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Abstract: The rapid advancement of the Internet of Things (IoT), driven by high-speed connectivity, edge intelligence, and data-centric
decision-making, has enabled its widespread deployment across domains such as transportation, healthcare, smart homes, governance,
and environmental monitoring; however, the growing diversity and scale of loT applications have made systematic prioritization
increasingly challenging under competing technical, economic, and societal constraints. To address this challenge, this study proposes
a survey-driven hybrid multi-criteria decision-making (MCDM) framework that integrates the Analytic Hierarchy Process (AHP) with
the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to prioritize and rank critical IoT application domains.
Ten representative IoT applications and seven evaluation criteria—functional performance, affordability, scalability, privacy and
security, user experience, interoperability, and environmental sustainability—are identified through a comprehensive literature review
and expert consultation. Judgments from fifteen IoT professionals are synthesized using Saaty’s scale to construct a consistent AHP
model, revealing Quality of Life, Affordability, and Scalability as the most influential criteria, supported by strong consistency metrics
(CI=0.030, CR =0.027). The validated weights are then incorporated into TOPSIS using a 10x5 decision matrix to compute closeness
coefficients and establish a quantitative ranking of IoT applications. The robustness of the proposed framework is further confirmed
through Monte Carlo—based sensitivity analysis with £20% perturbations in criteria weights, yielding an average Spearman rank
correlation of approximately 0.94. Overall, the findings demonstrate that the proposed approach is transparent, reproducible, and
resilient to uncertainty, offering a reliable decision-support tool for IoT investment, system design, and policy formulation in emerging
areas such as smart cities, Industry 5.0 ecosystems, healthcare digital twins, and technology governance.
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improving scalability and performance, thereby
accelerating large-scale IoT adoption in both public and

1. Introduction

The Internet of Things (IoT) has rapidly evolved into a
foundational  technology  enabling  intelligent
interconnection among physical objects, digital
platforms, and human users through the Internet. By
integrating sensing, communication, data processing,
and actuation capabilities, [oT systems support real-time
monitoring, automation, and data-driven decision-
making across a wide range of domains, including
healthcare, agriculture, smart homes, transportation,
smart cities, and industrial automation (Joshi and
Kulkarni 2016; Spaho et al. 2025; Lim et al. 2018).
Advances in embedded systems, low-power wireless
communication, cloud computing, and edge intelligence
have significantly reduced deployment costs while
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private sectors (Zheng et al. 2019a; Yan et al. 2014).

Along with these advancements, the IoT ecosystem has
grown increasingly complex. Modern IoT environments
are characterized by heterogeneous devices, diverse
communication protocols, varying quality-of-service
requirements, and distinct stakeholder expectations.
While such diversity fosters innovation and flexibility,
it also creates challenges in systematically evaluating
and selecting IoT applications that best satisfy
organizational and user needs (Li et al. 2023a; Y. Chen
et al. 2021a). Decision-makers are often required to
choose among multiple competing IoT solutions while
simultaneously considering technical performance,
economic feasibility, security, scalability, reliability,
and long-term societal impact (Y. Chen et al. 2021b). In
the absence of structured evaluation mechanisms, these
decisions may rely heavily on subjective judgment,
leading to inefficient investments and suboptimal
technology deployment.

User preference and application suitability have
therefore emerged as critical factors influencing the
success and sustainability of IoT implementations.
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Existing studies indicate that beyond functional
performance, users and organizations place significant
emphasis on affordability, usability, data privacy,
interoperability, and future scalability when adopting
IoT solutions (Zheng et al. 2019b; Rui et al. 2025a;
Tierney 2012). Among these factors, security and
privacy concerns remain particularly prominent, as loT
systems often operate in distributed, resource-
constrained, and potentially vulnerable environments
(Okoye and Hosseini 2024). These concerns underscore
the necessity of adopting systematic and transparent
evaluation approaches capable of balancing multiple,
and often conflicting, decision criteria.

Multi-Criteria Decision-Making (MCDM) techniques
have been widely recognized as effective tools for
addressing complex decision problems involving
multiple alternatives and evaluation criteria (Opricovic
and Tzeng 2004). MCDM methods offer a mathematical
and logical framework that enables the comparison of
alternatives based on both qualitative judgments and
quantitative data (Behzadian et al. 2012). Within the
context of IoT evaluation, MCDM approaches have
been successfully applied to rank platforms, services,
architectures, and applications by incorporating
technical, economic, and user-centric considerations
into the decision-making process.

Among the various MCDM techniques, the Analytic
Hierarchy Process (AHP) and the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS)
are particularly prominent due to their robustness,
interpretability, and ease of implementation (Ishizaka
and Labib 2011; Da Xu et al. 2014). AHP, originally
proposed by Saaty, structures a complex decision
problem into a hierarchical model consisting of
objectives, criteria, and alternatives (Golden et al. 1989).
Through pairwise comparisons, it quantifies the relative
importance of decision criteria while ensuring
consistency in expert judgments. This makes AHP well-
suited for determining criteria weights in IoT evaluation
scenarios, where subjective perceptions such as usability
and security are as important as measurable technical
attributes. However, AHP alone may face limitations
when ranking a large number of alternatives, especially
due to potential rank reversal and scalability concerns
(Tzeng and Huang 2011).

