1JISAE

ISSN:2147-6799

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

www.ijisae.or: Original Research Paper
= E=]

Failure Modes of Al Systems in Regulated
Environments A Systems Architecture Perspective

Naresh Bandaru

Submitted:02/11/2020 Revised:18/12/2020

Accepted:28/12/2020

Abstract: Automated systems of artificial intelligence are gradually penetrating the controlled activities in finance, healthcare, and
public services. A lot of the failures of these systems are considered as model or data failures. The thesis that is presented in this
paper suggests that the majority of compliance failures are caused by flaws in the architecture of a system and not the errors in
algorithms. The study is based on a quantitative, architecture-level analysis to find out the prevalence of failure modes in data
pipelines, model lifecycle management, inference systems, and monitoring architectures. The findings indicate that there are evident
trends between architectural design decisions and audit failures and audit governance risks. The paper brings out compliance-native
architectural solutions which lessen risk by tracking, determinism and governance controls.

Keywords: Artificial Intelligence, Al System Architecture, Failure Modes, Regulated Environments, Compliance Risk, Auditability

I. INTRODUCTION

The use of Al systems in controlled settings will have
rigid expectations of transparency, control, and
accountability. Some of the systems deployed cannot pass
audit or even live up to regulatory expectations. The
current research usually aims at bettering the model
accuracy or strength without considering the design of its
system architecture. This gap is fulfilled by this paper
which considers Al failures in terms of systems
architecture. It dwells on the assumption of architectural
designs that expose compliance risks in the lifecycle of
Al Through a quantitative failure analysis method, the
paper analyzes the input of various architectural layers
towards regulatory failure. It aims at assisting architects in
the development of Al systems that are architecturally
compliant.

II. RELATED WORKS

Understanding Failure Modes in AI and Complex
Software Systems

In earlier research on the failures of systems, it was
established that failures do not occur frequently due to a
single fault. They are rather a product of combinations of
elements, assumptions and operating environments. It is a
more serious problem when implemented to artificial
intelligence systems because Al systems are adaptive,
data-driven, and could be incorporated to complex socio-
technical settings.

The research works on the failure mode of Als are based
on the fact that the vast majority of failures are not
predetermined by the mistakes of the algorithms but
rather on the structural susceptibility of the interface
between the objectives and data and environments [1].

Senior Software Engineer

Studies on specification gaming, reward hacking and the
law show that Al systems may behave in a technically
optimal, but practically unsafe, way when system
objectives are formulated poorly or defined to be over-
optimized [1].

This is especially dangerous in a form of controlled
systems, where a rule-based approach should be followed,
and the results should be understandable and traceable.
The research concerning multi-agent Al also implies that
the failure can be inflicted by the absence of coordination,
adversarial nature, or even by the unintended interactions
between the system components, even in case all the
individual components are right (in isolation) [1]. This
confirms the fact that architecture at the system level is
critical to Al safety and compliance.

The traditional software engineering research has been
able to support this. Failure mode and effects analysis
(FMEA) is not a new concept as it was developed many
years ago to establish how system may fail and what
impact the failures of the systems will have [2][6].

FMEA emphasizes more on the spreading of failures than
isolated faulty aspects. FMEA can be applied when it is
combined with software systems to uncover the hazards
of the safety, reliability, and user impact at an early stage
of the design [2]. These principles are directly applicable
to the Al systems with failures that are likely to propagate
through data pipelines, model services and decision
layers.

The literature on AI failures is mostly focused on
individual failure such as adversarial attacks or model
errors. This is an important though narrow scope because
it does not even consider architectural causes of
compliance breakdown in controlled environments. This
breach brings about the need to perceive Al as a

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2020, 8(4), 409416 | 409

controlled system and not as an independent model by use
of systems architecture.

Taxonomies and Classification of AI and Software
Failures

With the increased size and influence of Al systems,
scholars have tried to categorize failure modes as a part of
developing a common picture across the technical, legal,
and policy sector. One of the approaches that have
leveraged the strength of categorizing failures includes
intentional and unintentional ones [3].

Adversarial causes of intentional failures include data
poisoning, model exploitation, whereas unintentional
failures can be caused by designs, unsafe outputs, or false
assumptions about system behavior [3]. This
classification assists policymakers and engineers to reason
on responsibility and risk particularly in the regulated
sectors.

Another important aspect of machine learning failures
highlighted by this work is that they have a significant
difference with the classic software failures. In contrast to
deterministic software, ML systems rely on training data,
probabilistic inference as well as changing environments

[3].

