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Abstract: The rapid advancement of the Internet of Things (IoT), driven by high-speed connectivity, edge intelligence, and data-centric 

decision-making, has enabled its widespread deployment across domains such as transportation, healthcare, smart homes, governance, 

and environmental monitoring; however, the growing diversity and scale of IoT applications have made systematic prioritization 

increasingly challenging under competing technical, economic, and societal constraints. To address this challenge, this study proposes 

a survey-driven hybrid multi-criteria decision-making (MCDM) framework that integrates the Analytic Hierarchy Process (AHP) with 

the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to prioritize and rank critical IoT application domains. 

Ten representative IoT applications and seven evaluation criteria—functional performance, affordability, scalability, privacy and 

security, user experience, interoperability, and environmental sustainability—are identified through a comprehensive literature review 

and expert consultation. Judgments from fifteen IoT professionals are synthesized using Saaty’s scale to construct a consistent AHP 

model, revealing Quality of Life, Affordability, and Scalability as the most influential criteria, supported by strong consistency metrics 

(CI ≈ 0.030, CR ≈ 0.027). The validated weights are then incorporated into TOPSIS using a 10×5 decision matrix to compute closeness 

coefficients and establish a quantitative ranking of IoT applications. The robustness of the proposed framework is further confirmed 

through Monte Carlo–based sensitivity analysis with ±20% perturbations in criteria weights, yielding an average Spearman rank 

correlation of approximately 0.94. Overall, the findings demonstrate that the proposed approach is transparent, reproducible, and 

resilient to uncertainty, offering a reliable decision-support tool for IoT investment, system design, and policy formulation in emerging 

areas such as smart cities, Industry 5.0 ecosystems, healthcare digital twins, and technology governance. 

Keywords: technology, governance, perturbations 

1. Introduction 

The Internet of Things (IoT) has rapidly evolved into a 

foundational technology enabling intelligent 

interconnection among physical objects, digital 

platforms, and human users through the Internet. By 

integrating sensing, communication, data processing, 

and actuation capabilities, IoT systems support real-time 

monitoring, automation, and data-driven decision-

making across a wide range of domains, including 

healthcare, agriculture, smart homes, transportation, 

smart cities, and industrial automation (Joshi and 

Kulkarni 2016; Spaho et al. 2025; Lim et al. 2018). 

Advances in embedded systems, low-power wireless 

communication, cloud computing, and edge intelligence 

have significantly reduced deployment costs while 

improving scalability and performance, thereby 

accelerating large-scale IoT adoption in both public and 

private sectors (Zheng et al. 2019a; Yan et al. 2014). 

Along with these advancements, the IoT ecosystem has 

grown increasingly complex. Modern IoT environments 

are characterized by heterogeneous devices, diverse 

communication protocols, varying quality-of-service 

requirements, and distinct stakeholder expectations. 

While such diversity fosters innovation and flexibility, 

it also creates challenges in systematically evaluating 

and selecting IoT applications that best satisfy 

organizational and user needs (Li et al. 2023a; Y. Chen 

et al. 2021a). Decision-makers are often required to 

choose among multiple competing IoT solutions while 

simultaneously considering technical performance, 

economic feasibility, security, scalability, reliability, 

and long-term societal impact (Y. Chen et al. 2021b). In 

the absence of structured evaluation mechanisms, these 

decisions may rely heavily on subjective judgment, 

leading to inefficient investments and suboptimal 

technology deployment. 

User preference and application suitability have 

therefore emerged as critical factors influencing the 

success and sustainability of IoT implementations. 
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Existing studies indicate that beyond functional 

performance, users and organizations place significant 

emphasis on affordability, usability, data privacy, 

interoperability, and future scalability when adopting 

IoT solutions (Zheng et al. 2019b; Rui et al. 2025a; 

Tierney 2012). Among these factors, security and 

privacy concerns remain particularly prominent, as IoT 

systems often operate in distributed, resource-

constrained, and potentially vulnerable environments 

(Okoye and Hosseini 2024). These concerns underscore 

the necessity of adopting systematic and transparent 

evaluation approaches capable of balancing multiple, 

and often conflicting, decision criteria. 

