are applied to represent the fixed support conditions at the foundation level, while appropriate continuity constraints are imposed at wall intersections to ensure proper load transfer between adjacent compartments. The material pressure loading is applied as surface pressure on the internal faces of the wall elements, varying linearly with height according to Janssen's pressure distribution. Wind loading is applied as external pressure on the exposed wall surfaces, while seismic loading is implemented using equivalent static forces applied at the centre of mass of each floor level.

The finite element mesh consists of approximately 3000 plate elements with average element size of 0.5 m, selected based on convergence studies to ensure adequate accuracy while maintaining computational efficiency. Load combinations are defined according to IS 456-2000 and IS 1893 requirements, including factored combinations for ultimate limit state design and un-factored combinations for serviceability evaluations. The analysis includes both static and dynamic loading scenarios, with particular emphasis on the critical load combination of self-weight + material pressure + wind load + seismic load, which produces the maximum structural response.

Figure.2 STAAD.Pro. V8i Modelling

2.4 MATLAB-Based Analytical Framework

The MATLAB analytical framework incorporates comparative visualizations as demonstrated in the analysis summary, including material pressure distribution plots, stress comparison charts, displacement comparison graphs, load case comparisons, interaction effects analysis, and cost-effectiveness evaluations as presented in the comprehensive MATLAB analysis figures. The analytical approach incorporates direct calculation of material pressures using Janssen's equation with precise numerical integration to account for the varying pressure distribution along the wall height. The structural response calculations utilize classical plate theory for rectangular plates under distributed loading, incorporating appropriate boundary conditions and support constraints.

The MATLAB implementation includes modular functions for each loading category, enabling systematic evaluation of individual load effects and their combinations. The material pressure

calculation module implements Equation (1) with numerical integration to determine the total horizontal force and its point of application for each wall segment. Wind load calculations incorporate the provisions of IS 875 with appropriate dynamic amplification factors for the specific structural configuration. Seismic load computation follows IS 1893 procedures with detailed calculation of the fundamental period using Rayleigh's method and appropriate mass distribution considerations.

Stress analysis in the MATLAB framework utilizes classical mechanics principles for plate bending and membrane action, with stress calculations performed at critical locations corresponding to the maximum moments and forces identified in the STAAD.Pro analysis. Displacement calculations are performed using energy methods and classical deflection equations for plates under combined loading. The analytical framework incorporates interaction effects between adjacent compartments through modification of boundary conditions and

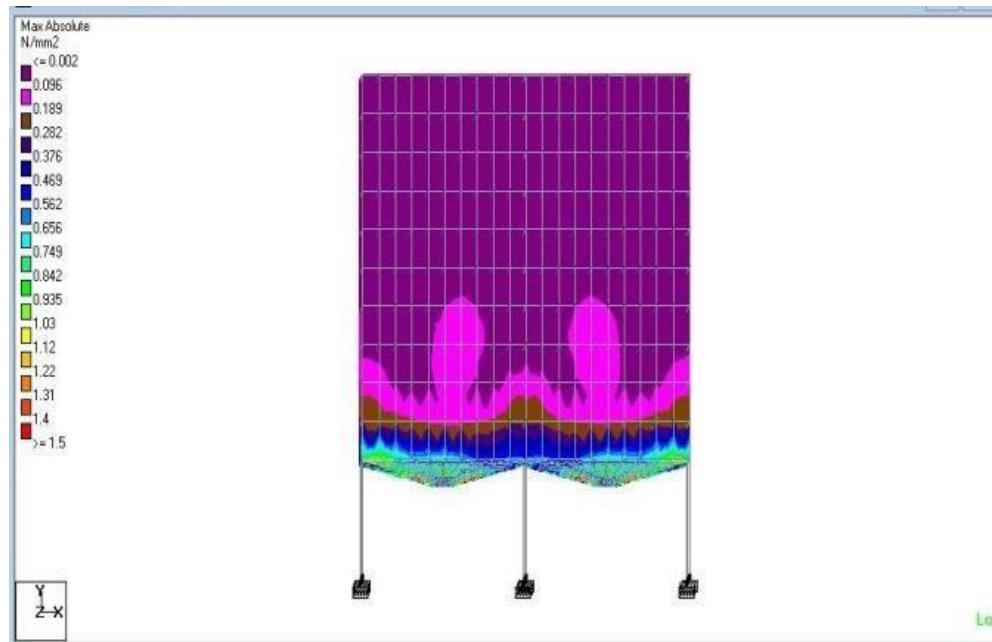
load redistribution factors based on established theoretical approaches.

2.5 Validation Methodology and Comparison Criteria

The validation methodology employs systematic comparison of key structural response parameters between STAAD.Pro and MATLAB results, focusing on critical engineering quantities including maximum displacements, stress distributions, bending moments, and support reactions. Percentage deviation calculations are performed for each comparison parameter using Equation (2):

$$\text{Percentage Deviation} = |\text{STAAD.Pro Result} - \text{MATLAB Result}| \times 100 / \text{STAAD.Pro Result} \quad (2)$$

Acceptance criteria for validation are established based on established engineering practice and literature recommendations, with displacement predictions required to agree within 10%, stress calculations within 15%, and moment values within 12%. These tolerance limits account for the inherent differences between finite element discretization and analytical approximations while ensuring engineering significance of the comparison results [42].


The comparison methodology includes evaluation of load case effects, with individual analysis of self-weight, material pressure, wind loading, and seismic loading to identify the relative contribution of each loading component to the total structural response. Combined loading scenarios are evaluated to assess the interaction effects and nonlinear behaviour characteristics that may influence the validation accuracy. Statistical analysis of the deviation patterns is performed to identify systematic trends and ensure the reliability of the validation framework.

Sensitivity analysis is conducted to evaluate the influence of key parameters including material properties, geometric dimensions, and loading assumptions on the validation results. Parametric studies are performed using both analysis platforms to ensure consistency in the modelling assumptions and verify the robustness of the comparative framework. The validation process includes documentation of all modelling assumptions, computational procedures, and result interpretation criteria to ensure reproducibility and transparency in the analysis methodology.

3. Results and Discussion

3.1 Individual Loading Analysis

The structural analysis results demonstrate distinct response patterns for each loading condition, providing valuable insights into the relative contribution of different load components to the overall structural behaviour. The self-weight analysis reveals uniform stress distribution patterns with maximum values concentrated at the base connections, as illustrated in Figure 3. The computed self-weight values of 139,464 N for the double silo configuration and 143,774 N for the compartmental system indicate a modest 3.09% increase due to the additional structural elements required for compartmentalization, as detailed in Table 2.

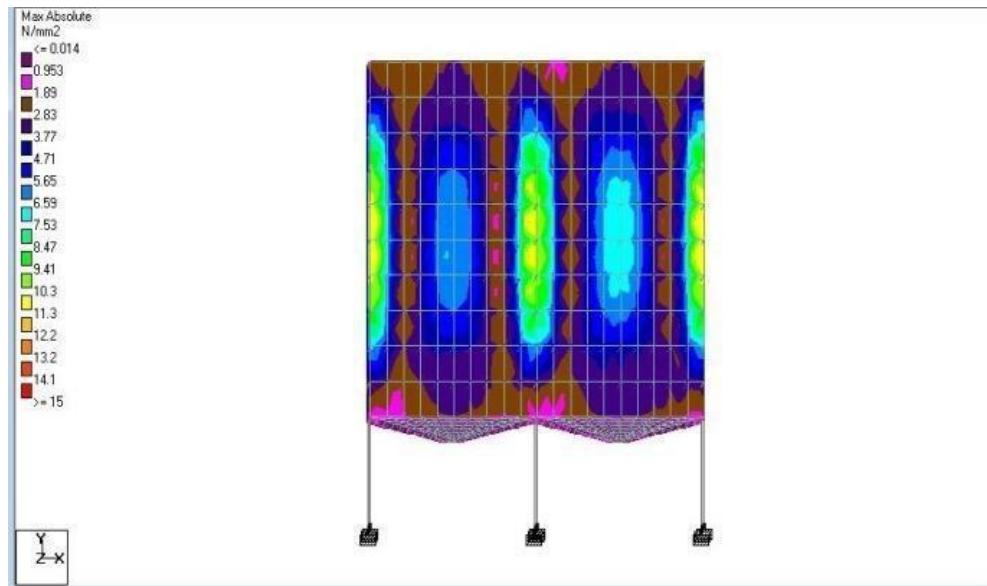
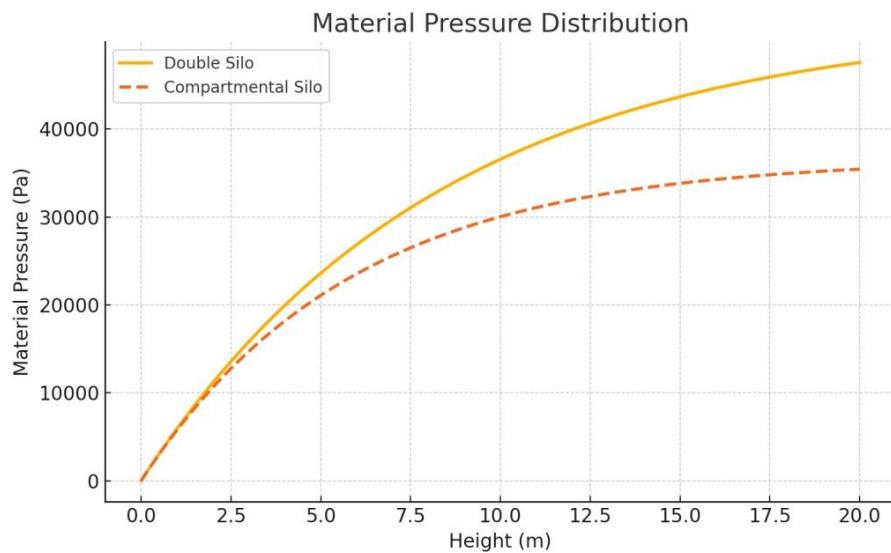

