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Abstract: Automated systems of artificial intelligence are gradually penetrating the controlled activities in finance, healthcare, and 

public services. A lot of the failures of these systems are considered as model or data failures. The thesis that is presented in this 

paper suggests that the majority of compliance failures are caused by flaws in the architecture of a system and not the errors in 

algorithms. The study is based on a quantitative, architecture-level analysis to find out the prevalence of failure modes in data 

pipelines, model lifecycle management, inference systems, and monitoring architectures. The findings indicate that there are evident 

trends between architectural design decisions and audit failures and audit governance risks. The paper brings out compliance-native 

architectural solutions which lessen risk by tracking, determinism and governance controls. 
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I. INTRODUCTION 

The use of AI systems in controlled settings will have 

rigid expectations of transparency, control, and 

accountability. Some of the systems deployed cannot pass 

audit or even live up to regulatory expectations. The 

current research usually aims at bettering the model 

accuracy or strength without considering the design of its 

system architecture. This gap is fulfilled by this paper 

which considers AI failures in terms of systems 

architecture. It dwells on the assumption of architectural 

designs that expose compliance risks in the lifecycle of 

AI. Through a quantitative failure analysis method, the 

paper analyzes the input of various architectural layers 

towards regulatory failure. It aims at assisting architects in 

the development of AI systems that are architecturally 

compliant. 

II. RELATED WORKS 

Understanding Failure Modes in AI and Complex 

Software Systems 

In earlier research on the failures of systems, it was 

established that failures do not occur frequently due to a 

single fault. They are rather a product of combinations of 

elements, assumptions and operating environments. It is a 

more serious problem when implemented to artificial 

intelligence systems because AI systems are adaptive, 

data-driven, and could be incorporated to complex socio-

technical settings.  

The research works on the failure mode of AIs are based 

on the fact that the vast majority of failures are not 

predetermined by the mistakes of the algorithms but 

rather on the structural susceptibility of the interface 

between the objectives and data and environments [1]. 

Studies on specification gaming, reward hacking and the 

law show that AI systems may behave in a technically 

optimal, but practically unsafe, way when system 

objectives are formulated poorly or defined to be over-

optimized [1].  

This is especially dangerous in a form of controlled 

systems, where a rule-based approach should be followed, 

and the results should be understandable and traceable. 

The research concerning multi-agent AI also implies that 

the failure can be inflicted by the absence of coordination, 

adversarial nature, or even by the unintended interactions 

between the system components, even in case all the 

individual components are right (in isolation) [1]. This 

confirms the fact that architecture at the system level is 

critical to AI safety and compliance. 

The traditional software engineering research has been 

able to support this. Failure mode and effects analysis 

(FMEA) is not a new concept as it was developed many 

years ago to establish how system may fail and what 

impact the failures of the systems will have [2][6].  

FMEA emphasizes more on the spreading of failures than 

isolated faulty aspects. FMEA can be applied when it is 

combined with software systems to uncover the hazards 

of the safety, reliability, and user impact at an early stage 

of the design [2]. These principles are directly applicable 

to the AI systems with failures that are likely to propagate 

through data pipelines, model services and decision 

layers. 

The literature on AI failures is mostly focused on 

individual failure such as adversarial attacks or model 

errors. This is an important though narrow scope because 

it does not even consider architectural causes of 

compliance breakdown in controlled environments. This 

breach brings about the need to perceive AI as a 
Senior Software Engineer 
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controlled system and not as an independent model by use 

of systems architecture. 

Taxonomies and Classification of AI and Software 

Failures 

With the increased size and influence of AI systems, 

scholars have tried to categorize failure modes as a part of 

developing a common picture across the technical, legal, 

and policy sector. One of the approaches that have 

leveraged the strength of categorizing failures includes 

intentional and unintentional ones [3].  

Adversarial causes of intentional failures include data 

poisoning, model exploitation, whereas unintentional 

failures can be caused by designs, unsafe outputs, or false 

assumptions about system behavior [3]. This 

classification assists policymakers and engineers to reason 

on responsibility and risk particularly in the regulated 

sectors. 

Another important aspect of machine learning failures 

highlighted by this work is that they have a significant 

difference with the classic software failures. In contrast to 

deterministic software, ML systems rely on training data, 

probabilistic inference as well as changing environments 

[3].  

Consequently, both failures are not repeatable and 

traceable and this poses a big challenge to auditability and 

regulatory review. The issues are closely related to 

architectural problems of the absence of versioning, loss 

of lineage, and incomprehensible decision paths. 

The necessity of a systematic failure classification is also 

enhanced by the research on the reliability of large 

systems. Multidimensional analysis of failure through 

system logs and graphical analysis demonstrates that 

failures most of the time penetrate numerous layers of 

infrastructure, middleware and application logic [4].  