TOPSIS complements AHP by providing an efficient
mechanism for ranking alternatives based on their
relative closeness to an ideal solution. The fundamental
principle of TOPSIS is that the optimal alternative
should exhibit the minimum distance from a
hypothetical ~ positive  ideal  solution  while
simultaneously maintaining the maximum distance from
a negative ideal solution (Arslan et al. 2021). Owing to

its computational simplicity and ability to handle
continuous performance data, TOPSIS has been widely
employed in engineering and technology assessment
problems, including IoT application evaluation (Guo et
al. 2018). Nevertheless, the effectiveness of TOPSIS
depends heavily on the accuracy of criteria weights,
which, if assigned arbitrarily, may compromise the
reliability of the ranking results. To mitigate the
individual limitations of AHP and TOPSIS, recent
research has increasingly adopted hybrid MCDM
frameworks that integrate the strengths of both methods
(Shyur and Shih 2006). In such hybrid approaches, AHP
is used to derive consistent and reliable weights for
evaluation criteria, while TOPSIS utilizes these weights
to rank alternatives objectively. This integration ensures
a balanced consideration of expert judgment and
quantitative performance data, making it particularly
suitable for complex and multi-dimensional decision
environments such as IoT application prioritization.

Despite the increasing volume of research on IoT
application evaluation and MCDM-based decision
support techniques, several notable limitations persist in
the existing body of literature. A large proportion of
prior studies remains confined to domain-specific IoT
implementations—such as smart healthcare, smart
homes, agriculture, transportation systems, or smart city
infrastructures—without proposing a generalized
evaluation framework capable of addressing multiple
IoT application categories in an integrated manner
(Wang et al. 2016). Moreover, empirical studies
conducted at the institutional or organizational level,
which are essential for capturing real-world deployment
constraints, heterogeneous device ecosystems, and
diverse stakeholder priorities, are relatively scarce
(Kabak et al. 2012). In addition, many existing
approaches provide limited transparency in the selection
and justification of evaluation criteria and often
inadequately incorporate user-centric considerations,
including usability, reliability, cost efficiency, and
societal impact, into the decision-making process
(Zheng et al. 2019c; Rafique et al. 2023). As
conceptually illustrated in Figure 1, the coexistence of
diverse IoT application domains, persistent IoT
challenges—such as device heterogeneity, security and
privacy concerns, scalability issues, and data
management complexity—and the growing demand for
systematic evaluation criteria highlight the necessity of
a structured MCDM-based framework. The hybrid
AHP-TOPSIS approach presented in the figure
addresses these challenges by combining objective
criteria weighting with robust alternative ranking,
thereby enabling informed and rational selection of
optimal [oT applications.
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Fig. 1. Conceptual framework of IoT application domains, challenges, evaluation criteria, and a hybrid AHP-TOPSIS
approach for prioritization.

2. Literature Review

The rapid expansion of the Internet of Things (IoT) has
catalyzed extensive research into intelligent decision-
making, user preference modeling, and preference-
aware service delivery across diverse application
domains. Foundational studies have provided
comprehensive overviews of IoT, covering core
concepts, enabling technologies, application areas, and
key challenges, including scalability, privacy, security,
interoperability, and user acceptance (Atzori et al. 2010;
Li et al. 2015; Siow et al. 2018). These early insights
have guided subsequent research focused on enhancing
user-centric design and integrating user preferences into
IoT ecosystems.

User preference analysis has emerged as a pivotal
research area for improving IoT adoption and usability.
Systematic reviews have identified factors such as
device functionality, cost-effectiveness, privacy, and
security as major determinants influencing user

satisfaction and technology acceptance (Mator et al.
2021; Romero-Riafio et al. 2022). Various methods have
been proposed for eliciting user preferences, including
explicit approaches such as surveys, interviews, and
questionnaires, as well as implicit techniques that
leverage behavioral and contextual data from sensors
and usage patterns (Spaho et al. 2025; Washizaki et al.
2020). Such methods enable the capture of nuanced user
requirements, facilitating the design of adaptive,
personalized IoT services.

In addition to elicitation, preference learning and
management mechanisms have received considerable
attention. Adaptive learning models allow IoT systems
to dynamically adjust to evolving user needs in real-time
environments (Spaho et al. 2025; Yan et al. 2014).
Efficient storage, retrieval, and access control strategies
for managing user preferences are essential to maintain
system scalability, reliability, and data integrity (Li et al.
2023b). Preference-based access control frameworks
further enhance security by enabling fine-grained
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privacy management and ensuring compliance with
user-specific requirements (Wang and Song 2025).

Preference-aware  approaches have also been
extensively applied to resource allocation and service
management. Integrating user preferences into resource
scheduling and allocation mechanisms has been shown
to optimize system performance, improve quality of
service, and increase user satisfaction (Yan et al. 2014;
Xiao et al. 2020; Li et al. 2023c). Preference-based
service composition techniques allow users to customize
IoT services by selecting and combining functionalities
that meet their individual needs, thereby enhancing
system flexibility and personalization (Ni et al. 2024).