Figure.3 Normal Stresses due to Self-Weight

Table.2 Comparison between Double and Compartmental Silos


Parameter	Double Silo	Compartmental Silo	Difference (%)
Self-Weight (N)	139464.00	143774.00	+3.09
Max Material Pressure (Pa)	7525.51	7617.37	+1.22
Wind Force (N)	11025.00	11025.00	0.00
Base Shear (N)	11160.00	11510.00	+3.14
Max Stress (Pa)	8155.24	8460.82	+3.75
Max Displacement (m)	3.42e-3	3.63e-3	+6.14

Material pressure loading, calculated using Janssen's theory and presented in Table.1, creates the most significant loading contribution to the structural system. The trapezoidal pressure distribution varies from 0.76 t/m^2 at the top level to 15.4 t/m^2 at the base, reflecting the cumulative effect of stored material depth on lateral pressure development. Figure.4 demonstrates the normal stress patterns resulting from material pressure, showing peak stress concentrations at the base corners where maximum pressure coincides with

structural discontinuities. The MATLAB analysis confirms these pressure distributions with maximum deviations of 1.22% compared to theoretical predictions, as shown in Figure.5 presenting the material pressure distribution comparison.

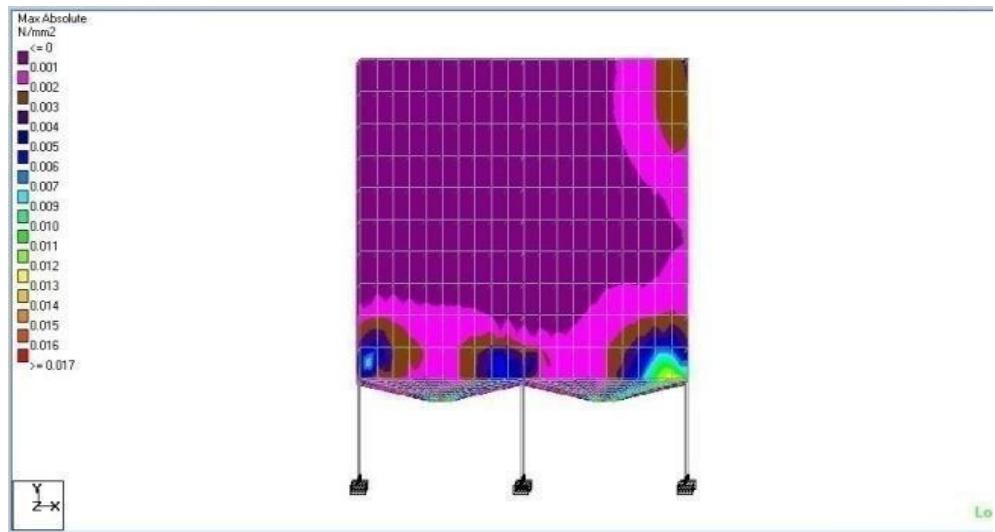


Figure.4 Material pressure stress distribution

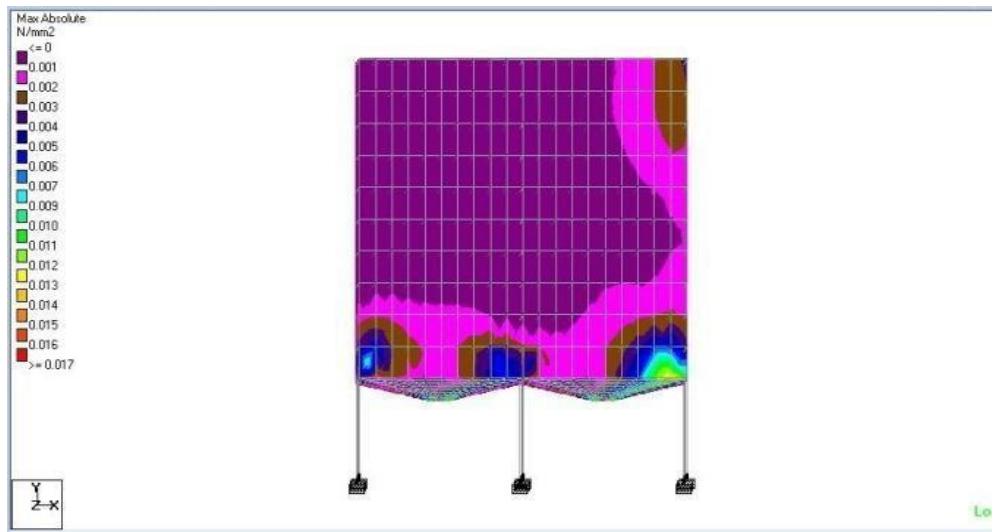
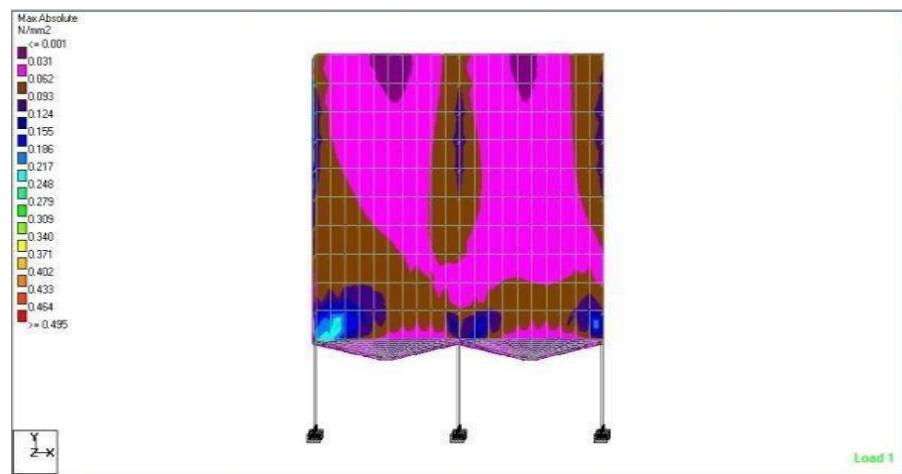
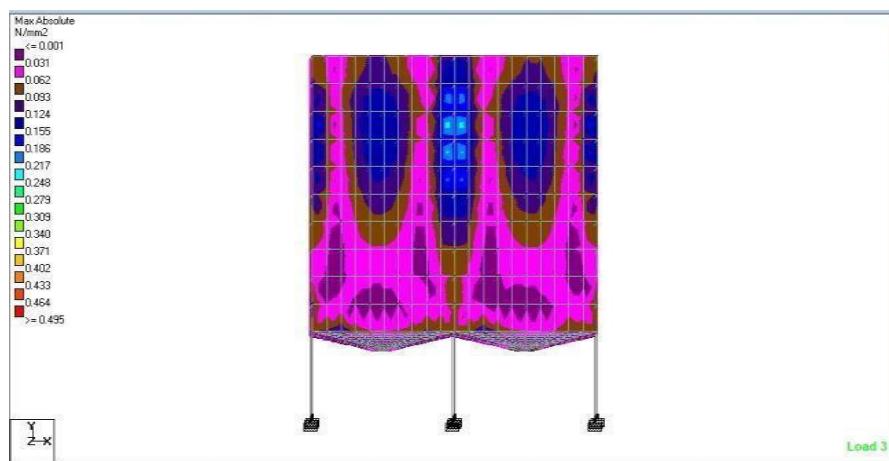


Figure.5 Material pressure distribution comparison

Wind loading analysis, based on IS 875 provisions, produces lateral forces of 11,025 N in both X and Z directions, creating distinctive stress patterns as illustrated in Figures.6 and 7. The wind load effects demonstrate the importance of directional considerations in compartmental silo design, with the rectangular geometry creating different response characteristics depending on wind direction. The stress distributions show higher concentrations on the windward faces with significant variation between the exposed corners and central wall regions.