Unidimensional analysis mechanisms do not 

accommodate such interactions and their risk on a system 

is not understood comprehensively [4]. In the case of AI 

systems that are used within controlled settings, this 

partial visibility may lead to unnoticed breaches of 

compliance. 

The same thinking is expanded in model-based safety 

analysis through the investigation of the whole system, 

software, hardware, failure modes, and environment as a 

single model [5]. The methods can be used in the early 

detection of critical combinations of failure and offer a 

more precise safety evaluation as compared to 

conventional methods. Significantly, they advocate 

quantitative analysis, which is vital to regulated 

industries, which demand quantifiable risk measurements 

[5]. This literature recommends that the classification of 

failures should not be added after the system is deployed. 

Architectural Reliability, Middleware, and Failure 

Propagation 

System architecture is the secret in the conceptualization 

of propagation and failure instances. The literature of 

middleware states that reliability of shared services may 

lead to the failure of the entire system in an unbalanced 

manner [7].  

The distributed systems are defined by the tendency to 

place the middleware elements that incorporate messaging 

service, transaction manager and authentication layer in 

one point of failures. Lack of such components which are 

fault resistant and traceable will enable the failures to 

spread across this system [7]. 

To the extent that AI systems are becoming more reliant 

on distributed systems, this observation can be applicable. 

These data ingestion services, feature stores, model 

registries and inference APIs make up the highly 

interdependent topology.  

The architectural decision of the association between 

them is directly linked with dependability of the system 

and wish to adhere to the system as such. The scenario-

based analysis and middleware fault injection research 

can also be useful in providing useful testing approaches 

of the AI system robustness before the actual 

implementation [7]. 

The techniques of the software architecture reliability 

analysis also focus on the early-stage analysis. Similar 

techniques such as SARAH are also based on failure cases 

where the software architecture is analyzed using FMEA 

before the implementation [10].  

The tools may help an architect to understand the 

weaknesses of the code that the architect would not have 

perceived in the code level since the failures are priorities 

by the end-user perspective [10]. End user is also 

paramount especially when under controlled environment 

and in most instances, the auditors, compliance 

departments and regulators are the end user. 

The other conclusion drawn on the literature of reliability 

engineering is the fact that the failures in software has 

now become of overwhelming complexity of systems and 

is shadowed by hardware failures in a myriad of ways 

[10]. A change like this requires that an architectural 

design decision should be more responsible. Technical 

good models can also not be compliant with AI systems 

because the absence of architectural resistance (e.g. audit 

logs, non-deterministic pipelines, model updates are not 

under control etc.) may not exist. 

From Traditional Reliability Methods to AI 

Governance Architectures 

The classic reliability and quality engineering techniques 

may be the good bases of explaining the failures of AI 

systems. FMEA is an instrument of quality management 

standards like ISO and Six Sigma that is prevalent in 

manufacturing and is aimed at the identification of 

potential system failures and their consequences [6]. Its 

preventative and organized form fits the requirements of 

regulated AI systems, in which it makes much more sense 

to engage in preventing risk than struggle with a 

reactionary solution. 

Research on software estimation and data collection also 

indicates that data governance is not properly followed 

resulting in unreliable decision-making [8]. The validity 
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of models in AI systems can be eroded as well as 

regulatory trust through unreliable or unrecorded sources 

of data. Precise information gathering, verification and 

documentation are not only matters of engineering but 

they are mandates. This further promotes the significance 

of architectural elements which imposes data lineage and 

version control. 

The findings of the fault prediction research show that 

fault-prone components can be predicted to enhance the 

quality and reliability of the software [9]. Although 

machine learning is regularly employed in these 

techniques, their suitability requires the presence of 

quality metrics and logs of the system. The same applies 

to AI systems: failures cannot be discovered and 

monitored in time in an environment with no 

observability and monitoring systems to comply with 

regulatory requirements. 

Generally, the literature demonstrates the obvious shift of 

the component level analysis of failure to the system level 

architectural analysis. The majority of the available 

literature considers AI a continuation of traditional 

programs, but not a controlled decision-making 

framework.  

The present paper is based on the existing research on 

reliability, failure analysis, and safety modeling to assert 

that the causes of failure to comply with AI systems are 

frequently related to architectural assumptions. Through 

the application of these lessons to AI governance 

architectures, one can create systems which are 

mathematically predictable and trackable, as well as 

auditable, not through re-implementation but by design. 

 

III. METHODOLOGY 

The current research is quantitative research which 

operates under the analysis of failures modes of AIs 

systems implemented in controlled settings in the systems 

architecture view. The aim of the methodology is to 

quantify the number of times the particular architectural 

failure patterns take place and to quantify the effect they 

have on the compliance, auditability and operational risk. 

Accuracy and performance of the model and the 

algorithm used in the study is not evaluated. It deals 

rather with architectural design attributes throughout the 

AI system lifecycle. 