Multi-Criteria Decision-Making (MCDM) techniques 

have been widely recognized as effective tools for 

addressing complex decision problems involving 

multiple alternatives and evaluation criteria (Opricovic 

and Tzeng 2004). MCDM methods offer a mathematical 

and logical framework that enables the comparison of 

alternatives based on both qualitative judgments and 

quantitative data (Behzadian et al. 2012). Within the 

context of IoT evaluation, MCDM approaches have 

been successfully applied to rank platforms, services, 

architectures, and applications by incorporating 

technical, economic, and user-centric considerations 

into the decision-making process. 

Among the various MCDM techniques, the Analytic 

Hierarchy Process (AHP) and the Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS) 

are particularly prominent due to their robustness, 

interpretability, and ease of implementation (Ishizaka 

and Labib 2011; Da Xu et al. 2014). AHP, originally 

proposed by Saaty, structures a complex decision 

problem into a hierarchical model consisting of 

objectives, criteria, and alternatives (Golden et al. 1989). 

Through pairwise comparisons, it quantifies the relative 

importance of decision criteria while ensuring 

consistency in expert judgments. This makes AHP well-

suited for determining criteria weights in IoT evaluation 

scenarios, where subjective perceptions such as usability 

and security are as important as measurable technical 

attributes. However, AHP alone may face limitations 

when ranking a large number of alternatives, especially 

due to potential rank reversal and scalability concerns 

(Tzeng and Huang 2011). 

TOPSIS complements AHP by providing an efficient 

mechanism for ranking alternatives based on their 

relative closeness to an ideal solution. The fundamental 

principle of TOPSIS is that the optimal alternative 

should exhibit the minimum distance from a 

hypothetical positive ideal solution while 

simultaneously maintaining the maximum distance from 

a negative ideal solution (Arslan et al. 2021). Owing to 

its computational simplicity and ability to handle 

continuous performance data, TOPSIS has been widely 

employed in engineering and technology assessment 

problems, including IoT application evaluation (Guo et 

al. 2018). Nevertheless, the effectiveness of TOPSIS 

depends heavily on the accuracy of criteria weights, 

which, if assigned arbitrarily, may compromise the 

reliability of the ranking results. To mitigate the 

individual limitations of AHP and TOPSIS, recent 

research has increasingly adopted hybrid MCDM 

frameworks that integrate the strengths of both methods 

(Shyur and Shih 2006). In such hybrid approaches, AHP 

is used to derive consistent and reliable weights for 

evaluation criteria, while TOPSIS utilizes these weights 

to rank alternatives objectively. This integration ensures 

a balanced consideration of expert judgment and 

quantitative performance data, making it particularly 

suitable for complex and multi-dimensional decision 

environments such as IoT application prioritization. 

Despite the increasing volume of research on IoT 

application evaluation and MCDM-based decision 

support techniques, several notable limitations persist in 

the existing body of literature. A large proportion of 

prior studies remains confined to domain-specific IoT 

implementations—such as smart healthcare, smart 

homes, agriculture, transportation systems, or smart city 

infrastructures—without proposing a generalized 

evaluation framework capable of addressing multiple 

IoT application categories in an integrated manner 

(Wang et al. 2016). Moreover, empirical studies 

conducted at the institutional or organizational level, 

which are essential for capturing real-world deployment 

constraints, heterogeneous device ecosystems, and 

diverse stakeholder priorities, are relatively scarce 

(Kabak et al. 2012). In addition, many existing 

approaches provide limited transparency in the selection 

and justification of evaluation criteria and often 

inadequately incorporate user-centric considerations, 

including usability, reliability, cost efficiency, and 

societal impact, into the decision-making process 

(Zheng et al. 2019c; Rafique et al. 2023). As 

conceptually illustrated in Figure 1, the coexistence of 

diverse IoT application domains, persistent IoT 

challenges—such as device heterogeneity, security and 

privacy concerns, scalability issues, and data 

management complexity—and the growing demand for 

systematic evaluation criteria highlight the necessity of 

a structured MCDM-based framework. The hybrid 

AHP–TOPSIS approach presented in the figure 

addresses these challenges by combining objective 

criteria weighting with robust alternative ranking, 

thereby enabling informed and rational selection of 

optimal IoT applications. 
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Fig. 1. Conceptual framework of IoT application domains, challenges, evaluation criteria, and a hybrid AHP–TOPSIS 

approach for prioritization. 