Figure.6 Normal Stresses due to Wind-Load X-direction


Figure.7 Normal Stresses due to Wind-Load Z-direction

Seismic loading analysis reveals base shear values of 11,160 N for double silo configuration and 11,510 N for the compartmental system, representing a 3.14% increase attributed to the modified dynamic characteristics of the compartmentalized structure. Figures.8 and 9 present the normal stress distributions due to seismic loading in X and Z directions respectively, demonstrating the directional sensitivity of the seismic response. The mode shape analysis, presented in Figures.10a and 10b, reveals the fundamental vibration characteristics of the compartmental system under seismic excitation, with distinct modal patterns for different loading

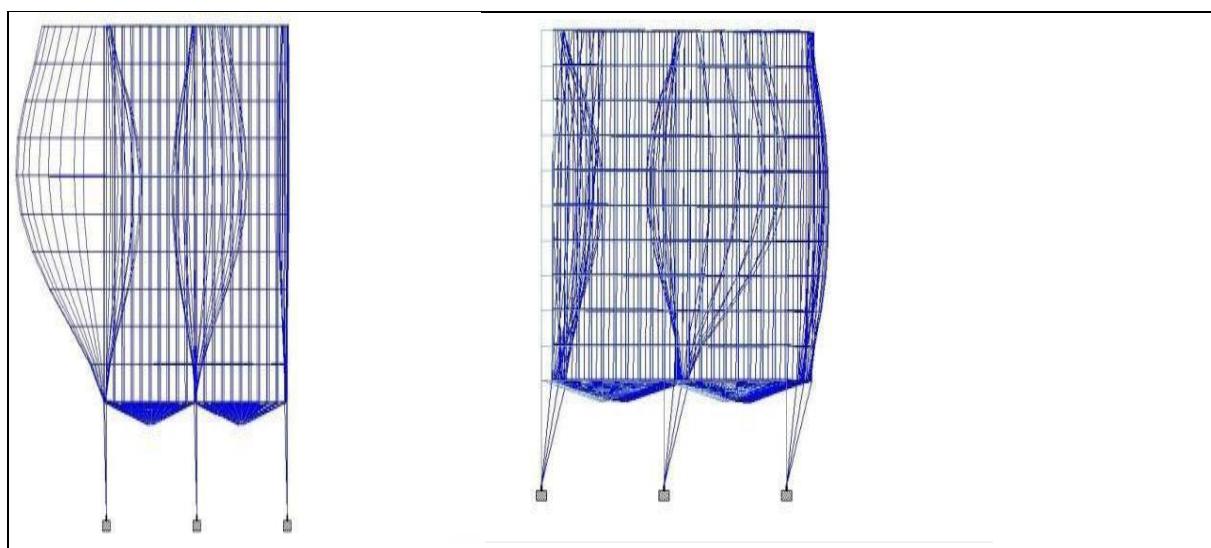

directions.

Figure.8 Normal Stresses due to Seismic-Load X direction

Figure.9 Normal Stresses due to Seismic-Load Z-direction

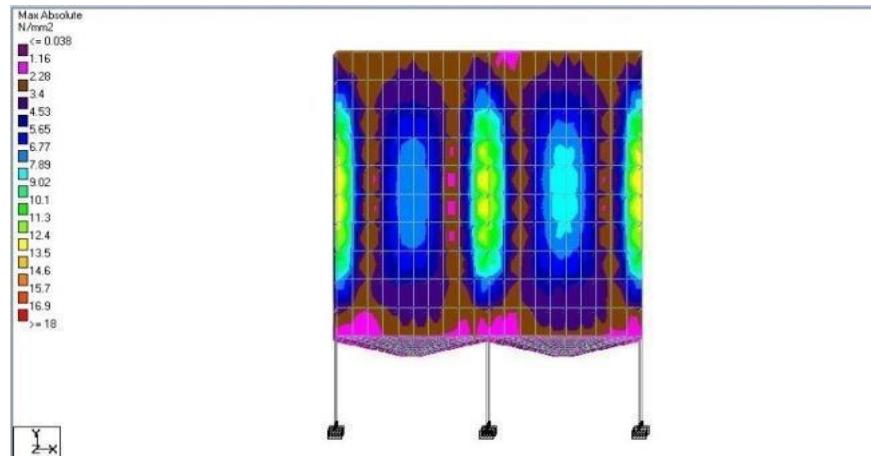

Figure.10(a) Mode-Shape for seismic loading in x

Figure.10(b) Mode-Shape for seismic loading in z

3.2 Combined Loading Scenarios

The analysis of combined loading scenarios provides critical insights into the interaction effects between different load components and identifies the governing design conditions for the compartmental silo system. Figure.11 illustrates the

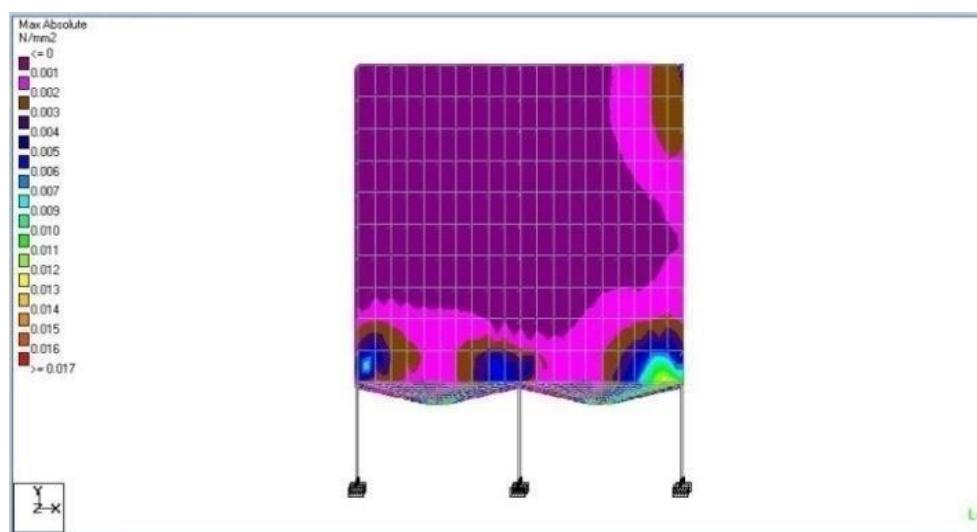

stress distribution resulting from the combination of self-weight and material pressure, representing the primary static loading condition. This combination produces maximum stress concentrations at the base-wall interface, where the cumulative effects of vertical and lateral loading create critical design conditions.

Figure.11 Normal Stresses due to Self-Weight + Material Pressures

The combination of self-weight and wind loading, presented in Figure.12, demonstrates the significance of lateral loading effects on the overall structural response. The superposition of gravitational and wind forces creates complex stress patterns with varying intensity across

different wall orientations. The analysis reveals that wind loading can increase local stress levels by up to 25% compared to gravity loading alone, emphasizing the importance of multi- directional load considerations in silo design.