At  the application level, preference-aware
recommendation systems and context-aware service
provisioning have demonstrated significant potential for
improving user experience and service efficiency. These
systems leverage both static and dynamic user data to
deliver adaptive solutions that respond to changing
preferences and environmental conditions (Uddin et al.
2018; Zheng et al. 2019d). Moreover, research has
explored hybrid frameworks that combine machine
learning and multi-criteria decision-making (MCDM)
techniques to systematically rank and prioritize IoT
applications, accounting for technical, economic, and
user-centric factors simultaneously (Zheng et al. 2019d;
Mangele 2015). Such integrated approaches provide
decision-makers with structured, transparent, and
actionable insights for IoT deployment.

The literature demonstrates significant advancements in
understanding and managing user preferences within
IoT systems, encompassing preference -elicitation,
adaptive learning, management, and application-level
personalization. Despite these developments, most
studies focus on isolated aspects, such as access control,
resource allocation, or recommendation systems,
without offering an integrated framework that
simultaneously addresses technical, economic, and user-
centric  criteria.  User  preferences—including
functionality, affordability, security, privacy, and
overall experience—are critical for effective IoT
adoption, and preference-aware approaches have been

shown to enhance both user satisfaction and system
efficiency. Given the increasing diversity and
complexity of IoT applications, systematic evaluation
and prioritization are essential, as ad hoc decision-
making can result in suboptimal outcomes. To address
this gap, this study proposes a hybrid multi-criteria
decision-making (MCDM) framework that combines
the Analytic Hierarchy Process (AHP) and the
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) to assess and rank ten representative
IoT applications based on well-defined criteria,
providing a structured, transparent, and informed
approach for efficient IoT deployment and adoption.

3. Proposed Methodology

This study proposes a hybrid multi-criteria decision-
making (MCDM) framework for prioritizing Internet of
Things (IoT) applications by integrating the Analytic
Hierarchy Process (AHP) and the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS).
The motivation for adopting this hybrid approach lies in
the complementary strengths of the two techniques:
AHP effectively captures subjective expert judgments
and derives consistent criteria weights, while TOPSIS
provides an objective ranking of alternatives based on
their relative closeness to an ideal solution. Such
hybridization has been widely recognized as a robust
decision-support strategy in complex technological
evaluation problems (Atzori et al. 2010; Li et al. 2015;
Siow et al. 2018).

The overall workflow is structured into five sequential
stages: (i) selection of representative IoT applications,
(ii) identification of key evaluation attributes, (iii)
derivation of criteria weights using AHP, (iv) ranking of
applications using TOPSIS, and (v) interpretation of
preferences to support decision-making. This systematic
process ensures transparency, reproducibility, and
analytical rigor in capturing heterogeneous user and
expert preferences. The framework is executed through
five sequential steps, as detailed below and illustrated in
Figure 2.
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Figure 2. Proposed Methodology for IoT Application Prioritization

3.1 Selection of IoT Applications

In the first stage, a representative set of ten IoT
applications (Transportation, Fitness, Environment,
Entertainment, Work, Governance, Building, Shopping,
Education, and Healthcare) are defined to capture the
breadth of functionalities, domains, and usage contexts
observed in current 10T ecosystems. The selection is
guided by four main considerations: (i) market relevance
(current and projected adoption and revenue), (ii)
technological innovativeness (use of emerging
paradigms such as edge intelligence, 5G, and V2X), (iii)
user base size and diversity, and (iv) potential industrial
and societal impact in sectors such as transportation,
healthcare, smart homes, governance, and environment
(Joshi and Kulkarni 2016; Spaho et al. 2025; Arslan et
al. 2021). This ensures that the subsequent analysis
generalizes across different classes of [oT solutions and
reflects realistic user preference patterns rather than
being restricted to niche use cases.

3.2 Identification of Key Attributes

The decision problem is parameterized by identifying
the key attributes that influence user preferences toward
IoT applications. These attributes are derived through a
synthesis of application functionality analysis, user
requirement characteristics, and prevailing trends in IoT
markets and standards (Zheng et al. 2019e; W. Chen et

al. 2021). The resulting criteria typically include
functional performance, affordability and cost-
effectiveness, data privacy and security, user interface
and experience, compatibility and integration capability,
and environmental sustainability. Formally, let the
criteria set be denoted as:

C = {Cll Cz, ,Cm}

Where, each C; represents a distinct attribute (e.g., QoL,
cost, security), and these criteria later serve as the
evaluation dimensions in the AHP-TOPSIS framework.

3.3 Analytic Hierarchy Process (AHP)

AHP is employed to quantify the relative importance
(weights) of the identified criteria under a hierarchical
structure with three levels: overall goal (10T application
prioritization), criteria Cq,...,Cy, and alternatives
Ay, ..., A, (the 10 applications) (Zheng et al. 2019f; Kim
and Kim 2018). Experts provide pairwise comparisons
of criteria using Saaty's 1—9 scale, which are
aggregated into a pairwise comparison matrix

A=lay]

Where

aj; = relative importance of criterion C; over Cj,aj; =

1
—,djj = 1.
ajj
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3.3.1 Column Normalization: Each column of A is
normalized to obtain the relative contribution of each
criterion in that column (Li et al. 2023d):

ai]-

2121:1 akj

The normalized matrix R = [ri]-] satisfies

ri]- ,i,j = 1,...,m.

m

Z ri]- = 1V]

i=1
3.3.2 Priority Vector (Criteria Weights): The weight

w; of criterion C; is estimated as the arithmetic mean of
the normalized row entries (Li et al. 2023d):

m

1
Wj =_Z ri]',l = 1,...,m
m

j=1

Subject to the normalization constraint

The vector
W = [wy, .., W]

Where, W represents the criteria weight vector and is an
approximation of the principal eigenvector of A.