2. Literature Review 

The rapid expansion of the Internet of Things (IoT) has 

catalyzed extensive research into intelligent decision-

making, user preference modeling, and preference-

aware service delivery across diverse application 

domains. Foundational studies have provided 

comprehensive overviews of IoT, covering core 

concepts, enabling technologies, application areas, and 

key challenges, including scalability, privacy, security, 

interoperability, and user acceptance (Atzori et al. 2010; 

Li et al. 2015; Siow et al. 2018). These early insights 

have guided subsequent research focused on enhancing 

user-centric design and integrating user preferences into 

IoT ecosystems. 

User preference analysis has emerged as a pivotal 

research area for improving IoT adoption and usability. 

Systematic reviews have identified factors such as 

device functionality, cost-effectiveness, privacy, and 

security as major determinants influencing user 

satisfaction and technology acceptance (Mator et al. 

2021; Romero-Riaño et al. 2022). Various methods have 

been proposed for eliciting user preferences, including 

explicit approaches such as surveys, interviews, and 

questionnaires, as well as implicit techniques that 

leverage behavioral and contextual data from sensors 

and usage patterns (Spaho et al. 2025; Washizaki et al. 

2020). Such methods enable the capture of nuanced user 

requirements, facilitating the design of adaptive, 

personalized IoT services. 

In addition to elicitation, preference learning and 

management mechanisms have received considerable 

attention. Adaptive learning models allow IoT systems 

to dynamically adjust to evolving user needs in real-time 

environments (Spaho et al. 2025; Yan et al. 2014). 

Efficient storage, retrieval, and access control strategies 

for managing user preferences are essential to maintain 

system scalability, reliability, and data integrity (Li et al. 

2023b). Preference-based access control frameworks 

further enhance security by enabling fine-grained 
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privacy management and ensuring compliance with 

user-specific requirements (Wang and Song 2025). 

Preference-aware approaches have also been 

extensively applied to resource allocation and service 

management. Integrating user preferences into resource 

scheduling and allocation mechanisms has been shown 

to optimize system performance, improve quality of 

service, and increase user satisfaction (Yan et al. 2014; 

Xiao et al. 2020; Li et al. 2023c). Preference-based 

service composition techniques allow users to customize 

IoT services by selecting and combining functionalities 

that meet their individual needs, thereby enhancing 

system flexibility and personalization (Ni et al. 2024). 

At the application level, preference-aware 

recommendation systems and context-aware service 

provisioning have demonstrated significant potential for 

improving user experience and service efficiency. These 

systems leverage both static and dynamic user data to 

deliver adaptive solutions that respond to changing 

preferences and environmental conditions (Uddin et al. 

2018; Zheng et al. 2019d). Moreover, research has 

explored hybrid frameworks that combine machine 

learning and multi-criteria decision-making (MCDM) 

techniques to systematically rank and prioritize IoT 

applications, accounting for technical, economic, and 

user-centric factors simultaneously (Zheng et al. 2019d; 

Manqele 2015). Such integrated approaches provide 

decision-makers with structured, transparent, and 

actionable insights for IoT deployment. 

The literature demonstrates significant advancements in 

understanding and managing user preferences within 

IoT systems, encompassing preference elicitation, 

adaptive learning, management, and application-level 

personalization. Despite these developments, most 

studies focus on isolated aspects, such as access control, 

resource allocation, or recommendation systems, 

without offering an integrated framework that 

simultaneously addresses technical, economic, and user-

centric criteria. User preferences—including 

functionality, affordability, security, privacy, and 

overall experience—are critical for effective IoT 

adoption, and preference-aware approaches have been 

shown to enhance both user satisfaction and system 

efficiency. Given the increasing diversity and 

complexity of IoT applications, systematic evaluation 

and prioritization are essential, as ad hoc decision-

making can result in suboptimal outcomes. To address 

this gap, this study proposes a hybrid multi-criteria 

decision-making (MCDM) framework that combines 

the Analytic Hierarchy Process (AHP) and the 

Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) to assess and rank ten representative 

IoT applications based on well-defined criteria, 

providing a structured, transparent, and informed 

approach for efficient IoT deployment and adoption. 

