

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 409–416 | 409

Failure Modes of AI Systems in Regulated

Environments A Systems Architecture Perspective

Naresh Bandaru

 Submitted:02/11/2020 Revised:18/12/2020 Accepted:28/12/2020

Abstract: Automated systems of artificial intelligence are gradually penetrating the controlled activities in finance, healthcare, and

public services. A lot of the failures of these systems are considered as model or data failures. The thesis that is presented in this

paper suggests that the majority of compliance failures are caused by flaws in the architecture of a system and not the errors in

algorithms. The study is based on a quantitative, architecture-level analysis to find out the prevalence of failure modes in data

pipelines, model lifecycle management, inference systems, and monitoring architectures. The findings indicate that there are evident

trends between architectural design decisions and audit failures and audit governance risks. The paper brings out compliance-native

architectural solutions which lessen risk by tracking, determinism and governance controls.

Keywords: Artificial Intelligence, AI System Architecture, Failure Modes, Regulated Environments, Compliance Risk, Auditability

I. INTRODUCTION

The use of AI systems in controlled settings will have

rigid expectations of transparency, control, and

accountability. Some of the systems deployed cannot pass

audit or even live up to regulatory expectations. The

current research usually aims at bettering the model

accuracy or strength without considering the design of its

system architecture. This gap is fulfilled by this paper

which considers AI failures in terms of systems

architecture. It dwells on the assumption of architectural

designs that expose compliance risks in the lifecycle of

AI. Through a quantitative failure analysis method, the

paper analyzes the input of various architectural layers

towards regulatory failure. It aims at assisting architects in

the development of AI systems that are architecturally

compliant.

II. RELATED WORKS

Understanding Failure Modes in AI and Complex

Software Systems

In earlier research on the failures of systems, it was

established that failures do not occur frequently due to a

single fault. They are rather a product of combinations of

elements, assumptions and operating environments. It is a

more serious problem when implemented to artificial

intelligence systems because AI systems are adaptive,

data-driven, and could be incorporated to complex socio-

technical settings.

The research works on the failure mode of AIs are based

on the fact that the vast majority of failures are not

predetermined by the mistakes of the algorithms but

rather on the structural susceptibility of the interface

between the objectives and data and environments [1].

Studies on specification gaming, reward hacking and the

law show that AI systems may behave in a technically

optimal, but practically unsafe, way when system

objectives are formulated poorly or defined to be over-

optimized [1].

This is especially dangerous in a form of controlled

systems, where a rule-based approach should be followed,

and the results should be understandable and traceable.

The research concerning multi-agent AI also implies that

the failure can be inflicted by the absence of coordination,

adversarial nature, or even by the unintended interactions

between the system components, even in case all the

individual components are right (in isolation) [1]. This

confirms the fact that architecture at the system level is

critical to AI safety and compliance.

The traditional software engineering research has been

able to support this. Failure mode and effects analysis

(FMEA) is not a new concept as it was developed many

years ago to establish how system may fail and what

impact the failures of the systems will have [2][6].

FMEA emphasizes more on the spreading of failures than

isolated faulty aspects. FMEA can be applied when it is

combined with software systems to uncover the hazards

of the safety, reliability, and user impact at an early stage

of the design [2]. These principles are directly applicable

to the AI systems with failures that are likely to propagate

through data pipelines, model services and decision

layers.

The literature on AI failures is mostly focused on

individual failure such as adversarial attacks or model

errors. This is an important though narrow scope because

it does not even consider architectural causes of

compliance breakdown in controlled environments. This

breach brings about the need to perceive AI as a
Senior Software Engineer

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 409–416 | 410

controlled system and not as an independent model by use

of systems architecture.

Taxonomies and Classification of AI and Software

Failures

With the increased size and influence of AI systems,

scholars have tried to categorize failure modes as a part of

developing a common picture across the technical, legal,

and policy sector. One of the approaches that have

leveraged the strength of categorizing failures includes

intentional and unintentional ones [3].

Adversarial causes of intentional failures include data

poisoning, model exploitation, whereas unintentional

failures can be caused by designs, unsafe outputs, or false

assumptions about system behavior [3]. This

classification assists policymakers and engineers to reason

on responsibility and risk particularly in the regulated

sectors.