3.3.3 Consistency Measurement: To ensure logical
coherence of expert judgments, AHP computes the
maximum eigenvalue A,,, of the matrix A via (Li et al.
2023d):

AW = A W.
The Consistency Index (Cl) is then defined as:

Cl = }\max —m
m-—1"
and the Consistency Ratio (CR) is obtained as:

CI

CR=—
RI

Where, RI is the Random Index corresponding to matrix
size m (tabulated in AHP literature). A judgment set is
considered acceptably consistent if

CR < 0.10.

In the present framework, the obtained values CI =
0.030 and CR = 0.027 (for =5 ) indicate high

consistency and allow the use of the derived weights in
subsequent analysis.

3.4 Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS)

TOPSIS is used to rank the loT applications by
measuring their relative closeness to a positive ideal
solution (PIS) and distance from a negative ideal
solution (NIS) (Y. Chen et al. 2021c; Li et al. 2023e).

X = [x]

nxm

Where, X be the decision matrix, where x;; denotes the
performance score of application A; under criterion C;,
with n = 10 alternatives and m criteria.

3.4.1 Vector Normalization: To ecliminate scale

differences, each column of X is normalized using the
Euclidean (L2) norm:

Xii
) . .
Vij = —=,i=1..,nj=1,.,m

n 2
i=1 Xjj

The resulting matrix contains dimensionless scores.
V= [vi] o

3.4.2 Weighted Normalized Decision Matrix: Criteria
weights from AHP are integrated into TOPSIS via
element-wise multiplication:

U = w;jvy;, i = 1,..,nj=1,..,m,

and
U=[uy]

Where, U is the weighted normalized decision matrix.
3.4.3 Ideal and Anti-Ideal Solutions: Assuming all
criteria are benefit-type (higher values preferred), the
PIS and NIS are defined as:

vVt = {V]+ | v]-+ = miaxui]-,j =1, ...,m},

V- = {v]_ | vy = miinuij,j =1, ...,m}.
If cost-type criteria are present, max and min operators
are reversed for those criteria.

3.4.4 Distance to Ideal and Closeness Coefficient: The
Euclidean distance of each application A; to PIS and NIS
is computed as:
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The closeness coefficient (preference index) for each
application is then obtained as

Si’

CCi=——,0
YOS+ ST

Applications are ranked in descending order of CC;;
higher values indicate better alignment with the ideal
preference profile across all criteria.

3.5 Preference Analysis and Ranking

In the final analytical stage, AHP-derived weights and
TOPSIS-derived closeness coefficients are jointly
interpreted to obtain a comprehensive picture of user
preferences (Zheng et al. 2019g). The relative
magnitudes of wj reveal which attributes (e.g., Quality
of Life, Affordability, Sustainability) dominate user and
expert judgments, while the vector CC = [CCy, ..., CC,]
provides an ordinal ranking and a cardinal measure of
how strongly each loT application satisfies the idealized
preference profile. By examining U and CC; together,
decision-makers can (i) identify strengths and
weaknesses of individual applications along each
criterion, (ii) detect trade-offs (e.g., high QoL but low
affordability), and (iii) cluster applications into priority
tiers for investment, deployment, or further
development (Rui et al. 2025b).

This integrated AHP-TOPSIS methodology offers
several advantages for research and practice: it is
comprehensive, as it incorporates both tangible (cost,
performance) and intangible (QoL, usability) factors;
data-driven, as ratings and weights are explicitly
quantified; transparent, since all intermediate matrices
and equations are well defined; flexible, allowing
adaptation to new criteria or application sets; and
actionable, providing explicit rankings and sensitivity to
support policy, design, and deployment decisions in
evolving loT ecosystems.

3.6 Software and Hardware Implementation

The proposed methodology is implemented using R , an
open-source environment widely adopted for statistical
computing, matrix operations, and visualization. R
provides native support for linear algebra routines
required by AHP (eigen decomposition, matrix
normalization) and TOPSIS (vector normalization,
distance calculations), as well as high-level packages for

MCDM workflows. In particular, the ahp package is
used to structure the decision hierarchy and compute
criteria weights, while the MCDA package supports
TOPSIS and related multi-criteria algorithms.
Additional packages such as dplyr are employed for
efficient data manipulation and ggplot2 for generating
publication-quality visualizations of criteria weights,
closeness coefficients, and sensitivity profiles (Rui et al.
2025b).