Consequently, both failures are not repeatable and
traceable and this poses a big challenge to auditability and
regulatory review. The issues are closely related to
architectural problems of the absence of versioning, loss
of lineage, and incomprehensible decision paths.

The necessity of a systematic failure classification is also
enhanced by the research on the reliability of large
systems. Multidimensional analysis of failure through
system logs and graphical analysis demonstrates that
failures most of the time penetrate numerous layers of
infrastructure, middleware and application logic [4].

Unidimensional analysis =~ mechanisms do not
accommodate such interactions and their risk on a system
is not understood comprehensively [4]. In the case of Al
systems that are used within controlled settings, this
partial visibility may lead to unnoticed breaches of
compliance.

The same thinking is expanded in model-based safety
analysis through the investigation of the whole system,
software, hardware, failure modes, and environment as a
single model [5]. The methods can be used in the early
detection of critical combinations of failure and offer a

more precise safety evaluation as compared to
conventional methods. Significantly, they advocate
quantitative analysis, which is vital to regulated

industries, which demand quantifiable risk measurements
[5]. This literature recommends that the classification of
failures should not be added after the system is deployed.

Architectural Reliability, Middleware, and Failure
Propagation

System architecture is the secret in the conceptualization
of propagation and failure instances. The literature of
middleware states that reliability of shared services may

lead to the failure of the entire system in an unbalanced
manner [7].

The distributed systems are defined by the tendency to
place the middleware elements that incorporate messaging
service, transaction manager and authentication layer in
one point of failures. Lack of such components which are
fault resistant and traceable will enable the failures to
spread across this system [7].

To the extent that Al systems are becoming more reliant
on distributed systems, this observation can be applicable.
These data ingestion services, feature stores, model
registries and inference APIs make up the highly
interdependent topology.

The architectural decision of the association between
them is directly linked with dependability of the system
and wish to adhere to the system as such. The scenario-
based analysis and middleware fault injection research
can also be useful in providing useful testing approaches
of the AI system robustness before the actual
implementation [7].

The techniques of the software architecture reliability
analysis also focus on the early-stage analysis. Similar
techniques such as SARAH are also based on failure cases
where the software architecture is analyzed using FMEA
before the implementation [10].

The tools may help an architect to understand the
weaknesses of the code that the architect would not have
perceived in the code level since the failures are priorities
by the end-user perspective [10]. End user is also
paramount especially when under controlled environment
and in most instances, the auditors, compliance
departments and regulators are the end user.

The other conclusion drawn on the literature of reliability
engineering is the fact that the failures in software has
now become of overwhelming complexity of systems and
is shadowed by hardware failures in a myriad of ways
[10]. A change like this requires that an architectural
design decision should be more responsible. Technical
good models can also not be compliant with Al systems
because the absence of architectural resistance (e.g. audit
logs, non-deterministic pipelines, model updates are not
under control etc.) may not exist.

From Traditional Reliability Methods to Al
Governance Architectures

The classic reliability and quality engineering techniques
may be the good bases of explaining the failures of Al
systems. FMEA is an instrument of quality management
standards like ISO and Six Sigma that is prevalent in
manufacturing and is aimed at the identification of
potential system failures and their consequences [6]. Its
preventative and organized form fits the requirements of
regulated Al systems, in which it makes much more sense
to engage in preventing risk than struggle with a
reactionary solution.

Research on software estimation and data collection also
indicates that data governance is not properly followed
resulting in unreliable decision-making [8]. The validity

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2020, 8(4), 409-416 | 410

of models in Al systems can be eroded as well as
regulatory trust through unreliable or unrecorded sources
of data. Precise information gathering, verification and
documentation are not only matters of engineering but
they are mandates. This further promotes the significance
of architectural elements which imposes data lineage and
version control.

The findings of the fault prediction research show that
fault-prone components can be predicted to enhance the
quality and reliability of the software [9]. Although
machine learning is regularly employed in these
techniques, their suitability requires the presence of
quality metrics and logs of the system. The same applies
to Al systems: failures cannot be discovered and
monitored in time in an environment with no
observability and monitoring systems to comply with
regulatory requirements.

Generally, the literature demonstrates the obvious shift of
the component level analysis of failure to the system level
architectural analysis. The majority of the available
literature considers Al a continuation of traditional
programs, but not a controlled decision-making
framework.

The present paper is based on the existing research on
reliability, failure analysis, and safety modeling to assert
that the causes of failure to comply with Al systems are
frequently related to architectural assumptions. Through
the application of these lessons to Al governance
architectures, one can create systems which are
mathematically predictable and trackable, as well as
auditable, not through re-implementation but by design.