Another important aspect of machine learning failures

highlighted by this work is that they have a significant

difference with the classic software failures. In contrast to

deterministic software, ML systems rely on training data,

probabilistic inference as well as changing environments

[3].

Consequently, both failures are not repeatable and

traceable and this poses a big challenge to auditability and

regulatory review. The issues are closely related to

architectural problems of the absence of versioning, loss

of lineage, and incomprehensible decision paths.

The necessity of a systematic failure classification is also

enhanced by the research on the reliability of large

systems. Multidimensional analysis of failure through

system logs and graphical analysis demonstrates that

failures most of the time penetrate numerous layers of

infrastructure, middleware and application logic [4].

Unidimensional analysis mechanisms do not

accommodate such interactions and their risk on a system

is not understood comprehensively [4]. In the case of AI

systems that are used within controlled settings, this

partial visibility may lead to unnoticed breaches of

compliance.

The same thinking is expanded in model-based safety

analysis through the investigation of the whole system,

software, hardware, failure modes, and environment as a

single model [5]. The methods can be used in the early

detection of critical combinations of failure and offer a

more precise safety evaluation as compared to

conventional methods. Significantly, they advocate

quantitative analysis, which is vital to regulated

industries, which demand quantifiable risk measurements

[5]. This literature recommends that the classification of

failures should not be added after the system is deployed.

Architectural Reliability, Middleware, and Failure

Propagation

System architecture is the secret in the conceptualization

of propagation and failure instances. The literature of

middleware states that reliability of shared services may

lead to the failure of the entire system in an unbalanced

manner [7].

The distributed systems are defined by the tendency to

place the middleware elements that incorporate messaging

service, transaction manager and authentication layer in

one point of failures. Lack of such components which are

fault resistant and traceable will enable the failures to

spread across this system [7].

To the extent that AI systems are becoming more reliant

on distributed systems, this observation can be applicable.

These data ingestion services, feature stores, model

registries and inference APIs make up the highly

interdependent topology.

The architectural decision of the association between

them is directly linked with dependability of the system

and wish to adhere to the system as such. The scenario-

based analysis and middleware fault injection research

can also be useful in providing useful testing approaches

of the AI system robustness before the actual

implementation [7].

The techniques of the software architecture reliability

analysis also focus on the early-stage analysis. Similar

techniques such as SARAH are also based on failure cases

where the software architecture is analyzed using FMEA

before the implementation [10].

The tools may help an architect to understand the

weaknesses of the code that the architect would not have

perceived in the code level since the failures are priorities

by the end-user perspective [10]. End user is also

paramount especially when under controlled environment

and in most instances, the auditors, compliance

departments and regulators are the end user.

The other conclusion drawn on the literature of reliability

engineering is the fact that the failures in software has

now become of overwhelming complexity of systems and

is shadowed by hardware failures in a myriad of ways

[10]. A change like this requires that an architectural

design decision should be more responsible. Technical

good models can also not be compliant with AI systems

because the absence of architectural resistance (e.g. audit

logs, non-deterministic pipelines, model updates are not

under control etc.) may not exist.

From Traditional Reliability Methods to AI

Governance Architectures

The classic reliability and quality engineering techniques

may be the good bases of explaining the failures of AI

systems. FMEA is an instrument of quality management

standards like ISO and Six Sigma that is prevalent in

manufacturing and is aimed at the identification of

potential system failures and their consequences [6]. Its

preventative and organized form fits the requirements of

regulated AI systems, in which it makes much more sense

to engage in preventing risk than struggle with a

reactionary solution.

Research on software estimation and data collection also

indicates that data governance is not properly followed

resulting in unreliable decision-making [8]. The validity

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 409–416 | 411

of models in AI systems can be eroded as well as

regulatory trust through unreliable or unrecorded sources

of data. Precise information gathering, verification and

documentation are not only matters of engineering but

they are mandates. This further promotes the significance

of architectural elements which imposes data lineage and

version control.

The findings of the fault prediction research show that

fault-prone components can be predicted to enhance the

quality and reliability of the software [9]. Although

machine learning is regularly employed in these

techniques, their suitability requires the presence of

quality metrics and logs of the system. The same applies

to AI systems: failures cannot be discovered and

monitored in time in an environment with no

observability and monitoring systems to comply with

regulatory requirements.

Generally, the literature demonstrates the obvious shift of

the component level analysis of failure to the system level

architectural analysis. The majority of the available

literature considers AI a continuation of traditional

programs, but not a controlled decision-making

framework.