 

3. Proposed Methodology 

This study proposes a hybrid multi-criteria decision-

making (MCDM) framework for prioritizing Internet of 

Things (IoT) applications by integrating the Analytic 

Hierarchy Process (AHP) and the Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS). 

The motivation for adopting this hybrid approach lies in 

the complementary strengths of the two techniques: 

AHP effectively captures subjective expert judgments 

and derives consistent criteria weights, while TOPSIS 

provides an objective ranking of alternatives based on 

their relative closeness to an ideal solution. Such 

hybridization has been widely recognized as a robust 

decision-support strategy in complex technological 

evaluation problems (Atzori et al. 2010; Li et al. 2015; 

Siow et al. 2018). 

The overall workflow is structured into five sequential 

stages: (i) selection of representative IoT applications, 

(ii) identification of key evaluation attributes, (iii) 

derivation of criteria weights using AHP, (iv) ranking of 

applications using TOPSIS, and (v) interpretation of 

preferences to support decision-making. This systematic 

process ensures transparency, reproducibility, and 

analytical rigor in capturing heterogeneous user and 

expert preferences. The framework is executed through 

five sequential steps, as detailed below and illustrated in 

Figure 2. 
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Figure 2. Proposed Methodology for IoT Application Prioritization 

3.1 Selection of IoT Applications 

In the first stage, a representative set of ten IoT 

applications (Transportation, Fitness, Environment, 

Entertainment, Work, Governance, Building, Shopping, 

Education, and Healthcare) are defined to capture the 

breadth of functionalities, domains, and usage contexts 

observed in current loT ecosystems. The selection is 

guided by four main considerations: (i) market relevance 

(current and projected adoption and revenue), (ii) 

technological innovativeness (use of emerging 

paradigms such as edge intelligence, 5G, and V2X), (iii) 

user base size and diversity, and (iv) potential industrial 

and societal impact in sectors such as transportation, 

healthcare, smart homes, governance, and environment 

(Joshi and Kulkarni 2016; Spaho et al. 2025; Arslan et 

al. 2021). This ensures that the subsequent analysis 

generalizes across different classes of IoT solutions and 

reflects realistic user preference patterns rather than 

being restricted to niche use cases. 

3.2 Identification of Key Attributes 

The decision problem is parameterized by identifying 

the key attributes that influence user preferences toward 

IoT applications. These attributes are derived through a 

synthesis of application functionality analysis, user 

requirement characteristics, and prevailing trends in IoT 

markets and standards (Zheng et al. 2019e; W. Chen et 

al. 2021). The resulting criteria typically include 

functional performance, affordability and cost-

effectiveness, data privacy and security, user interface 

and experience, compatibility and integration capability, 

and environmental sustainability. Formally, let the 

criteria set be denoted as: 

C = {C1, C2, … , Cm} 

Where, each Cj represents a distinct attribute (e.g., QoL, 

cost, security), and these criteria later serve as the 

evaluation dimensions in the AHP-TOPSIS framework. 

3.3 Analytic Hierarchy Process (AHP) 

AHP is employed to quantify the relative importance 

(weights) of the identified criteria under a hierarchical 

structure with three levels: overall goal (loT application 

prioritization), criteria C1, … , Cm, and alternatives 

A1, … , An (the 10 applications) (Zheng et al. 2019f; Kim 

and Kim 2018). Experts provide pairwise comparisons 

of criteria using Saaty's 1 − 9 scale, which are 

aggregated into a pairwise comparison matrix  

A = [aij]m×m
 

Where 

aij =  relative importance of criterion Ci over Cj, aji =
1

aij
, aii = 1. 
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3.3.1 Column Normalization: Each column of A is 

normalized to obtain the relative contribution of each 

criterion in that column (Li et al. 2023d): 

rij =
aij

∑  m
k=1   akj

, i, j = 1, … , m. 