III. METHODOLOGY

The current research is quantitative research which
operates under the analysis of failures modes of Als
systems implemented in controlled settings in the systems
architecture view. The aim of the methodology is to
quantify the number of times the particular architectural
failure patterns take place and to quantify the effect they
have on the compliance, auditability and operational risk.
Accuracy and performance of the model and the
algorithm used in the study is not evaluated. It deals
rather with architectural design attributes throughout the
Al system lifecycle.

Research Design and Scope

It applies a structured failure analysis design that relies
upon the principles of the Failure Modes and Effects
Analysis (FMEA) and the software architecture reliability
analysis. The Al systems are broken down into four
architectural layers that include, data pipeline
architecture, model lifecycle management architecture,
inference and decision architecture, and monitoring and
governance architecture. The combinations and analysis
of each layer are done to obtain failure propagation within
the system.

An Al system deployment is the unit of analysis that
works within regulatory limitations including audit

regulations, traceability regulations, and governance
regulations. The research supposes that the design
decisions in architecture have a direct impact on the
possibility of compliance failures.

Data Collection

There are three major sources of quantitative data. To
locate patterns in the system architecture and control
mechanisms, first, system architecture documents and
design artifacts are examined. Second, there is an analysis
of operational system logs and audit records to identify
the failure events including absence of audit trails,
decisions that cannot be reproducible, lack of
authorization to change a model and failure to report
regulatory information on a timely basis. Third, the
architectural weaknesses are rated based on structured
assessment checklist, which is applied to each system
using the FMEA principles.

All the identified failure modes are listed in terms of
frequency of occurrence, impacted architectural layer and
the compliance impact category. The compliance impact
falls under audit failure risk, governance failure risk,
regulatory reporting risk and operational risk.

Failure Mode Quantification

In each architectural layer, the failure modes are then
measured by three numbers namely the occurrence
probability, the severity score, and the difficulty of
detecting it. Measure of appearance Probability
Occurrence measures the frequency of a failure mode in
systems observed.

Severity score is the regulatory and operational effect of
the failure on a numerical scale, which is standardized.
Detection difficulty is the measurement of the degree of
difficulty in detecting the failure by use of the available
monitoring and audit systems.

The three metrics are multiplied to result in a composite
risk score of each failure mode. Under this method,
architectural risks can be easily compared across system
layers.

Data Analysis Techniques

The frequencies of failures, the mean score of the
severity, and the risk distributions across architectural
layers are summarized by Descriptive statistical analysis.
Correlation analysis will be used to investigate the
correlation of relationships between architectural features
and compliance failure rates. The traditional Al
architectures are compared with the compliance-native
architectural designs which have deterministic pipelines,
enforced version control, and traceable execution paths.

The quantitative analysis is done at system architecture
level and not at the component level. This takes care of
the fact that findings represent a system level behavior
rather than the technical defects in a vacuum.

Validity and Reliability

Reliability here is done by the use of standardized scoring
criteria as well as assessment templates in all the systems

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2020, 8(4), 409-416 | 411

being evaluated. Inter-rater reliability is used when a
number of two or more assessors are incorporated.
Validity is upheld by basing the definition of failure
modes as well as the logic used to score based on known
reliability engineering and software architecture analysis
literature.

This methodology offers a formal and reproducible
approach to quantifying architectural failure modes of
regulated Al systems and offers quantitative comparison
of architectural design methods.

IV. RESULTS

Distribution of Architectural Failure Modes Across Al
System Layers

The quantitative examination indicates that the
architectural failure modes are not spread evenly at the Al
system layers. Most of the failures were noted in data
pipeline architecture and model lifecycle management
architecture. The probability of occurrence of these layers

was greater than inference systems and monitoring
architectures. This implies that compliance risks are
usually formulated at an early stage in the system life
cycle than at the stage where the decision is being
implemented.

Data pipeline failures comprised primarily of a lack of
data lineage, inconsistent data versioning and unrecorded
preprocessing processes. These were failures that had a
direct impact on auditability and reproducibility of
decisions. The uncontrolled model updates, absence of
approval workflow and absence of rollback mechanisms
were the models of failure in lifecycle management.
These shortcomings augmented regulation and ruling
reports.

A number of failures in inference and decision
architectures were less yet failure in this layer was more
severe. Such failures as non-deterministic inference paths
and undocumented rule overrides directly affected
regulation. Monitoring and governance architectures were
the least likely to fail, but most difficult to detect, that is,
many failures may not be detected until audit events.