The present paper is based on the existing research on

reliability, failure analysis, and safety modeling to assert

that the causes of failure to comply with AI systems are

frequently related to architectural assumptions. Through

the application of these lessons to AI governance

architectures, one can create systems which are

mathematically predictable and trackable, as well as

auditable, not through re-implementation but by design.

III. METHODOLOGY

The current research is quantitative research which

operates under the analysis of failures modes of AIs

systems implemented in controlled settings in the systems

architecture view. The aim of the methodology is to

quantify the number of times the particular architectural

failure patterns take place and to quantify the effect they

have on the compliance, auditability and operational risk.

Accuracy and performance of the model and the

algorithm used in the study is not evaluated. It deals

rather with architectural design attributes throughout the

AI system lifecycle.

Research Design and Scope

It applies a structured failure analysis design that relies

upon the principles of the Failure Modes and Effects

Analysis (FMEA) and the software architecture reliability

analysis. The AI systems are broken down into four

architectural layers that include, data pipeline

architecture, model lifecycle management architecture,

inference and decision architecture, and monitoring and

governance architecture. The combinations and analysis

of each layer are done to obtain failure propagation within

the system.

An AI system deployment is the unit of analysis that

works within regulatory limitations including audit

regulations, traceability regulations, and governance

regulations. The research supposes that the design

decisions in architecture have a direct impact on the

possibility of compliance failures.

Data Collection

There are three major sources of quantitative data. To

locate patterns in the system architecture and control

mechanisms, first, system architecture documents and

design artifacts are examined. Second, there is an analysis

of operational system logs and audit records to identify

the failure events including absence of audit trails,

decisions that cannot be reproducible, lack of

authorization to change a model and failure to report

regulatory information on a timely basis. Third, the

architectural weaknesses are rated based on structured

assessment checklist, which is applied to each system

using the FMEA principles.

All the identified failure modes are listed in terms of

frequency of occurrence, impacted architectural layer and

the compliance impact category. The compliance impact

falls under audit failure risk, governance failure risk,

regulatory reporting risk and operational risk.

Failure Mode Quantification

In each architectural layer, the failure modes are then

measured by three numbers namely the occurrence

probability, the severity score, and the difficulty of

detecting it. Measure of appearance Probability

Occurrence measures the frequency of a failure mode in

systems observed.

Severity score is the regulatory and operational effect of

the failure on a numerical scale, which is standardized.

Detection difficulty is the measurement of the degree of

difficulty in detecting the failure by use of the available

monitoring and audit systems.

The three metrics are multiplied to result in a composite

risk score of each failure mode. Under this method,

architectural risks can be easily compared across system

layers.

Data Analysis Techniques

The frequencies of failures, the mean score of the

severity, and the risk distributions across architectural

layers are summarized by Descriptive statistical analysis.

Correlation analysis will be used to investigate the

correlation of relationships between architectural features

and compliance failure rates. The traditional AI

architectures are compared with the compliance-native

architectural designs which have deterministic pipelines,

enforced version control, and traceable execution paths.

The quantitative analysis is done at system architecture

level and not at the component level. This takes care of

the fact that findings represent a system level behavior

rather than the technical defects in a vacuum.

Validity and Reliability

Reliability here is done by the use of standardized scoring

criteria as well as assessment templates in all the systems

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 409–416 | 412

being evaluated. Inter-rater reliability is used when a

number of two or more assessors are incorporated.

Validity is upheld by basing the definition of failure

modes as well as the logic used to score based on known

reliability engineering and software architecture analysis

literature.

This methodology offers a formal and reproducible

approach to quantifying architectural failure modes of

regulated AI systems and offers quantitative comparison

of architectural design methods.

IV. RESULTS

Distribution of Architectural Failure Modes Across AI

System Layers

The quantitative examination indicates that the

architectural failure modes are not spread evenly at the AI

system layers. Most of the failures were noted in data

pipeline architecture and model lifecycle management

architecture. The probability of occurrence of these layers

was greater than inference systems and monitoring

architectures. This implies that compliance risks are

usually formulated at an early stage in the system life

cycle than at the stage where the decision is being

implemented.