The normalized matrix R = [rij] satisfies 

∑  

m

i=1

rij = 1 ∀j. 

3.3.2 Priority Vector (Criteria Weights): The weight 

wi of criterion Ci is estimated as the arithmetic mean of 

the normalized row entries (Li et al. 2023d): 

wi =
1

m
∑  

m

j=1

rij, i = 1, … , m 

Subject to the normalization constraint 

∑  

m

i=1

wi = 1, wi ≥ 0. 

The vector 

W = [w1, … , wm]T 

Where, W represents the criteria weight vector and is an 

approximation of the principal eigenvector of A. 

3.3.3 Consistency Measurement: To ensure logical 

coherence of expert judgments, AHP computes the 

maximum eigenvalue λmax of the matrix A via (Li et al. 

2023d): 

AW = λmaxW. 

The Consistency Index (Cl) is then defined as: 

CI =
λmax − m

m − 1
, 

and the Consistency Ratio (CR) is obtained as: 

CR =
CI

RI
 

Where, RI is the Random Index corresponding to matrix 

size m (tabulated in AHP literature). A judgment set is 

considered acceptably consistent if 

CR < 0.10. 

In the present framework, the obtained values CI ≈

0.030 and CR ≈ 0.027 (for = 5 ) indicate high 

consistency and allow the use of the derived weights in 

subsequent analysis. 

3.4 Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS) 

TOPSIS is used to rank the loT applications by 

measuring their relative closeness to a positive ideal 

solution (PIS) and distance from a negative ideal 

solution (NIS) (Y. Chen et al. 2021c; Li et al. 2023e).  

X = [xij]n×m
 

Where, X be the decision matrix, where xij denotes the 

performance score of application Ai under criterion Cj, 

with n = 10 alternatives and m criteria. 

3.4.1 Vector Normalization: To eliminate scale 

differences, each column of X is normalized using the 

Euclidean (L2) norm: 

vij =
xij

√∑  n
i=1  xij

2

, i = 1, … , n, j = 1, … , m. 

The resulting matrix contains dimensionless scores. 

V = [vij]n×m
 

3.4.2 Weighted Normalized Decision Matrix: Criteria 

weights from AHP are integrated into TOPSIS via 

element-wise multiplication: 

uij = wjvij, i = 1, … , n, j = 1, … , m, 

and 

U = [uij]n×m
 

Where, U is the weighted normalized decision matrix. 

3.4.3 Ideal and Anti-Ideal Solutions: Assuming all 

criteria are benefit-type (higher values preferred), the 

PIS and NIS are defined as: 

V+ = {vj
+ ∣ vj

+ = max
i

 uij, j = 1, … , m} ,

V− = {vj
− ∣ vj

− = min
i

 uij, j = 1, … , m} .
 

If cost-type criteria are present, max and min operators 

are reversed for those criteria. 

 

3.4.4 Distance to Ideal and Closeness Coefficient: The 

Euclidean distance of each application Ai to PIS and NIS 

is computed as: 
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Si
+ = √∑  

m

j=1

  (uij − vj
+)

2
, i = 1, … , n,

Si
− = √∑  

m

j=1

  (uij − vj
−)

2
, i = 1, … , n.

 

The closeness coefficient (preference index) for each 

application is then obtained as 

CCi =
Si

−

Si
+ + Si

− , 0 ≤ CCi ≤ 1. 

Applications are ranked in descending order of CCi; 

higher values indicate better alignment with the ideal 

preference profile across all criteria.  

3.5 Preference Analysis and Ranking 

In the final analytical stage, AHP-derived weights and 

TOPSIS-derived closeness coefficients are jointly 

interpreted to obtain a comprehensive picture of user 

preferences (Zheng et al. 2019g). The relative 

magnitudes of wj reveal which attributes (e.g., Quality 

of Life, Affordability, Sustainability) dominate user and 

expert judgments, while the vector CC = [CC1, … , CCn] 

provides an ordinal ranking and a cardinal measure of 

how strongly each loT application satisfies the idealized 

preference profile. By examining U and CCi together, 

decision-makers can (i) identify strengths and 

weaknesses of individual applications along each 

criterion, (ii) detect trade-offs (e.g., high QoL but low 

affordability), and (iii) cluster applications into priority 

tiers for investment, deployment, or further 

development (Rui et al. 2025b).  