Table 1: Frequency of Failure Modes by Architectural Layer

Architectural Layer Number of Failures | Percentage (%)
Data Pipeline Architecture 42 344
Model Lifecycle Management 36 29.5
Inference and Decision Systems | 24 19.7
Monitoring and Governance 20 16.4
Total 122 100

Failure Frequency by Architectural Layer

Number of Failures

e\“‘e

.) c\e
pat® o ool W ey

W

The findings prove the idea that not all Al systems
contain the compliance failures evenly. Rather, they

e
\n’te‘enc

clump on architectural regions which have no powerful
governance and traceability controls.

International Journal of Intelligent Systems and Applications in Engineering

DISAE, 2020, 8(4), 409-416 | 412

Severity and Compliance Impact of Identified Failure
Modes

Analysis of severity reveals that different modes of failure
have a large impact on regulation. Whereas the frequency
of data pipeline failures was more, failures of inference
had a greater average severity score. The reason is that
failure of inference has direct impact on the regulated
decisions in terms of approvals, rejection or even risk
classifications.

The most prevalent category of compliance impact was
audit failure risk. Numerous systems did not give full

execution trails of data, version of model and the result of
the decision. The model lifecycle weaknesses that were
strongly linked to governance failure risk were
uncontrolled retraining and deployment practices. The
regulatory reporting risk was largely associated with the
slow failure detection because of poor monitoring
architectures.

Operational risk existed at all levels and was not often the
major concern at the regulated settings. Explainability,
traceability, and control over system uptime or
performance became the priority of the regulators.

Table 2: Average Severity Scores by Architectural Layer

Architectural Layer Avg. Severity Score (1-5)
Data Pipeline Architecture 34
Model Lifecycle Management 3.7
Inference and Decision Systems | 4.3
Monitoring and Governance 3.9

Average Severity Score by Architectural Layer

Severity Score

0 T T

3 e
\p e\‘(‘e g(.‘i a

Oata 9 ode\ \'\‘

W

Results of the findings show that low-frequency failures
may result in high regulatory risk even when the failures
produce an impact on decision logic or audit evidence.
This justifies the explanation that severity should be taken
into account with frequency in the assessment of Al
architectures.

Composite Risk Scores and Failure Detection

Difficulty

Occurrence probability, severity and difficulty of
detection were involved in calculation of composite risk
scores. These were monitoring and governance

architectures with the highest score points of detection
difficulty. A great number of systems did not have real-
time compliance warning and made use of manual audits
to identify failures. Consequently, the time of failures did
last longer and the exposure to regulations was increased.

Failure of data pipes was easily detected but it happened
more often. The moderate rate of detecting model
lifecycle failures was observed when the approval
workflow was informal or not documented. Failure of
inference was more detectable post deployment but more
difficult to trace back to cause due to loss of metadata of
execution.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2020, 8(4), 409-416 | 413

Table 3: Composite Risk Scores by Failure Category

Failure Category Occurrence | Severity Detection Difficulty | Composite Risk
Data Lineage Gaps High Medium Low 42
Uncontrolled Model Updates Medium High Medium 48
Non-deterministic Inference Paths | Low Very High | Medium 50
Missing Audit Monitoring Controls | Medium High High 56

Composite Risk Scores by Failure Category

8

Composite Risk Score
N
(=]

10 A1

All these findings indicate that not the most common
failure modes can be the most dangerous in the first place.
High severity and high level of detection is the riskiest in
terms of regulation.

Comparison Between Traditional and Compliance-
Native Architectures

Comparison was done between the traditional Al
architecture and compliance-native architecture.
Compliance-native systems were characterized as ones
that were founded on deterministic pipelines, a known

version control, and obligatory approval and pathways of
execution that can be traced. These systems had
significantly low failure rates and the composite risk
scores were less at each of the layers.

The traditional architectures used were highly manual
controls and after deployment solutions. On the other
hand, compliance-native architecture had governance
controls within the system design. This reduced/
minimized the element of human factor and increased
audit preparedness.

Table 4: Comparison of Average Risk Scores

Architecture Type Avg. Composite Risk Score
Traditional AT Architecture 47.2
Compliance-Native Architecture | 29.6

International Journal of Intelligent Systems and Applications in Engineering

DISAE, 2020, 8(4), 409416 | 414

Average Risk Score by Architecture Type

40 -

20 A

Average Composite Risk Score

10 4

Arch'ltecture

Traditional A

The findings indicate clearly that architectural design
decisions can be evaluated to have an effect on the
compliance indicators. Compliance in the architecture was
a key architectural requirement that reduced failures in a
system, increased the speed at which failures were
detected and reduced regulatory exposure to systems.