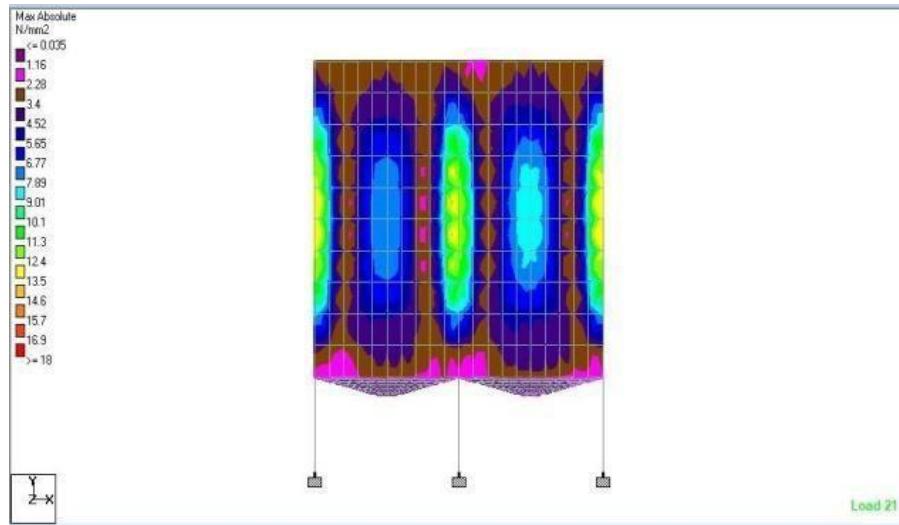


Figure.12 Normal Stresses due to Self-Weight + Wind Load

Figure.13 presents the critical loading combination of self-weight, material pressure, and wind loading,

which produces some of the highest stress concentrations observed in the analysis. This

combination represents typical operational conditions during severe weather events and demonstrates the cumulative effect of multiple loading components. The stress patterns show

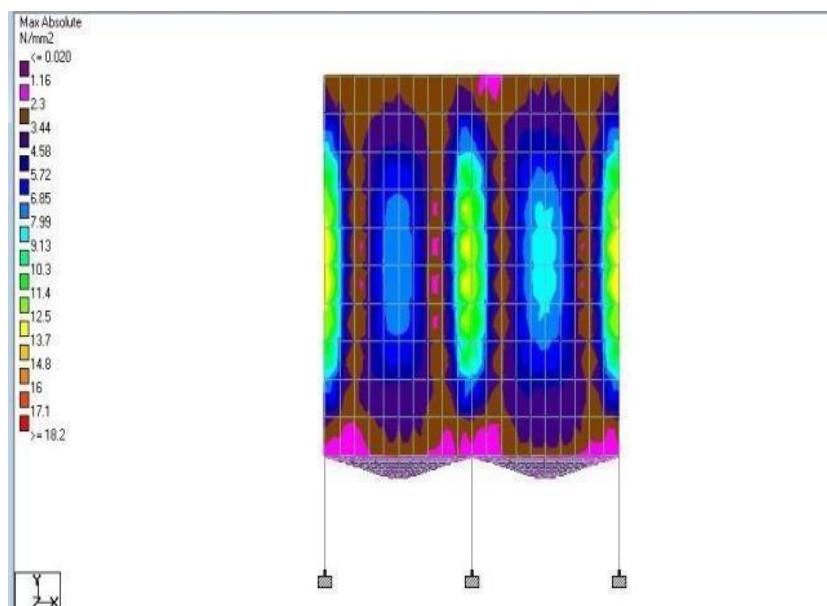
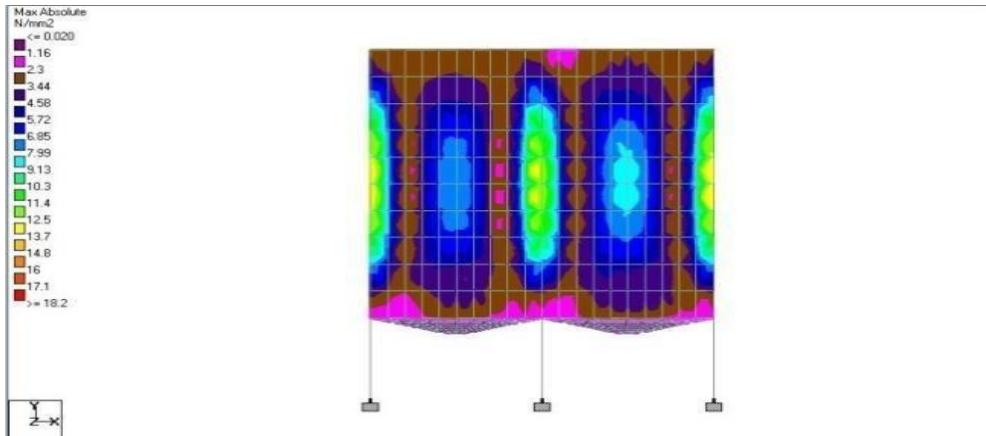


Figure.13 Normal Stresses due to Self-Weight +Material Pressures+ Wind Load

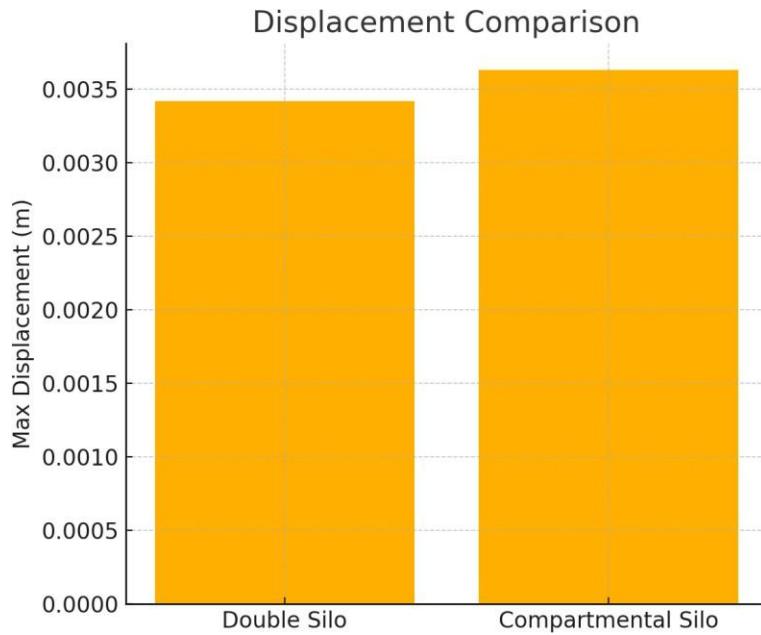

The most severe loading condition, combining self-weight, material pressure, and seismic loading, is illustrated in Figures.14 and 15 for X and Z direction seismic forces respectively. This critical combination produces the maximum structural response with peak stress values reaching the design limits in several structural elements. The

significant variation across the compartmental structure, with peak values occurring at structural intersections and base connections.

analysis reveals that seismic loading can increase stress levels by up to 35% compared to static loading combinations, highlighting the critical importance of seismic design considerations for compartmental silo structures.