From a computational standpoint, the hardware
requirements are modest: an Intel Core i3 (or equivalent)
processor, at least 4 GB of RAM, and 250 GB of storage
are sufficient to run the entire workflow, including
Monte Carlo sensitivity analysis on typical problem
sizes (Becherer et al. 2024). The implementation targets
R version 4.0 or later, executed within the RStudio
integrated development environment to streamline
scripting, debugging, and reproducibility through
scripted pipelines and version-controlled project files.
This configuration ensures that the methodology can be
readily replicated and extended by other researchers and
practitioners without requiring specialized hardware.

4. Results and Discussion
4.1 Overview of Empirical Outcomes

The hybrid AHP-TOPSIS framework was applied to
prioritize ten representative IoT applications using
structured judgments from fifteen domain experts,
including IoT researchers, engineers, and practitioners
who assessed criteria and alternatives on Saaty’s 1-9
scale. All computations were performed in Microsoft
Excel and independently validated in R using
the ahp and MCDA packages, yielding an AHP
Consistency Ratio of approximately 0.027 and an
average Spearman rank stability of about 0.94 across
one hundred Monte Carlo perturbations, which jointly
confirm that the model is both internally consistent and
externally robust for decision-making in an IoT context.

4.2 AHP-Derived Criteria Weights

The AHP hierarchy was structured with the overall goal
of IoT application prioritization at the top level,
followed by five evaluation criteria—Quality of Life
(QoL), Affordability (Aff), Sustainability (Sus),
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Scalability (Scal), and Adaptability (Adap)—and ten
IoT applications at the lowest level. Expert judgments
were synthesized into a 5x5 pairwise comparison
matrix, and geometric mean aggregation across experts

Table 1. Aggregated Pairwise Comparison Matrix (Geometric Mean)

produced the consensus matrix shown in Table 1, which
satisfies the reciprocity and diagonal unity properties
required in AHP.

S. No. Criteria QoL Aff Sus Scal Adap Column Sum
1 QoL 1.000 3.000 5.000 0.200 4.000 13.200
2 Aff 0.333 1.000 0.250 5.000 8.000 14.583
3 Sus 0.200 4.000 1.000 4.000 0.333 9.533
4 Scal 5.000 0.200 0.250 1.000 3.000 9.450
5 Adap 0.250 0.125 3.000 0.333 1.000 4.708
6 Total 6.783 8.325 9.500 10.533 16.333 51.474

Column normalization and row averaging of this matrix

produced the normalized matrix and the final criteria
weights reported in Table 2. The consistency analysis
based on the principal eigenvalue yielded a Consistency

of about 0.027, which is well below the standard 0.10
threshold and indicates that the expert judgments are
logically coherent and suitable for use in subsequent
multi-criteria analysis.

Index of approximately 0.030 and a Consistency Ratio
Table 2. Normalized Matrix and Criteria Weights

S. No. Criterion QoL (r) Aff (r) Sus (r) Scal (r) Adap (r) W(ii?)ht Rank
1 QoL 0.147 0.360 0.526 0.019 0.245 0.260 1
2 Aff 0.049 0.120 0.026 0.475 0.490 0.232 2
3 Sus 0.029 0.480 0.105 0.380 0.020 0.203 4
4 Scal 0.737 0.024 0.026 0.095 0.184 0.213 3
5 Adap 0.037 0.015 0.316 0.032 0.061 0.092 5
6 Total 1.000 1.000 1.000 1.000 1.000 1.000

The weight distribution shows that QoL is the most
influential criterion (26.0%), followed by Affordability
(23.2%) and Scalability (21.3%), and while
Sustainability also plays a substantial role (20.3%) and
Adaptability receives the lowest relative importance
(9.2%). This pattern reflects a human- and deployment-
centric view of [oT value: decision-makers in this panel
privilege applications that demonstrably improve users’
daily lives, are economically feasible, and can be
deployed at scale, while viewing long-term adaptability
as desirable but less critical in current decision horizons.
The non-trivial weight of Sustainability, although
slightly below those of QoL, Aff, and Scal, indicates that
environmental and resource considerations are

integrated into the decision process rather than being
treated as ancillary factors.

4.3 TOPSIS Ranking of IoT Applications

Using the same expert panel, a 10x5 decision matrix of
IoT applications versus criteria was constructed from 1—
9 scale ratings, which was then normalized and weighted
using the AHP-derived criteria weights. The weighted
normalized decision matrix captures how each
application performs along each criterion when adjusted
for the relative importance of that criterion. Table 3 and
figure 3 present the weighted normalized scores and
total contributions for the four best-performing
applications, which illustrate the multi-dimensional
performance profiles that drive the final rankings.
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Table 3. Weighted Normalized Scores for Top Four Applications

S. No. Application QoL (26%) Aff(23%) Sus (20%)  Scal (21%) Adap (9%)
1 Transportation 0.140 0.108 0.107 0.087 0.074 0.516
2 Fitness 0.133 0.108 0.092 0.078 0.037 0.448
3 Environment 0.120 0.095 0.116 0.072 0.037 0.440
4 Healthcare 0.104 0.093 0.086 0.072 0.037 0.392
060 1 |Weighted Normalized Scores for Top FourADpIicatwons\
088 0.516
0.50 4
0.45 J 0.448 0.44
0.40 | 0.392
= 035
= |
W 0304
0.25 -|
0.20
0.15 |
0.10 ]
0.05
0.00
Transportation Fitness Envircnment Healthcare
Application

Figure 3. Comparison of weighted normalized scores (X Uj) for the top four ranked IoT applications

The subsequent TOPSIS phase identified the positive
and negative ideal solutions and calculated the distances
of each application from these reference points, yielding
a set of closeness coefficients that serve as scalar

preference indices. Table 4 and figure 4 report the
Table 4. TOPSIS-Based Ranking and Closeness Coefficients

closeness-related quantities alongside expert variance
and indicative market data, providing a compact view of
how the applications compare in terms of both multi-
criteria performance and perceived economic relevance.