This integrated AHP-TOPSIS methodology offers 

several advantages for research and practice: it is 

comprehensive, as it incorporates both tangible (cost, 

performance) and intangible (QoL, usability) factors; 

data-driven, as ratings and weights are explicitly 

quantified; transparent, since all intermediate matrices 

and equations are well defined; flexible, allowing 

adaptation to new criteria or application sets; and 

actionable, providing explicit rankings and sensitivity to 

support policy, design, and deployment decisions in 

evolving loT ecosystems.  

3.6 Software and Hardware Implementation 

The proposed methodology is implemented using R , an 

open-source environment widely adopted for statistical 

computing, matrix operations, and visualization. R 

provides native support for linear algebra routines 

required by AHP (eigen decomposition, matrix 

normalization) and TOPSIS (vector normalization, 

distance calculations), as well as high-level packages for 

MCDM workflows. In particular, the ahp package is 

used to structure the decision hierarchy and compute 

criteria weights, while the MCDA package supports 

TOPSIS and related multi-criteria algorithms. 

Additional packages such as dplyr are employed for 

efficient data manipulation and ggplot2 for generating 

publication-quality visualizations of criteria weights, 

closeness coefficients, and sensitivity profiles (Rui et al. 

2025b).  

From a computational standpoint, the hardware 

requirements are modest: an Intel Core i3 (or equivalent) 

processor, at least 4 GB of RAM, and 250 GB of storage 

are sufficient to run the entire workflow, including 

Monte Carlo sensitivity analysis on typical problem 

sizes (Becherer et al. 2024). The implementation targets 

R version 4.0 or later, executed within the RStudio 

integrated development environment to streamline 

scripting, debugging, and reproducibility through 

scripted pipelines and version-controlled project files. 

This configuration ensures that the methodology can be 

readily replicated and extended by other researchers and 

practitioners without requiring specialized hardware.  

 

4. Results and Discussion 

4.1 Overview of Empirical Outcomes 

The hybrid AHP–TOPSIS framework was applied to 

prioritize ten representative IoT applications using 

structured judgments from fifteen domain experts, 

including IoT researchers, engineers, and practitioners 

who assessed criteria and alternatives on Saaty’s 1–9 

scale. All computations were performed in Microsoft 

Excel and independently validated in R using 

the ahp and MCDA packages, yielding an AHP 

Consistency Ratio of approximately 0.027 and an 

average Spearman rank stability of about 0.94 across 

one hundred Monte Carlo perturbations, which jointly 

confirm that the model is both internally consistent and 

externally robust for decision-making in an IoT context. 

4.2 AHP-Derived Criteria Weights 

The AHP hierarchy was structured with the overall goal 

of IoT application prioritization at the top level, 

followed by five evaluation criteria—Quality of Life 

(QoL), Affordability (Aff), Sustainability (Sus), 
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Scalability (Scal), and Adaptability (Adap)—and ten 

IoT applications at the lowest level. Expert judgments 

were synthesized into a 5×5 pairwise comparison 

matrix, and geometric mean aggregation across experts 

produced the consensus matrix shown in Table 1, which 

satisfies the reciprocity and diagonal unity properties 

required in AHP. 

Table 1. Aggregated Pairwise Comparison Matrix (Geometric Mean) 

S. No. Criteria QoL Aff Sus Scal Adap Column Sum 

1 QoL 1.000 3.000 5.000 0.200 4.000 13.200 

2 Aff 0.333 1.000 0.250 5.000 8.000 14.583 

3 Sus 0.200 4.000 1.000 4.000 0.333 9.533 

4 Scal 5.000 0.200 0.250 1.000 3.000 9.450 

5 Adap 0.250 0.125 3.000 0.333 1.000 4.708 

6 Total 6.783 8.325 9.500 10.533 16.333 51.474 

Column normalization and row averaging of this matrix 

produced the normalized matrix and the final criteria 

weights reported in Table 2. The consistency analysis 

based on the principal eigenvalue yielded a Consistency 

Index of approximately 0.030 and a Consistency Ratio 

of about 0.027, which is well below the standard 0.10 

threshold and indicates that the expert judgments are 

logically coherent and suitable for use in subsequent 

multi-criteria analysis. 