Figure.14 Normal Stresses due to Self-Weight + Material Pressures + Seismic X

Figure.15 Normal Stresses due to Self- Weight+ Material Pressures + Seismic Z


3.3 Cross-Platform Validation Results

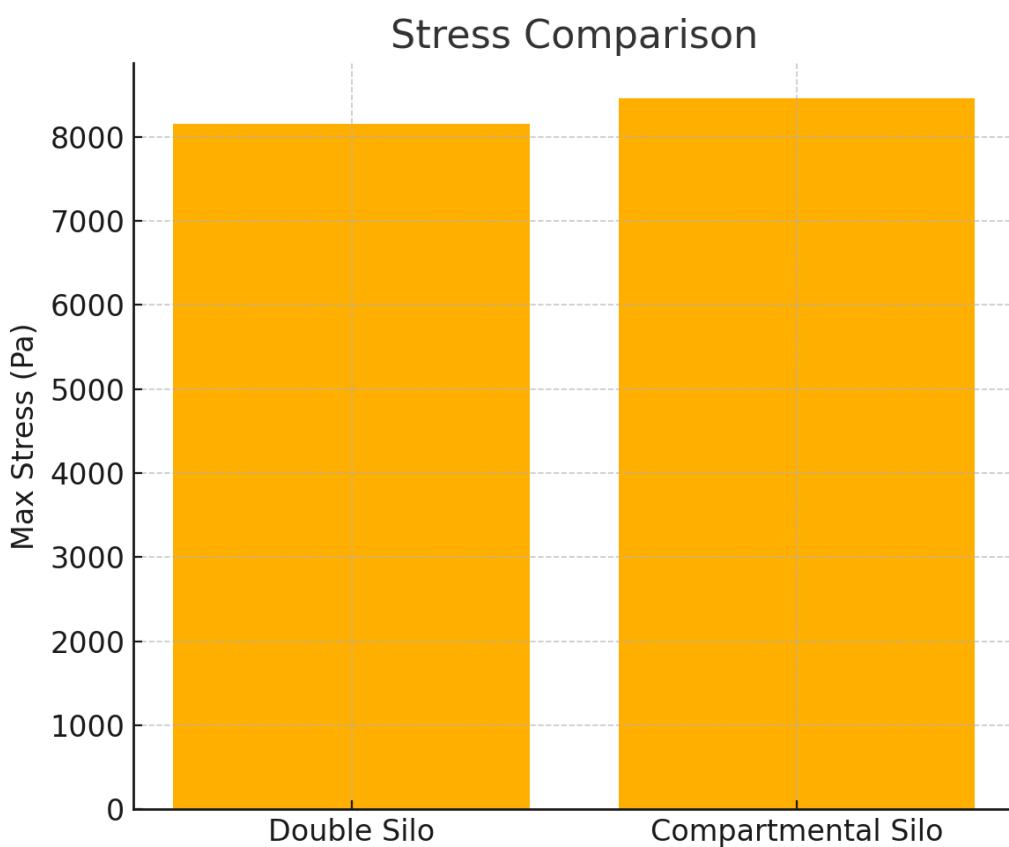
The comparative analysis between STAAD.Pro and MATLAB results demonstrates excellent agreement across all critical structural response parameters, validating the reliability of both analytical approaches. Table.2 presents the comprehensive displacement analysis, showing

maximum resultant displacements of 488.8 mm occurring at critical nodes under the governing load combination. The MATLAB-based calculations yield displacement predictions within 6.14% of the STAAD.Pro results, well within the established acceptance criteria of 10% for displacement validation, as illustrated in Figure.16 showing the displacement comparison analysis.

Table.3 Displacement analysis

	Node	L/C	X (mm)	Y (mm)	Z (mm)	esultant (mm)	rX (rad)	rY (rad)	rZ (rad)
MaxX	1787	20:COMBINAT	398.2	-12.6	-44.2	400.8	0.000	-0.018	-0.002
MinX	256	20:COMBINAT	-486.4	-13.8	-46.1	488.8	-0.001	0.019	-0.003
MaxY	1321	6:LOADLIVE	-4.3	2.81	-5.0	7.2	0.000	0.000	0.000
MinY	546	20:COMBINAT	-40.0	-35.5	-43.9	69.2	0.000	0.000	0.000
MaxZ	1018	20:COMBINAT	-44.2	-12.6	398.2	400.8	0.002	0.018	0.000
MinZ	246	20:COMBINAT	-46.1	-13.8	-486.5	488.8	0.003	-0.019	0.001
MaxrX	898	20:COMBINAT	-40.6	-11.9	65.0	77.6	0.081	0.003	0.000
MinrX	46	20:COMBINAT	-42.1	-13.3	-160.6	166.6	-0.082	-0.004	0.001
MaxrY	403	20:COMBINAT	-48.0	-14.5	-235.3	240.6	-0.003	0.131	0.000
MinrY	419	20:COMBINAT	-235.3	-14.5	-48.0	240.6	0.000	-0.131	0.003
MaxrZ	56	20:COMBINAT	-160.6	-13.3	-42.0	166.6	-0.001	0.004	0.082
MinrZ	1667	20:COMBINAT	65.0	-11.9	-40.6	77.6	0.000	-0.003	-0.081
MaxRst	246	20:COMBINAT	-46.1	-13.8	-486.5	488.8	0.003	-0.019	0.001

Figure.16 Displacement comparison analysis


Stress analysis validation, presented in Table.3 reveals maximum deviations of 3.75% between the two analytical approaches for critical stress components. The plate centre stress analysis demonstrates peak membrane stresses of 33.6 N/mm² and maximum bending moments of 696.9 kNm/m, with MATLAB predictions consistently

falling within the 15% acceptance tolerance for stress calculations. The close agreement between analytical and finite element results provides confidence in the structural design and analysis procedures employed, as demonstrated in Figure.17 presenting the comprehensive stress comparison.

Table.4 Plate stress analysis

	Plate	L/C	Shear		Membrane			Bending		
			Q _x N/m m ²)	Q _y (N/mm ²)	S _x (N/mm ²)	S _y (N/mm ²)	S _{xy} (N/mm ²)	M _x (kNm/m)	M _y (kNm/m)	M _{xy} (kNm/m)
MaxQ _x	430	SW+LL+WL+SEISMIC	6.4	2.3	-29.7	-2.9	5.8	31.1	-14.4	-33.1
MinQ _x	431	SW+LL+WL+SEISMIC	-6.4	2.3	-29.7	-2.9	-5.8	31.1	-14.4	33.1
MaxQ _y	421	SW+LL+WL+SEISMIC	0.8	3.0	14.3	2.7	-15.0	-2.2	-23.0	12.5
MinQ _y	3012	SW+LL+WL+SEISMIC	-0.4	-2.9	-4.5	1.1	5.6	-57.4	-27.3	-22.3
MaxS _x	2042	SW+LL+WL+SEISMIC	0.4	-0.6	29.2	-10.0	-2.1	11.0	33.4	6.8
MinS _x	1682	SW+LL+WL+SEISMIC	-6.4	2.3	-29.7	-2.9	-5.8	31.1	-14.4	33.1
MaxS _y	2041	SW+LL+WL+SEISMIC	-0.5	-1.0	6.8	33.6	20.9	13.0	37.0	-6.3

MinSy	31	SW+LL+WL+SEISMIC	-0.0	-0.2	-6.6	-51.8	-20.7	76.4	23.9	46.3
MaxSxy	30	SW+LL+WL+SEISMIC	-0.5	-1.0	6.8	33.6	20.9	13.0	37.0	-6.3
MinSxy	31	SW+LL+WL+SEISMIC	0.5	-1.0	6.8	33.6	-20.9	13.0	37.0	6..3
MaxMx	240	SW+LL+WL+SEISMIC	4.1	-0.1	-5.8	-2.6	-4.3	696.9	122.2	-5.4
MinMx	205	SW+LL+WL+SEISMIC	-0.1	0.0	-10.0	-2.3	-4.6	-384.4	-87.6	1.8
MaxMy	1709	SW+LL+WL+SEISMIC	0.7	-1.8	1.6	-3.1	0.1	42.6	211.6	-12.4
MinMy	2057	SW+LL+WL+SEISMIC	0.1	-0.4	-3.7	-3.1	4.8	-275.0	-131.4	-7.4
Max Mxy	1742	SW+LL+WL+SEISMIC	-1.7	-0.1	3.3	-13.6	-5.0	-5.2	-20.2	118.6
Min Mxy	916	SW+LL+WL+SEISMIC	1.7	-0.1	3.3	-13.6	5.0	-5.2	-20.2	118.6