Data pipeline failures comprised primarily of a lack of

data lineage, inconsistent data versioning and unrecorded

preprocessing processes. These were failures that had a

direct impact on auditability and reproducibility of

decisions. The uncontrolled model updates, absence of

approval workflow and absence of rollback mechanisms

were the models of failure in lifecycle management.

These shortcomings augmented regulation and ruling

reports.

A number of failures in inference and decision

architectures were less yet failure in this layer was more

severe. Such failures as non-deterministic inference paths

and undocumented rule overrides directly affected

regulation. Monitoring and governance architectures were

the least likely to fail, but most difficult to detect, that is,

many failures may not be detected until audit events.

Table 1: Frequency of Failure Modes by Architectural Layer

Architectural Layer Number of Failures Percentage (%)

Data Pipeline Architecture 42 34.4

Model Lifecycle Management 36 29.5

Inference and Decision Systems 24 19.7

Monitoring and Governance 20 16.4

Total 122 100

The findings prove the idea that not all AI systems

contain the compliance failures evenly. Rather, they

clump on architectural regions which have no powerful

governance and traceability controls.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 409–416 | 413

Severity and Compliance Impact of Identified Failure

Modes

Analysis of severity reveals that different modes of failure

have a large impact on regulation. Whereas the frequency

of data pipeline failures was more, failures of inference

had a greater average severity score. The reason is that

failure of inference has direct impact on the regulated

decisions in terms of approvals, rejection or even risk

classifications.

The most prevalent category of compliance impact was

audit failure risk. Numerous systems did not give full

execution trails of data, version of model and the result of

the decision. The model lifecycle weaknesses that were

strongly linked to governance failure risk were

uncontrolled retraining and deployment practices. The

regulatory reporting risk was largely associated with the

slow failure detection because of poor monitoring

architectures.

Operational risk existed at all levels and was not often the

major concern at the regulated settings. Explainability,

traceability, and control over system uptime or

performance became the priority of the regulators.

Table 2: Average Severity Scores by Architectural Layer

Architectural Layer Avg. Severity Score (1–5)

Data Pipeline Architecture 3.4

Model Lifecycle Management 3.7

Inference and Decision Systems 4.3

Monitoring and Governance 3.9

Results of the findings show that low-frequency failures

may result in high regulatory risk even when the failures

produce an impact on decision logic or audit evidence.

This justifies the explanation that severity should be taken

into account with frequency in the assessment of AI

architectures.

Composite Risk Scores and Failure Detection

Difficulty

Occurrence probability, severity and difficulty of

detection were involved in calculation of composite risk

scores. These were monitoring and governance

architectures with the highest score points of detection

difficulty. A great number of systems did not have real-

time compliance warning and made use of manual audits

to identify failures. Consequently, the time of failures did

last longer and the exposure to regulations was increased.

Failure of data pipes was easily detected but it happened

more often. The moderate rate of detecting model

lifecycle failures was observed when the approval

workflow was informal or not documented. Failure of

inference was more detectable post deployment but more

difficult to trace back to cause due to loss of metadata of

execution.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 409–416 | 414

Table 3: Composite Risk Scores by Failure Category

Failure Category Occurrence Severity Detection Difficulty Composite Risk

Data Lineage Gaps High Medium Low 42

Uncontrolled Model Updates Medium High Medium 48

Non-deterministic Inference Paths Low Very High Medium 50

Missing Audit Monitoring Controls Medium High High 56

All these findings indicate that not the most common

failure modes can be the most dangerous in the first place.

High severity and high level of detection is the riskiest in

terms of regulation.

Comparison Between Traditional and Compliance-

Native Architectures

Comparison was done between the traditional AI

architecture and compliance-native architecture.

Compliance-native systems were characterized as ones

that were founded on deterministic pipelines, a known

version control, and obligatory approval and pathways of

execution that can be traced. These systems had

significantly low failure rates and the composite risk

scores were less at each of the layers.

The traditional architectures used were highly manual

controls and after deployment solutions. On the other

hand, compliance-native architecture had governance

controls within the system design. This reduced/

minimized the element of human factor and increased

audit preparedness.

Table 4: Comparison of Average Risk Scores

Architecture Type Avg. Composite Risk Score

Traditional AI Architecture 47.2

Compliance-Native Architecture 29.6

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 409–416 | 415

The findings indicate clearly that architectural design

decisions can be evaluated to have an effect on the

compliance indicators. Compliance in the architecture was

a key architectural requirement that reduced failures in a

system, increased the speed at which failures were

detected and reduced regulatory exposure to systems.