Research Design and Scope 

It applies a structured failure analysis design that relies 

upon the principles of the Failure Modes and Effects 

Analysis (FMEA) and the software architecture reliability 

analysis. The AI systems are broken down into four 

architectural layers that include, data pipeline 

architecture, model lifecycle management architecture, 

inference and decision architecture, and monitoring and 

governance architecture. The combinations and analysis 

of each layer are done to obtain failure propagation within 

the system. 

An AI system deployment is the unit of analysis that 

works within regulatory limitations including audit 

regulations, traceability regulations, and governance 

regulations. The research supposes that the design 

decisions in architecture have a direct impact on the 

possibility of compliance failures. 

Data Collection 

There are three major sources of quantitative data. To 

locate patterns in the system architecture and control 

mechanisms, first, system architecture documents and 

design artifacts are examined. Second, there is an analysis 

of operational system logs and audit records to identify 

the failure events including absence of audit trails, 

decisions that cannot be reproducible, lack of 

authorization to change a model and failure to report 

regulatory information on a timely basis. Third, the 

architectural weaknesses are rated based on structured 

assessment checklist, which is applied to each system 

using the FMEA principles. 

All the identified failure modes are listed in terms of 

frequency of occurrence, impacted architectural layer and 

the compliance impact category. The compliance impact 

falls under audit failure risk, governance failure risk, 

regulatory reporting risk and operational risk. 

Failure Mode Quantification 

In each architectural layer, the failure modes are then 

measured by three numbers namely the occurrence 

probability, the severity score, and the difficulty of 

detecting it. Measure of appearance Probability 

Occurrence measures the frequency of a failure mode in 

systems observed.  

Severity score is the regulatory and operational effect of 

the failure on a numerical scale, which is standardized. 

Detection difficulty is the measurement of the degree of 

difficulty in detecting the failure by use of the available 

monitoring and audit systems. 

The three metrics are multiplied to result in a composite 

risk score of each failure mode. Under this method, 

architectural risks can be easily compared across system 

layers. 

Data Analysis Techniques 

The frequencies of failures, the mean score of the 

severity, and the risk distributions across architectural 

layers are summarized by Descriptive statistical analysis. 

Correlation analysis will be used to investigate the 

correlation of relationships between architectural features 

and compliance failure rates. The traditional AI 

architectures are compared with the compliance-native 

architectural designs which have deterministic pipelines, 

enforced version control, and traceable execution paths. 

The quantitative analysis is done at system architecture 

level and not at the component level. This takes care of 

the fact that findings represent a system level behavior 

rather than the technical defects in a vacuum. 

Validity and Reliability 

Reliability here is done by the use of standardized scoring 

criteria as well as assessment templates in all the systems 
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being evaluated. Inter-rater reliability is used when a 

number of two or more assessors are incorporated. 

Validity is upheld by basing the definition of failure 

modes as well as the logic used to score based on known 

reliability engineering and software architecture analysis 

literature. 

This methodology offers a formal and reproducible 

approach to quantifying architectural failure modes of 

regulated AI systems and offers quantitative comparison 

of architectural design methods. 

 

IV. RESULTS 

Distribution of Architectural Failure Modes Across AI 

System Layers 

The quantitative examination indicates that the 

architectural failure modes are not spread evenly at the AI 

system layers. Most of the failures were noted in data 

pipeline architecture and model lifecycle management 

architecture. The probability of occurrence of these layers 

was greater than inference systems and monitoring 

architectures. This implies that compliance risks are 

usually formulated at an early stage in the system life 

cycle than at the stage where the decision is being 

implemented. 

Data pipeline failures comprised primarily of a lack of 

data lineage, inconsistent data versioning and unrecorded 

preprocessing processes. These were failures that had a 

direct impact on auditability and reproducibility of 

decisions. The uncontrolled model updates, absence of 

approval workflow and absence of rollback mechanisms 

were the models of failure in lifecycle management. 

These shortcomings augmented regulation and ruling 

reports. 

A number of failures in inference and decision 

architectures were less yet failure in this layer was more 

severe. Such failures as non-deterministic inference paths 

and undocumented rule overrides directly affected 

regulation. Monitoring and governance architectures were 

the least likely to fail, but most difficult to detect, that is, 

many failures may not be detected until audit events. 

Table 1: Frequency of Failure Modes by Architectural Layer 

Architectural Layer Number of Failures Percentage (%) 

Data Pipeline Architecture 42 34.4 

Model Lifecycle Management 36 29.5 

Inference and Decision Systems 24 19.7 

Monitoring and Governance 20 16.4 

Total 122 100 

 

 

The findings prove the idea that not all AI systems 

contain the compliance failures evenly. Rather, they 

clump on architectural regions which have no powerful 

governance and traceability controls. 
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Severity and Compliance Impact of Identified Failure 

Modes 

Analysis of severity reveals that different modes of failure 

have a large impact on regulation. Whereas the frequency 

of data pipeline failures was more, failures of inference 

had a greater average severity score. The reason is that 

failure of inference has direct impact on the regulated 

decisions in terms of approvals, rejection or even risk 

classifications. 