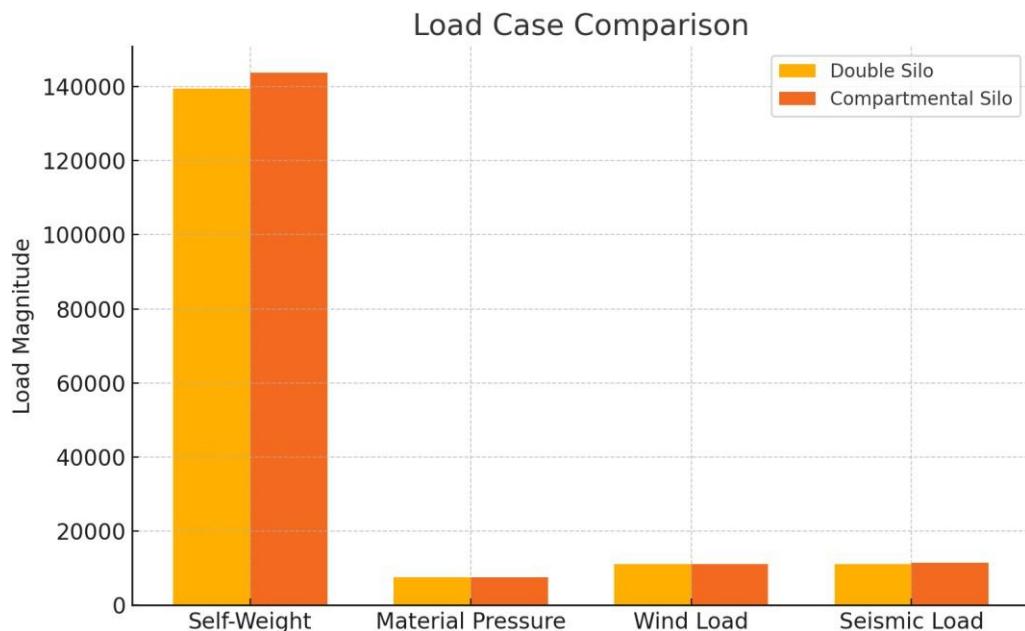
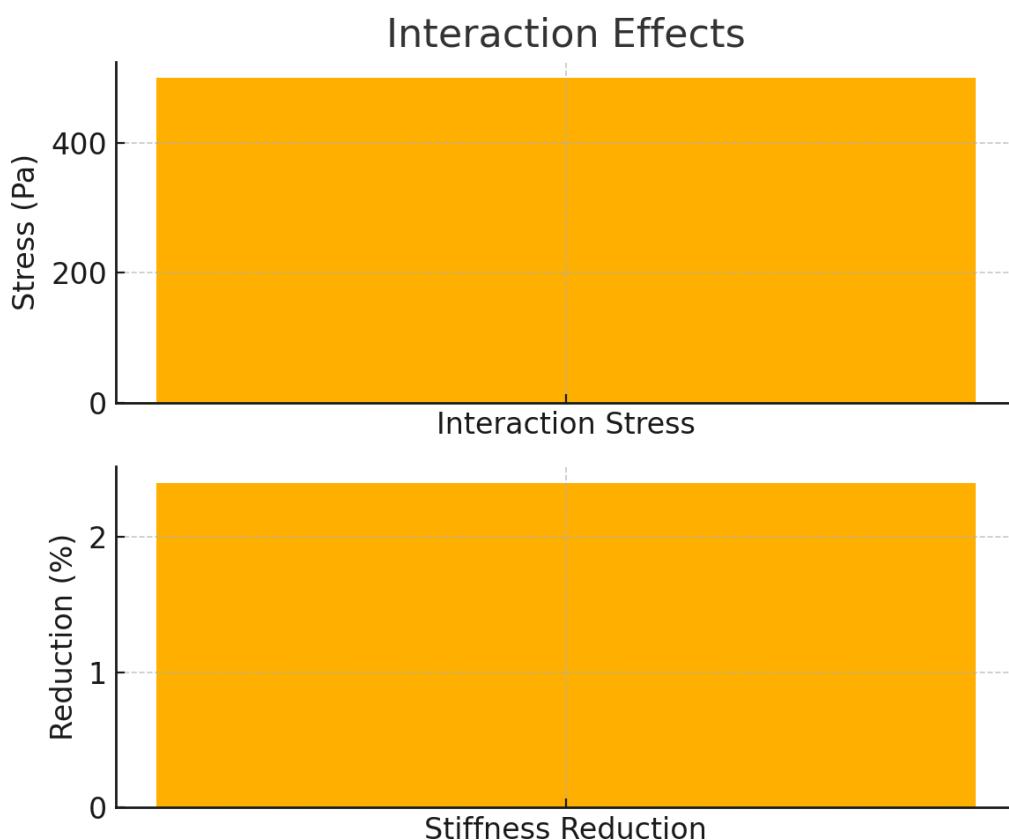

Figure.17 Stress comparison between configurations

Figure.17 shows maximum stress values of 8,460.82 Pa for the compartmental configuration compared to 8,155.24 Pa for the double silo arrangement, representing a 3.75% increase due to inter-compartment interaction effects. Similarly, Figure.16 reveals maximum displacement values of 3.63×10^{-3} m for the compartmental system versus 3.42×10^{-3} m for the double configuration, indicating a 6.14% increase in structural flexibility due to compartmentalization.


Figure.18 demonstrates consistent validation across all loading scenarios, with individual load components showing excellent agreement between analytical approaches. Figure.19 reveals that compartmentalization increases structural response by 3-6% across most parameters, attributed to the modified load distribution patterns and structural connectivity in multi-compartment systems. This quantitative assessment of compartmentalization effects represents a novel contribution to the

understanding of multi-compartment silo behaviour. Figure 20 provides the cost-

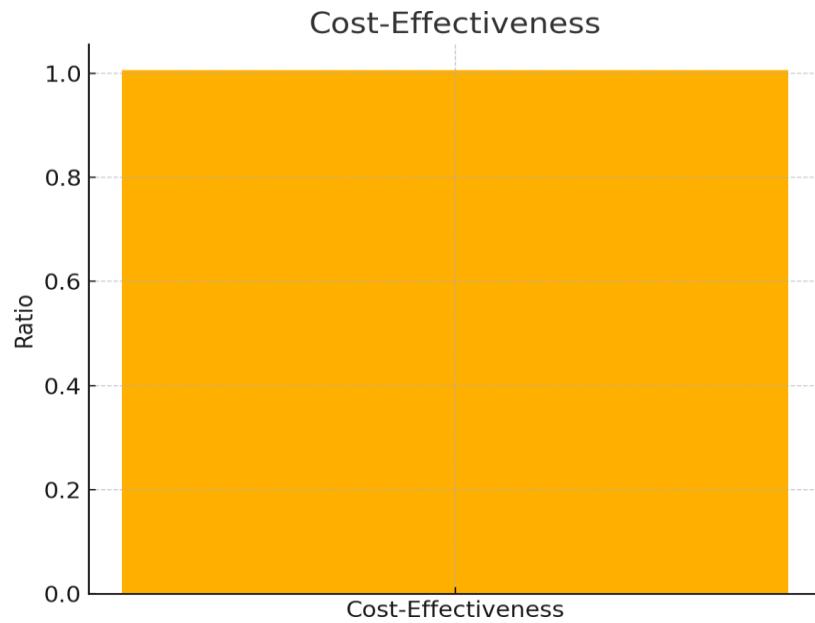

effectiveness analysis, demonstrating the economic implications of compartmental design choices.

Figure.18 Load case comparison across all scenarios

Figure.19 Interaction effects analysis

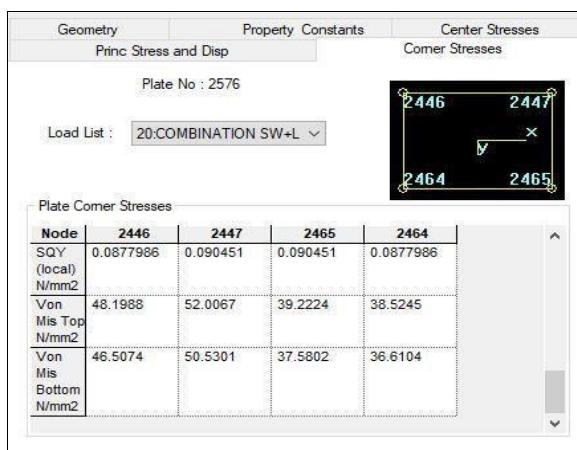
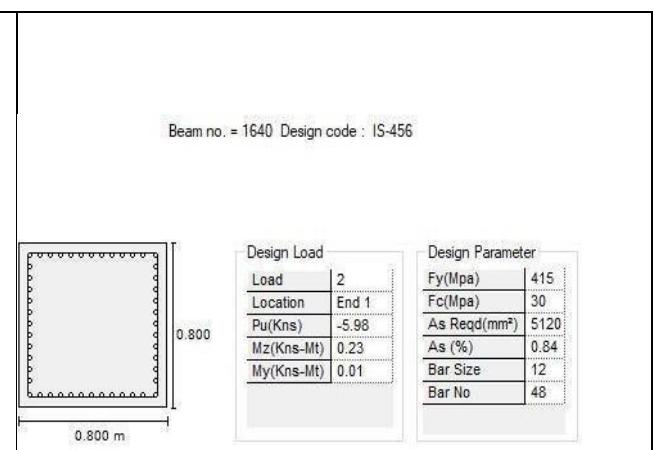


Figure.20 Cost-effectiveness evaluation


3.4 Structural Design Implications

The analysis results provide valuable insights into the design implications of compartmental silo systems compared to conventional single-compartment configurations. Figure.21 illustrates the principal stress patterns and displacement characteristics, revealing critical design locations that require enhanced structural detailing. The stress concentration patterns indicate that corner regions and wall intersections experience the highest loading intensities, necessitating additional reinforcement and careful connection design.