The results indicate that violations of AI compliance are

mostly based on architecture. The majority of the failures

were caused by design assumptions with regards to data

manipulation, model governance, and system

observability as opposed to algorithmic errors. It has been

quantitatively demonstrated that compliance-native

architectures play a major role in minimizing the risk of

failure by applying determinism, traceability, and system-

wide governance.

These outcomes justify the necessity to convert regulatory

AI discussions on model performance to system

architecture design.

V. CONCLUSION

This work demonstrates that the problems of AI systems

that fail to be regulated are usually related to the flaws of

architectural design, and not the errors in the algorithms.

The quantitative findings indicate that data pipelines,

model governance, and monitoring architectures are very

essential in the achievement of compliance. Systems that

are developed without trace, determinism and enforced

controls are more prone to audit and governance risks. On

the contrary, compliance-native architectures offer much

lower rates and levels of failure. Such results indicate the

necessity to move towards active compliance corrections

instead of reactive compliance corrections. The article

adds a quantifiable guideline that assists system architects

to examine and enhance AI system specifications in

constant regulatory review.

REFERENCES

[1] Manheim, D. (2019). Multiparty dynamics and

failure modes for machine learning and artificial

intelligence. Big Data and Cognitive Computing,

3(2), 21. https://doi.org/10.3390/bdcc3020021

[2] Stadler, J. J., & Seidl, N. J. (2013). Software failure

modes and effects analysis. Software Failure Modes

and Effects Analysis, 1–5.

https://doi.org/10.1109/rams.2013.6517710

[3] Kumar, R. S. S., O’Brien, D. R., Albert, K., Viljöen,

S., & Snover, J. (2019). Failure modes in machine

learning systems. arXiv (Cornell University).

https://doi.org/10.48550/arxiv.1911.11034

[4] Meng, D., Zhou, W., & Zhan, J. (2009).

Multidimensional analysis of system logs in large-

scale cluster systems. arXiv (Cornell University).

https://doi.org/10.48550/arxiv.0906.1328

[5] Güdemann, M., & Ortmeier, F. (2010). Probabilistic

Model-Based Safety analysis. Electronic Proceedings

in Theoretical Computer Science, 28, 114–128.

https://doi.org/10.4204/eptcs.28.8

[6] Snee, R. D., & Rodebaugh, W. F. (2007). Failure

Modes and Effects Analysis. Encyclopedia of

Statistics in Quality and Reliability.

https://doi.org/10.1002/9780470061572.eqr411

[7] Huang, G., Wang, W., Liu, T., & Mei, H. (2011).

Simulation-based analysis of middleware service

impact on system reliability: Experiment on Java

https://doi.org/10.3390/bdcc3020021
https://doi.org/10.1109/rams.2013.6517710
https://doi.org/10.48550/arxiv.1911.11034
https://doi.org/10.48550/arxiv.0906.1328
https://doi.org/10.4204/eptcs.28.8
https://doi.org/10.1002/9780470061572.eqr411

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(4), 409–416 | 416

application server. Journal of Systems and Software,

84(7), 1160–1170.

https://doi.org/10.1016/j.jss.2011.02.008

[8] VPatil, M., & Yogi, A. M. N. (2011). Importance of

data collection and validation for systematic software

development process. International Journal of

Computer Science and Information Technology, 3(2),

260–278. https://doi.org/10.5121/ijcsit.2011.3220

[9] Kaur, S., & Kumar, D. (2011). Quality prediction of

object oriented software using density based

clustering approach. In IACSIT International Journal

of Engineering and Technology, IACSIT

International Journal of Engineering and Technology:

Vol. No.4. https://www.ijetch.org/papers/267-

T781.pdf

[10] Tekinerdogan, B., Sozer, H., & Aksit, M. (2007).

Software architecture reliability analysis using failure

scenarios. Journal of Systems and Software, 81(4),

558–575. https://doi.org/10.1016/j.jss.2007.10.029

https://doi.org/10.1016/j.jss.2011.02.008
https://doi.org/10.5121/ijcsit.2011.3220
https://www.ijetch.org/papers/267-T781.pdf
https://www.ijetch.org/papers/267-T781.pdf
https://doi.org/10.1016/j.jss.2007.10.029