The results indicate that violations of Al compliance are
mostly based on architecture. The majority of the failures
were caused by design assumptions with regards to data
manipulation, model governance, and system
observability as opposed to algorithmic errors. It has been
quantitatively demonstrated that compliance-native
architectures play a major role in minimizing the risk of
failure by applying determinism, traceability, and system-
wide governance.

These outcomes justify the necessity to convert regulatory
Al discussions on model performance to system
architecture design.

V. CONCLUSION

This work demonstrates that the problems of Al systems
that fail to be regulated are usually related to the flaws of
architectural design, and not the errors in the algorithms.
The quantitative findings indicate that data pipelines,
model governance, and monitoring architectures are very
essential in the achievement of compliance. Systems that
are developed without trace, determinism and enforced
controls are more prone to audit and governance risks. On
the contrary, compliance-native architectures offer much
lower rates and levels of failure. Such results indicate the
necessity to move towards active compliance corrections
instead of reactive compliance corrections. The article
adds a quantifiable guideline that assists system architects

recture
\i ance-Nat‘we archit
compl!

to examine and enhance Al system specifications in
constant regulatory review.

REFERENCES

[1] Manheim, D. (2019). Multiparty dynamics and
failure modes for machine learning and artificial
intelligence. Big Data and Cognitive Computing,
3(2), 21. https://doi.org/10.3390/bdcc3020021

[2] Stadler, J. J., & Seidl, N. J. (2013). Software failure
modes and effects analysis. Software Failure Modes
and Effects Analysis, 1-5.
https://doi.org/10.1109/rams.2013.6517710

[3] Kumar, R. S. S., O’Brien, D. R., Albert, K., Viljoen,
S., & Snover, J. (2019). Failure modes in machine
learning systems. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.1911.11034

[4] Meng, D., Zhou, W., & Zhan, J. (2009).
Multidimensional analysis of system logs in large-
scale cluster systems. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.0906.1328

[5] Giidemann, M., & Ortmeier, F. (2010). Probabilistic
Model-Based Safety analysis. Electronic Proceedings
in Theoretical Computer Science, 28, 114-128.
https://doi.org/10.4204/eptcs.28.8

[6] Snee, R. D., & Rodebaugh, W. F. (2007). Failure
Modes and Effects Analysis. Encyclopedia of
Statistics in Quality and Reliability.
https://doi.org/10.1002/9780470061572.eqr4 11

[7] Huang, G., Wang, W., Liu, T., & Mei, H. (2011).
Simulation-based analysis of middleware service
impact on system reliability: Experiment on Java

International Journal of Intelligent Systems and Applications in Engineering

DISAE, 2020, 8(4), 409416 | 415

https://doi.org/10.3390/bdcc3020021
https://doi.org/10.1109/rams.2013.6517710
https://doi.org/10.48550/arxiv.1911.11034
https://doi.org/10.48550/arxiv.0906.1328
https://doi.org/10.4204/eptcs.28.8
https://doi.org/10.1002/9780470061572.eqr411

(8]

[9]

application server. Journal of Systems and Software,
84(7), 1160-1170.
https://doi.org/10.1016/j.jss.2011.02.008

VPatil, M., & Yogi, A. M. N. (2011). Importance of
data collection and validation for systematic software
development process. International Journal of
Computer Science and Information Technology, 3(2),
260-278. https://doi.org/10.5121/ijesit.2011.3220
Kaur, S., & Kumar, D. (2011). Quality prediction of
object oriented software wusing density based
clustering approach. In IACSIT International Journal
of Engineering and Technology, IACSIT
International Journal of Engineering and Technology:
Vol. No.4. https://www.ijetch.org/papers/267-
T781.pdf

[10] Tekinerdogan, B., Sozer, H., & Aksit, M. (2007).

Software architecture reliability analysis using failure
scenarios. Journal of Systems and Software, 81(4),
558-575. https://doi.org/10.1016/j.jss.2007.10.029

International Journal of Intelligent Systems and Applications in Engineering

LJISAE, 2020, 8(4), 409-416 | 416

https://doi.org/10.1016/j.jss.2011.02.008
https://doi.org/10.5121/ijcsit.2011.3220
https://www.ijetch.org/papers/267-T781.pdf
https://www.ijetch.org/papers/267-T781.pdf
https://doi.org/10.1016/j.jss.2007.10.029