Table 2. Normalized Matrix and Criteria Weights 

S. No. Criterion QoL (r) Aff (r) Sus (r) Scal (r) Adap (r) 
Weight 

(wj) 
Rank 

1 QoL 0.147 0.360 0.526 0.019 0.245 0.260 1 

2 Aff 0.049 0.120 0.026 0.475 0.490 0.232 2 

3 Sus 0.029 0.480 0.105 0.380 0.020 0.203 4 

4 Scal 0.737 0.024 0.026 0.095 0.184 0.213 3 

5 Adap 0.037 0.015 0.316 0.032 0.061 0.092 5 

6 Total 1.000 1.000 1.000 1.000 1.000 1.000  

The weight distribution shows that QoL is the most 

influential criterion (26.0%), followed by Affordability 

(23.2%) and Scalability (21.3%), and while 

Sustainability also plays a substantial role (20.3%) and 

Adaptability receives the lowest relative importance 

(9.2%). This pattern reflects a human- and deployment-

centric view of IoT value: decision-makers in this panel 

privilege applications that demonstrably improve users’ 

daily lives, are economically feasible, and can be 

deployed at scale, while viewing long-term adaptability 

as desirable but less critical in current decision horizons. 

The non-trivial weight of Sustainability, although 

slightly below those of QoL, Aff, and Scal, indicates that 

environmental and resource considerations are 

integrated into the decision process rather than being 

treated as ancillary factors. 

4.3 TOPSIS Ranking of IoT Applications 

Using the same expert panel, a 10×5 decision matrix of 

IoT applications versus criteria was constructed from 1–

9 scale ratings, which was then normalized and weighted 

using the AHP-derived criteria weights. The weighted 

normalized decision matrix captures how each 

application performs along each criterion when adjusted 

for the relative importance of that criterion. Table 3 and 

figure 3 present the weighted normalized scores and 

total contributions for the four best-performing 

applications, which illustrate the multi-dimensional 

performance profiles that drive the final rankings. 
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Table 3. Weighted Normalized Scores for Top Four Applications 

S. No. Application QoL (26%) Aff (23%) Sus (20%) Scal (21%) Adap (9%) Σ uij 

1 Transportation 0.140 0.108 0.107 0.087 0.074 0.516 

2 Fitness 0.133 0.108 0.092 0.078 0.037 0.448 

3 Environment 0.120 0.095 0.116 0.072 0.037 0.440 

4 Healthcare 0.104 0.093 0.086 0.072 0.037 0.392 

 

Figure 3. Comparison of weighted normalized scores (Σ Uij) for the top four ranked IoT applications  

The subsequent TOPSIS phase identified the positive 

and negative ideal solutions and calculated the distances 

of each application from these reference points, yielding 

a set of closeness coefficients that serve as scalar 

preference indices. Table 4 and figure 4 report the 

closeness-related quantities alongside expert variance 

and indicative market data, providing a compact view of 

how the applications compare in terms of both multi-

criteria performance and perceived economic relevance. 