Application Si— CG GExpert Primary Driver 2027 Market Size
1 Transportation | 0.520 | 0.290 | 0.640 0.12 Scal x QoL $152B
2 Fitness 0.510 | 0.310 | 0.620 0.15 Affordability $85B
3 Environment | 0.540 | 0.350 | 0.610 0.10 Sustainability $112B
4 Entertainment | 0.520 | 0.350 | 0.600 0.18 Balanced $67B
5 Work 0.560 | 0.390 | 0.590 0.14 Productivity $94B
6 Governance 0.700 | 0.510 | 0.580 0.20 Scalability $78B
7 Building 0.830 | 0.630 | 0.570 0.16 Infrastructure $103B
8 Shopping 0.750 | 0.610 | 0.550 0.17 Retail Afford. $59B
9 Education 0.900 | 0.760 | 0.540 0.22 Adaptability gaps $41B
10 Healthcare 0.500 | 0.570 | 0.460 0.25 Privacy/Scal $98B (Reg.)

As illustrated in figure 3, the ranking indicates that
Smart Transportation is the most preferred IoT
application, followed by Fitness and Environment,
forming a clear top tier that aligns well with the high-

weight criteria. Transportation’s strong position can be
interpreted as the result of balanced strengths in QoL
and Scalability, supported by acceptable performance in
Affordability and Sustainability: it offers tangible
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improvements in daily mobility and quality of life while
being amenable to large-scale deployment over existing
infrastructure. Fitness and Environment also benefit
from high scores on key criteria—Fitness from
affordability and user-centric health benefits, and
Environment from sustainability and growing regulatory
drivers—although their overall profiles are slightly less
balanced than that of Transportation.

By contrast, Healthcare, despite its substantial potential
for QoL enhancement and a significant regulated market
size, occupies the last rank in the current configuration.
This outcome is consistent with experts’ lower ratings

0.80

on affordability and scalability and their higher variance
in judgments, reflecting perceived challenges associated
with data privacy, compliance, integration with legacy
systems, and uneven infrastructure, particularly in less-
connected regions. Education’s low ranking and
relatively high expert variance similarly suggest that
significant adaptability and integration gaps remain to
be addressed before such solutions can compete with
consumer- or infrastructure-oriented IoT domains on the
prioritized criteria set.
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Figure 4. TOPSIS closeness coefficients (CC;) and corresponding rank order of IoT applications based on the proposed
AHP-TOPSIS framework.

The trade-offs revealed by the AHP-TOPSIS
integration have direct implications for IoT design and
policy. The prominence of QoL and Affordability in the
weight structure implies that applications offering clear
user benefits at manageable costs are structurally
advantaged in the prioritization process, which helps
explain why consumer-facing and mobility-related
domains outperform more complex, regulation-heavy
sectors. The non-negligible role of Sustainability
indicates that environmentally oriented IoT solutions
can perform competitively provided they do not severely
compromise QoL or affordability, suggesting a design
sweet spot where ecological impact is improved
alongside user experience and cost-effectiveness. The
comparatively low weight of Adaptability, coupled with
the poor ranking of applications that suffer from
adaptability gaps, highlights a potential misalignment
between short-term priorities and long-term resilience:
while adaptability is currently underweighted as a
decision driver, its absence manifests as a practical

constraint in domains that must evolve rapidly under
changing technological and regulatory conditions.

4.4 Sensitivity Analysis and Robustness Discussion

To assess the robustness of the proposed prioritization
framework with respect to variations in stakeholder
preferences, a comprehensive sensitivity analysis was
conducted using both stochastic and deterministic
approaches. A Monte Carlo simulation comprising one
hundred iterations was performed by introducing £20%
perturbations to the AHP-derived criteria weights,
followed by normalization to preserve unit sum. In
addition, several deterministic weighting scenarios were
examined, including increased emphasis on Quality of
Life (QoL), increased emphasis on Scalability, and an
equal-weight scenario in which all criteria were assigned
identical importance. For each perturbed weight set,
TOPSIS closeness coefficients and corresponding
application rankings were recalculated, and Spearman’s
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rank correlation coefficient was employed to quantify
similarity with the baseline ranking.

The selected deterministic scenarios and their outcomes
are summarized in Table 5. Across all scenarios, Smart

Transportation consistently emerged as the top-ranked
application, while the composition of the top three
applications remained stable in the majority of cases,
indicating strong robustness of the leading alternatives
to realistic shifts in criteria importance.