The most prevalent category of compliance impact was 

audit failure risk. Numerous systems did not give full 

execution trails of data, version of model and the result of 

the decision. The model lifecycle weaknesses that were 

strongly linked to governance failure risk were 

uncontrolled retraining and deployment practices. The 

regulatory reporting risk was largely associated with the 

slow failure detection because of poor monitoring 

architectures. 

Operational risk existed at all levels and was not often the 

major concern at the regulated settings. Explainability, 

traceability, and control over system uptime or 

performance became the priority of the regulators. 

Table 2: Average Severity Scores by Architectural Layer 

Architectural Layer Avg. Severity Score (1–5) 

Data Pipeline Architecture 3.4 

Model Lifecycle Management 3.7 

Inference and Decision Systems 4.3 

Monitoring and Governance 3.9 

 

 

Results of the findings show that low-frequency failures 

may result in high regulatory risk even when the failures 

produce an impact on decision logic or audit evidence. 

This justifies the explanation that severity should be taken 

into account with frequency in the assessment of AI 

architectures. 

Composite Risk Scores and Failure Detection 

Difficulty 

Occurrence probability, severity and difficulty of 

detection were involved in calculation of composite risk 

scores. These were monitoring and governance 

architectures with the highest score points of detection 

difficulty. A great number of systems did not have real-

time compliance warning and made use of manual audits 

to identify failures. Consequently, the time of failures did 

last longer and the exposure to regulations was increased. 

Failure of data pipes was easily detected but it happened 

more often. The moderate rate of detecting model 

lifecycle failures was observed when the approval 

workflow was informal or not documented. Failure of 

inference was more detectable post deployment but more 

difficult to trace back to cause due to loss of metadata of 

execution. 
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Table 3: Composite Risk Scores by Failure Category 

Failure Category Occurrence Severity Detection Difficulty Composite Risk 

Data Lineage Gaps High Medium Low 42 

Uncontrolled Model Updates Medium High Medium 48 

Non-deterministic Inference Paths Low Very High Medium 50 

Missing Audit Monitoring Controls Medium High High 56 

 

 

All these findings indicate that not the most common 

failure modes can be the most dangerous in the first place. 

High severity and high level of detection is the riskiest in 

terms of regulation. 

Comparison Between Traditional and Compliance-

Native Architectures 

Comparison was done between the traditional AI 

architecture and compliance-native architecture. 

Compliance-native systems were characterized as ones 

that were founded on deterministic pipelines, a known 

version control, and obligatory approval and pathways of 

execution that can be traced. These systems had 

significantly low failure rates and the composite risk 

scores were less at each of the layers. 

The traditional architectures used were highly manual 

controls and after deployment solutions. On the other 

hand, compliance-native architecture had governance 

controls within the system design. This reduced/ 

minimized the element of human factor and increased 

audit preparedness. 

Table 4: Comparison of Average Risk Scores 

Architecture Type Avg. Composite Risk Score 

Traditional AI Architecture 47.2 

Compliance-Native Architecture 29.6 
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The findings indicate clearly that architectural design 

decisions can be evaluated to have an effect on the 

compliance indicators. Compliance in the architecture was 

a key architectural requirement that reduced failures in a 

system, increased the speed at which failures were 

detected and reduced regulatory exposure to systems. 

The results indicate that violations of AI compliance are 

mostly based on architecture. The majority of the failures 

were caused by design assumptions with regards to data 

manipulation, model governance, and system 

observability as opposed to algorithmic errors. It has been 

quantitatively demonstrated that compliance-native 

architectures play a major role in minimizing the risk of 

failure by applying determinism, traceability, and system-

wide governance. 

These outcomes justify the necessity to convert regulatory 

AI discussions on model performance to system 

architecture design. 

 

V. CONCLUSION 

This work demonstrates that the problems of AI systems 

that fail to be regulated are usually related to the flaws of 

architectural design, and not the errors in the algorithms. 

The quantitative findings indicate that data pipelines, 

model governance, and monitoring architectures are very 

essential in the achievement of compliance. Systems that 

are developed without trace, determinism and enforced 

controls are more prone to audit and governance risks. On 

the contrary, compliance-native architectures offer much 

lower rates and levels of failure. Such results indicate the 

necessity to move towards active compliance corrections 

instead of reactive compliance corrections. The article 

adds a quantifiable guideline that assists system architects 

to examine and enhance AI system specifications in 

constant regulatory review. 
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