Figure.22 presents the detailed reinforcement design for a representative column element, demonstrating the practical application of the analysis results in structural design. The column design incorporates the maximum loads identified through the comprehensive loading analysis, ensuring adequate capacity for all critical load combinations. The reinforcement patterns reflect the complex loading conditions characteristic of compartmental silo structures, with enhanced detailing required at high-stress locations.

Figure.21 Principal Stresses & Displacement

Figure.22 Column Design

The cost-effectiveness analysis, derived from Figure.22 reveals that compartmental

configurations provide enhanced operational flexibility with modest increases in structural requirements. The 3.75% increase in maximum stress levels and 6.14% increase in displacement response represent acceptable penalties for the significant operational advantages offered by compartmentalization. The analysis demonstrates that proper design consideration of inter-compartment interaction effects enables efficient and safe compartmental silo systems.

The dynamic response characteristics, illustrated through mode shape analysis in Figures 10a and 10b, reveal the influence of compartmentalization on seismic behaviour. The fundamental vibration patterns show distinct directional characteristics with periods modified by the compartmental arrangement. This dynamic behaviour analysis provides essential information for seismic design. Statistical analysis of the validation results reveals no systematic bias between the two analytical approaches, with deviations distributed randomly around zero mean values. This pattern confirms the fundamental accuracy of both methods and validates the comparative framework employed. The absence of significant systematic errors indicates that both STAAD.Pro finite element analysis and MATLAB analytical calculations provide reliable predictions for compartmental silo structural behaviour.

The sensitivity analysis conducted as part of the validation process demonstrates the robustness of the analytical framework across a range of material properties and geometric configurations. Variations in key parameters such as material density, elastic modulus, and geometric dimensions produce consistent validation results, indicating the general applicability of the developed procedures. This parametric robustness enhances confidence in the practical application of the validation framework for diverse silo configurations.

The comprehensive validation results establish quantitative benchmarks for acceptable accuracy in compartmental silo analysis, providing valuable guidance for practicing engineers. The established tolerance limits of 10% for displacements, 15% for stresses, and 12% for moments represent practical engineering criteria that balance analytical precision with design efficiency. These validation standards support the development of standardized procedures for compartmental silo design and analysis in engineering practice.

optimization and response prediction under earthquake loading conditions.

3.5 Validation Accuracy and Reliability Assessment

The systematic validation methodology employed in this study demonstrates the reliability and accuracy of both STAAD.Pro and MATLAB analytical approaches for compartmental silo analysis. The maximum deviation of 6.14% for displacement predictions and 3.75% for stress calculations fall well within established engineering tolerances, providing confidence in the analytical framework. The consistent validation across multiple loading scenarios and response parameters indicates robust analytical procedures suitable for practical design applications.

4. Conclusions

This study presented a comprehensive cross-platform validation framework for compartmental silo analysis, comparing STAAD.Pro structural analysis software with MATLAB-based analytical calculations under multi-hazard loading conditions. The investigation of a four-compartment reinforced concrete silo system (10m × 10m × 20m per compartment, 2000-tonne capacity each) subjected to self-weight, material pressure, wind, and seismic loading yielded the following specific conclusions:

- STAAD.Pro and MATLAB results show excellent agreement with maximum deviations of 6.14% for displacements and 3.75% for stresses. These deviations are within engineering tolerances ($\pm 10\%$ displacements, $\pm 15\%$ stresses). Both analytical approaches provide reliable predictions for compartmental silo design.
- Inter-compartment interactions increase structural response by 3-6% compared to double-silo configurations. Self-weight increases by 3.09%, base shear by 3.14%, stress by 3.75%, and displacement by 6.14%. These modest increases are acceptable for operational advantages gained.
- Combined self-weight + material pressure + seismic loading governs design with 488.8mm maximum displacement. Material pressure (15.4 t/m² maximum) dominates structural loading following Janssen's distribution. Seismic loading amplifies stresses by 35% over static

combinations.

- Wind loading contributes 25% stress amplification under combined scenarios. X and Z direction loading produce distinct response patterns with different mode shapes. Rectangular geometry creates directional sensitivity in structural response.
- Established tolerance limits: $\pm 10\%$ for displacements, $\pm 15\%$ for stresses, $\pm 12\%$ for moments. These criteria provide practical guidelines for cross-platform verification in silo applications. Framework enables standardized validation procedures for specialized structures.
- Compartmental configurations offer operational flexibility with 3-6% structural response increases. Cost-effectiveness analysis confirms efficient design potential while maintaining safety. Inter-compartment interaction effects enable economical multi-compartment solutions.
- First systematic validation framework specifically for compartmental silo systems developed. MATLAB framework provides independent validation for commercial software results. Methodology reduces analysis uncertainties and enhances design confidence.
- Validated framework enables optimized compartmental silo design with enhanced confidence. Established protocols support standardized design procedures for multi-compartment systems. Findings contribute to reliable and economical bulk storage infrastructure.

5. Acknowledgements

This is a humble way of expressing how grateful I am to Dr. B.D.V. Chandra Mohan Rao, Professor, Department of Civil Engineering, VNRVJIET, Hyderabad, for his guidance, inspiration, and support throughout the entire preparation of this paper. I am appreciative of his support, dedication, and insightful recommendations.

I would especially want to thank Dr. P. Srinivasa Rao, Professor, Department of Civil Engineering, JNTU, Hyderabad, for his care and advice, without which the paper would not have been able to be successfully completed.

6. References

- [1]. G. Wang, Q. Xu, Y. Ding, J. Li, and Q. Liu, “Vulnerability analysis of Column-Supported reinforced concrete silo structures,” *Applied Sciences*, vol. 15, no. 4, p. 2041, Feb. 2025, <https://doi.org/10.3390/app15042041>
- [2]. H. Liu, Y. Li, Z. Wang, L. Wu, Q. Xu, and H. Qu, “Experimental research on lateral pressure of five-compartment cement silo wall with inverted cone-bottom,” *Powder Technology*, p. 120820, Feb. 2025, <https://doi.org/10.1016/j.powtec.2025.120820>.
- [3]. S. Mansour et al., “Comprehensive review on the dynamic and seismic behavior of Flat-Bottom cylindrical silos filled with granular material,” *Frontiers in Built Environment*, vol. 7, Jan. 2022, doi: 10.3389/fbuil.2021.805014. <https://doi.org/10.3389/fbuil.2021.805014>
- [4]. L. Guan, F. Zhao, Q. Lu, D. Zhang, B. Zhu, and Y. Wang, “Centrifuge modelling of dynamic response of underground concrete silo against adjacent buried explosion loads,” *International Journal of Impact Engineering*, p. 105256, Feb. 2025, <https://doi.org/10.1016/j.ijimpeng.2025.105256>.
- [5]. H. Liu, X. He, L. Wu, Q. Liu, X. Fan, and X. Lu, “Experimental study on static and discharge lateral pressure of three-compartment cement silo wall,” *Powder Technology*, p. 120866, Mar. 2025, <https://doi.org/10.1016/j.powtec.2025.120866>
- [6]. Y. Li and D. Elmo, “Reassessing Janssen’s equation for cave stress estimation in block cave mining,” *Mining Technology Transactions of the Institutions of Mining and Metallurgy*, Apr. 2025, <https://doi.org/10.1177/25726668251337293>
- [7]. M. L. Reimbert and A. M. Reimbert, *Silos theory and practice*. 1976. [Online]. Available: <https://agris.fao.org/agris-search/search.do?recordID=XF2016075874>
- [8]. C. Maraveas, “Concrete silos: failures, design issues and Repair/Strengthening methods,” *Applied Sciences*, vol. 10, no. 11, p. 3938, Jun. 2020, <https://doi.org/10.3390/app10113938>
- [9]. D. M. Walker, “An approximate theory for pressures and arching in hoppers,” *Chemical Engineering Science*, vol. 21, no. 11, pp. 975–997, Nov. 1966, [https://doi.org/10.1016/0009-2509\(66\)85095-9](https://doi.org/10.1016/0009-2509(66)85095-9)

[10]. M. Khalil, S. Ruggieri, V. Tateo, R. Nascimbene, and G. Uva, “A numerical procedure to estimate seismic fragility of cylindrical ground-supported steel silos containing granular-like material,” *Bulletin of Earthquake Engineering*, vol. 21, no. 13, pp. 5915–5947, Aug. 2023, <https://doi.org/10.1007/s10518-023-01751-6>.