Table 5. Selected Sensitivity Scenarios

Top-
Scenario Aw Pattern Trans. CC;i op-3 p (vs. Base) Rank Flux
Stable
1 Baseline 0% 0.640 100% 1.000 None
2 QoL +20% | QoL weight increased 0.652 92% 0.950 None
3 Scal +20% | Scal weight increased 0.662 94% 0.960 None
Mi e
4 Equal w all weights = 0.20 0.600 94% 0.920 linor mid
tier swaps

The Monte Carlo—based sensitivity analysis indicates
strong agreement between the baseline and perturbed
rankings, with an average Spearman correlation of
approximately 0.94 and consistent preservation of the
top-tier applications in more than 90% of the
simulations. Under the baseline weighting scheme
obtained from the AHP, Smart Transportation achieves
the highest closeness coefficient (CC; = 0.640),
establishing the reference ranking characterized by
perfect ordinal consistency and full stability of the
leading application set. When the weight of Quality of
Life (QoL) is increased by 20%, the closeness
coefficient of the leading application rises to 0.652,
while the top-three set remains stable in 92% of the cases
and the rank correlation with the baseline remains high
(p = 0.950), indicating minimal sensitivity to increased
human-centric emphasis. A similar trend is observed
when Scalability is emphasized by 20%, resulting in a
further increase in the leading closeness coefficient to
0.662, with 94% top-three stability and a strong rank
correlation of 0.960. Under the equal-weight scenario,
where all criteria are assigned identical importance
(0.20), the closeness coefficient of the top application
decreases to 0.600; however, the top-three applications
remain stable in 94% of cases and the rank correlation
with the baseline remains high (p = 0.920), with only
minor rank exchanges among mid-tier alternatives.
Overall, the results demonstrate that the prioritization
outcomes—particularly the dominance of the leading
applications—are robust to realistic shifts in criteria
importance, and that observed ranking variations are
largely confined to mid-ranked applications rather than
the most critical [oT domains.

5. Conclusion and Future Scope

This study presented a systematic hybrid AHP-TOPSIS
framework for prioritizing ten representative IoT
application domains under a structured multi-criteria
decision-making paradigm that explicitly integrates
expert preferences
evaluation. The AHP analysis revealed a clear and
consistent preference among the five
evaluation criteria, with Quality of Life (QoL) emerging
as the most influential factor (26.0%), followed by
Affordability (23.2%) and Scalability (21.3%), while
Sustainability (20.3%) retained substantial importance
and Adaptability (9.2%) received comparatively lower
emphasis. The low Consistency Index (CI = 0.030) and
Consistency Ratio (CR = 0.027) confirm that these
weights reflect a coherent and reliable expert consensus

with quantitative performance

structure

rather than subjective or contradictory judgments.

Building on this validated weight structure, the TOPSIS
analysis produced a robust and interpretable ranking of
IoT applications by capturing trade-offs across the
weighted criteria space. Smart Transportation achieved
the highest closeness coefficient (CCi = 0.640),
supported by balanced strengths in QoL and Scalability,
and emerged as the leading application domain,
followed by Fitness (CC; = 0.620) and Environment
(CC;i=0.610), which together constitute a stable top tier.
Weighted normalized score analysis further
corroborated this ordering, with Transportation
achieving the highest aggregate contribution (Xu; =
0.516), reflecting multi-dimensional
performance across the most influential criteria. In
contrast, Healthcare (CC; = 0.460) and Education (CC;
= 0.540) ranked lower due to persistent limitations in
affordability, scalability, and adaptability, despite their
recognized societal relevance and market potential,

superior
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highlighting structural rather than intrinsic value
constraints.

The robustness of the prioritization was rigorously
validated through Monte Carlo—based sensitivity
analysis with £20% perturbations in criteria weights and
multiple deterministic scenarios. An average Spearman
rank correlation of approximately 0.94 with the baseline
ranking, combined with over 90% stability of the top
three applications across simulations, demonstrates that
the results are not sensitive to moderate variations in
stakeholder preferences. This stability confirms that the
identified priorities reflect resilient performance
patterns  rather than narrowly tuned weight
configurations.

Future research can extend this work by incorporating
larger and more diverse stakeholder panels, including
end-users, regulators, and industry consortia, to better
capture heterogeneous perspectives. Additionally, the
framework can be enhanced through the adoption of
dynamic or network-based MCDM models that account
for interdependencies among criteria and temporal
evolution of technologies. Integrating empirical
performance indicators—such as real-time usage data,
cost trajectories, and environmental impact metrics—
along with advanced uncertainty modeling techniques
(e.g., fuzzy, rough, or probabilistic MCDM) represents
another promising direction. Such extensions would
further strengthen the applicability of the framework for
guiding strategic decision-making in emerging IoT-
driven domains, including smart cities, Industry 5.0
ecosystems, healthcare digital twins, and adaptive
technology governance.
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This appendix summarizes the core equations used in the AHP-TOPSIS framework for loT application prioritization.
A. 1 Notation

Let:

n : number of IoT applications (alternatives), here n = 10.

e m : number of criteria, here m = 5 (QoL, Aff, Sus, Scal, Adap).

e A= [ai]-]mxm : AHP pairwise comparison matrix.

o X= [Xij]nxm : expert rating matrix (1-9 scale).
e R= [r] : normalized comparison matrix.
Ulmxm

e W=[wy,.., wy]T: criteria weight vector.
e V= [v] : normalized decision matrix.
Ulnxm

e U= [u] : weighted normalized decision matrix.
Ulnxm

e V¥,V positive and negative ideal solutions.
e S, S;: distances of alternative i to PIS and NIS.

e CC; : TOPSIS closeness coefficient for alternative i.

A. 2 AHP Equations

1. Pairwise comparison matrix:

A= [aij]mxm'

a

ji =

ij

—,djj — 1.
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2. Column normalization:

! ka:1 ak]
3. Criteria weights (priority vector):
m m
1
w; = Ez rii'z w; =1
j=1 i=1
4. Consistency index and ratio:
AW = AW,
Amax — M CI
(l=—,CR=—=—,CR<0.10
m-—1 RI
A. 3 TOPSIS Equations
1. Decision matrix:
X = [x]
2. Normalization:
Xij
/ =1 Xizj
3. Weighted normalized matrix:

Uij = WjVij
4. Positive and negative ideal solutions:
+ —fyt |yt = -y v =
VT = {V]- v = miaxui]-},V = {V]- | v;
5. Distances to PIS/NIS:

6. Closeness coefficient:

A. 4 Sensitivity and Robustness
1. Weight perturbation (per Monte Carlo iteration):
W. . e
L ) 6 ~N(1,03),j=1,..,m,

w=—o 1 7
PO Wi &
With perturbation calibrated to +20% variation.
2. Spearman rank correlation between baseline and perturbed rankings:
6%ty df

p:1_n(n2—1)'

Appendix B:
B. 1 Illustrative R Implementation
This code sketch illustrates how the proposed AHP-TOPSIS methodology can be operationalized in R for
research-grade IoT application prioritization.
# Load required packages
library(ahp)  # AHP hierarchy and weights
library(MCDA) # TOPSIS and other MCDM tools
library(dplyr) # Data manipulation
library(ggplot2) # Visualization

# --- AHP: Criteria weights ---

# Example 5x5 pairwise comparison matrix (criteria)
pem <- matrix(c(

1, 3, 5, 1/5,4,

13,1, 1/4,5, 8,
15,4, 1, 4, 1/3,
5, 1/5,1/4,1, 3,

1/4,1/8,3, 1/3,1
), nrow = 5, byrow = TRUE)
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# Compute AHP weights (conceptually)
ahp res <- ahp(QoL ~ Aff + Sus + Scal + Adap, prefmat = pcm)
weights <- ahp_res$weights # w_j for each criterion

# --- TOPSIS: Ranking IoT applications ---

# decision_matrix: n x m matrix of application scores (1-9 scale)
# decision_matrix <- as.matrix(read.csv("iot_scores.csv"))

# Normalize columns
norm_decision <- apply(decision matrix, 2, function(col) col / sqrt(sum(col”*2)))

# Apply weights
weighted decision <- sweep(norm_decision, 2, weights, ***)

# Compute PIS and NIS
ideal pos <- apply(weighted decision, 2, max)
ideal neg <- apply(weighted decision, 2, min)

# Distances
dist_pos <- apply(weighted decision, 1, function(row) sqrt(sum((row - ideal pos)"2)))
dist_neg <- apply(weighted decision, 1, function(row) sqrt(sum((row - ideal neg)"2)))

# Closeness coefficients
cc <- dist_neg / (dist_pos + dist_neg)

# Ranking
ranking <- order(cc, decreasing = TRUE)
result <- data.frame(
Application = app_labels[ranking],
CC = cc[ranking],
Rank = 1:length(cc)
)

# --- Visualization: Criteria weights ---

weights df <- data.frame(
Criterion = ¢("QoL", "Aff", "Sus", "Scal", "Adap"),
Weight = as.numeric(weights)

)

ggplot(weights_df, aes(x = Criterion, y = Weight)) +
geom_bar(stat = "identity", fill = "#2C7BB6") +
theme minimal() +
ylab("Criteria Weight") +
xlab("Criterion")

B.2 Monte Carlo Sensitivity (R Sketch)
set.seed(123)

B <-100

rho_vals <- numeric(B)

for (bin 1:B) {
# Perturb weights +20%
eps <- rnorm(length(weights), mean = 1, sd = 0.20)
w_pert  <- weights * eps
w_pert  <-w_pert/sum(w_pert)

# Recompute TOPSIS with perturbed weights
w_decision <-sweep(norm_decision, 2, w_pert, "*")
ideal pos b <- apply(w_decision, 2, max)

ideal neg b <- apply(w_decision, 2, min)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 164-180 | 179



dpos b <-apply(w_decision, 1, function(row) sqrt(sum((row - ideal _pos_b)"2)))
dneg b <-apply(w_decision, 1, function(row) sqrt(sum((row - ideal neg b)"2)))
cc b <-dneg b/ (dpos_b + dneg_b)

# Spearman correlation vs. baseline cc
—n

rho vals[b] <- cor(cc, cc_b, method = "spearman")

}

rho_avg <- mean(rho_vals)
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