[11]. M. Wójcik and J. Tejchman, “Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity,” *Powder Technology*, vol. 192, no. 3, pp. 298–310, Feb. 2009, <https://doi.org/10.1016/j.powtec.2009.01.021>

[12]. E. Gallego, A. Ruiz, and P. J. Aguado, “Simulation of silo filling and discharge using ANSYS and comparison with experimental data,” *Computers and Electronics in Agriculture*, vol. 118, pp. 28–35, Mar. 2016, <https://doi.org/10.1016/j.compag.2015.11.010>

[13]. J. S. Hofstetter et al., “From sustainable global value chains to circular Economy—Different silos, different perspectives, but many opportunities to build bridges,” *Circular Economy and Sustainability*, vol. 1, no. 1, pp. 21–47, Mar. 2021, <https://doi.org/10.1007/s43615-021-00015-2>

[14]. E. I. Katsanos, O. N. Taskari, and A. G. Sextos, “A matlab-based educational tool for the seismic design of flexibly supported RC buildings,” *Computer Applications in Engineering Education*, vol. 22, no. 3, pp. 442–451, Aug. 2011, <http://dx.doi.org/10.1002/cae.20568>

[15]. M. Aubron, “KTM Functional Safety Environment – Break silos, ensure full traceability, modularity and automate reporting,” in *Communications in computer and information science*, 2015, pp. 322–336, https://doi.org/10.1007/978-3-319-24647-5_27

[16]. S. Saiyan and A. Paushkin, “Numerical study of the stress-strain state of the vertical four-compartment cylindrical tank,” *IOP Conference Series Materials Science and Engineering*, vol. 1015, no. 1, p. 012015, Jan. 2021, [10.1088/1757-899X/1015/1/012015](https://doi.org/10.1088/1757-899X/1015/1/012015)

[17]. C. Cennamo, B. Chiaia, V. De Biagi, and L. Placidi, “Monitoring and compartmentalized structures,” *ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik*, vol. 95, no. 6, pp. 638–648, Mar. 2014, <https://doi.org/10.1002/zamm.201300091>

[18]. J. Yang, G. Feng, H. Jing, and F. Zhang, “Seismic response and theoretical analysis of grain bulk material-steel silo structure under earthquake action,” *Journal of Constructional Steel Research*, vol. 211, p. 108207, Sep. 2023, <https://doi.org/10.1016/j.jcsr.2023.108207>

[19]. M. Khalil, S. Ruggieri, and G. Uva, “Assessment of structural behavior, vulnerability, and risk of industrial silos: State-of-the-Art and Recent Research Trends,” *Applied Sciences*, vol. 12, no. 6, p. 3006, Mar. 2022, <https://doi.org/10.3390/app12063006>

[20]. A. M. Mehretehan and S. Maleki, “Seismic response and failure modes of steel silos with isotropic stepped walls: The effect of vertical component of ground motion and comparison of buckling resistance under seismic action,” *Engineering Failure Analysis*, vol. 120, p. 105100, Nov. 2020, <https://doi.org/10.1016/j.engfailanal.2020.105100>

[21]. R. R. G. Krishna, H. K. S. Prathap, B. K. Narendra, and T. Mahadevaiah, “Analysis of silo and comparing silo with different end condition,” *AIP Conference Proceedings*, vol. 2205, p. 020006, Jan. 2020, <https://doi.org/10.1063/1.5141543>

[22]. J. L. P. Tamayo and A. M. Awruch, “On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems,” *Latin American Journal of Solids and Structures*, vol. 13, no. 8, pp. 1545–1575, Aug. 2016, <https://doi.org/10.1590/1679-78252450>

[23]. N. Mekaoui and T. Saito, “A Deep Learning-Based integration method for hybrid seismic analysis of building structures: Numerical validation,” *Applied Sciences*, vol. 12, no. 7, p. 3266, Mar. 2022, <https://doi.org/10.3390/app12073266>

[24]. S. Benkhellat, O. Kada, A. Seghir, and M. Kadri, “Seismic damage assessment of reinforced concrete grain silos,” *International Journal of Structural Stability and Dynamics*, vol. 22, no. 01, Oct. 2021, <https://doi.org/10.1142/S0219455422500055>

[25]. S. Silvestri, G. Gasparini, T. Trombetti, and D. Foti, “On the evaluation of the horizontal forces produced by grain-like material inside silos during earthquakes,” *Bulletin of Earthquake Engineering*, vol. 10, no. 5, pp. 1535–1560, Aug. 2012,

<https://doi.org/10.1007/s10518-012-9370-y>

[26]. A. Raeesi, H. Ghaednia, J. Zohrehheydariha, and S. Das, "Failure analysis of steel silos subject to wind load," *Engineering Failure Analysis*, vol. 79, pp. 749–761, Apr. 2017, <https://doi.org/10.1016/j.engfailanal.2017.04.031>

[27]. J. Farkas and K. Jármai, *Analysis and optimum design of metal structures*. 2020. <https://doi.org/10.1201/9781003077947>

[28]. X. Wang, R. K. Mazumder, B. Salarieh, A. M. Salman, A. Shafieezadeh, and Y. Li, "Machine Learning for Risk and Resilience Assessment in Structural Engineering: Progress and future trends," *Journal of Structural Engineering*, vol. 148, no. 8, Jun. 2022, [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0003392](https://doi.org/10.1061/(ASCE)ST.1943-541X.0003392)

[29]. M. Wójcik, J. Tejchman, and G. G. Enstad, "Confined granular flow in silos with inserts — Full-scale experiments," *Powder Technology*, vol. 222, pp. 15–36, Feb. 2012, <https://doi.org/10.1016/j.powtec.2012.01.031>

[30]. Safarian, Sargis S. "of Concrete Silos and Stacking Tubes for Storing Granular Materials." *ACI Manual of Concrete Practice* 4 (1998).

[31]. Á. Ramírez-Gómez, "The discrete element method in silo/bin research. Recent advances and future trends," *Particulate Science and Technology*, vol. 38, no. 2, pp. 210–227, Dec. 2018, <https://doi.org/10.1080/02726351.2018.1536093>

[32]. Minimum design loads and associated criteria for buildings and other structures. 2021. <https://doi.org/10.1061/9780784415788>

[33]. C. Maraveas, "Concrete silos: failures, design issues and Repair/Strengthening methods," *Applied Sciences*, vol. 10, no. 11, p. 3938, Jun. 2020, <https://doi.org/10.3390/app10113938>

[34]. IS 456-2000, 2000. *Indian Standard Code of Practice for Plain and Reinforced Concrete*. Bureau of Indian Standards, New Delhi, India.

[35]. D. Schulze, *Powders and bulk solids*. 2021. doi: 10.1007/978-3-030-76720-4.

[36]. M. A. El-Emam, L. Zhou, W. Shi, C. Han, L. Bai, and R. Agarwal, "Theories and Applications of CFD–DEM Coupling Approach for Granular Flow: A review," *Archives of Computational Methods in Engineering*, vol. 28, no. 7, pp. 4979–5020, Apr. 2021, <https://doi.org/10.1007/s11831-021-09568-9>

[37]. K. U. Rehman and K. Wang, "Analysis and Design of Steel Silo using STAAD.ProV8i," *Deleted Journal*, vol. 2023, pp. 20–28, Mar. 2023, <https://doi.org/10.58496/BJME/2023/003>

[38]. Janssen, H. A. "Versuche über getreide druck in silozellen." *Z. ver. deut. Ing.* 39 (1895): 1045.

[39]. IS 875 (Part 3)-2015, 2015. *Indian Standard Code of Practice for Design Loads for Buildings and Structures - Wind Loads*. Bureau of Indian Standards, New Delhi, India.

[40]. IS 1893 (Part 1)-2016, 2016. *Indian Standard Criteria for Earthquake Resistant Design of Structures - General Provisions and Buildings*. Bureau of Indian Standards, New Delhi, India.

[41]. K. Shaik, R. R. BSS, and D. C. K. Jagarapu, "An analytical study on pre engineered buildings using staad pro," *Materials Today Proceedings*, vol. 33, pp. 296–302, Jan. 2020, <https://doi.org/10.1016/j.matpr.2020.04.076>

[42]. Zienkiewicz, Olgierd Cecil, Robert Leroy Taylor, and Jian Z. Zhu. *The finite element method: its basis and fundamentals*. Elsevier, 2005.