Table 4. TOPSIS-Based Ranking and Closeness Coefficients 

Rank Application Si+ Si− CCi σExpert Primary Driver 2027 Market Size 

1 Transportation 0.520 0.290 0.640 0.12 Scal × QoL $152B 

2 Fitness 0.510 0.310 0.620 0.15 Affordability $85B 

3 Environment 0.540 0.350 0.610 0.10 Sustainability $112B 

4 Entertainment 0.520 0.350 0.600 0.18 Balanced $67B 

5 Work 0.560 0.390 0.590 0.14 Productivity $94B 

6 Governance 0.700 0.510 0.580 0.20 Scalability $78B 

7 Building 0.830 0.630 0.570 0.16 Infrastructure $103B 

8 Shopping 0.750 0.610 0.550 0.17 Retail Afford. $59B 

9 Education 0.900 0.760 0.540 0.22 Adaptability gaps $41B 

10 Healthcare 0.500 0.570 0.460 0.25 Privacy/Scal $98B (Reg.) 

As illustrated in figure 3, the ranking indicates that 

Smart Transportation is the most preferred IoT 

application, followed by Fitness and Environment, 

forming a clear top tier that aligns well with the high-

weight criteria. Transportation’s strong position can be 

interpreted as the result of balanced strengths in QoL 

and Scalability, supported by acceptable performance in 

Affordability and Sustainability: it offers tangible 
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improvements in daily mobility and quality of life while 

being amenable to large-scale deployment over existing 

infrastructure. Fitness and Environment also benefit 

from high scores on key criteria—Fitness from 

affordability and user-centric health benefits, and 

Environment from sustainability and growing regulatory 

drivers—although their overall profiles are slightly less 

balanced than that of Transportation. 

By contrast, Healthcare, despite its substantial potential 

for QoL enhancement and a significant regulated market 

size, occupies the last rank in the current configuration. 

This outcome is consistent with experts’ lower ratings 

on affordability and scalability and their higher variance 

in judgments, reflecting perceived challenges associated 

with data privacy, compliance, integration with legacy 

systems, and uneven infrastructure, particularly in less-

connected regions. Education’s low ranking and 

relatively high expert variance similarly suggest that 

significant adaptability and integration gaps remain to 

be addressed before such solutions can compete with 

consumer- or infrastructure-oriented IoT domains on the 

prioritized criteria set. 

 

Figure 4. TOPSIS closeness coefficients (CCi) and corresponding rank order of IoT applications based on the proposed 

AHP–TOPSIS framework. 

The trade-offs revealed by the AHP–TOPSIS 

integration have direct implications for IoT design and 

policy. The prominence of QoL and Affordability in the 

weight structure implies that applications offering clear 

user benefits at manageable costs are structurally 

advantaged in the prioritization process, which helps 

explain why consumer-facing and mobility-related 

domains outperform more complex, regulation-heavy 

sectors. The non-negligible role of Sustainability 

indicates that environmentally oriented IoT solutions 

can perform competitively provided they do not severely 

compromise QoL or affordability, suggesting a design 

sweet spot where ecological impact is improved 

alongside user experience and cost-effectiveness. The 

comparatively low weight of Adaptability, coupled with 

the poor ranking of applications that suffer from 

adaptability gaps, highlights a potential misalignment 

between short-term priorities and long-term resilience: 

while adaptability is currently underweighted as a 

decision driver, its absence manifests as a practical 

constraint in domains that must evolve rapidly under 

changing technological and regulatory conditions. 

4.4 Sensitivity Analysis and Robustness Discussion 

To assess the robustness of the proposed prioritization 

framework with respect to variations in stakeholder 

preferences, a comprehensive sensitivity analysis was 

conducted using both stochastic and deterministic 

approaches. A Monte Carlo simulation comprising one 

hundred iterations was performed by introducing ±20% 

perturbations to the AHP-derived criteria weights, 

followed by normalization to preserve unit sum. In 

addition, several deterministic weighting scenarios were 

examined, including increased emphasis on Quality of 

Life (QoL), increased emphasis on Scalability, and an 

equal-weight scenario in which all criteria were assigned 

identical importance. For each perturbed weight set, 

TOPSIS closeness coefficients and corresponding 

application rankings were recalculated, and Spearman’s 
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rank correlation coefficient was employed to quantify 

similarity with the baseline ranking. 

The selected deterministic scenarios and their outcomes 

are summarized in Table 5. Across all scenarios, Smart 

Transportation consistently emerged as the top-ranked 

application, while the composition of the top three 

applications remained stable in the majority of cases, 

indicating strong robustness of the leading alternatives 

to realistic shifts in criteria importance. 

Table 5. Selected Sensitivity Scenarios 

S. No. Scenario Δw Pattern Trans. CCi 
Top-3 

Stable 
ρ (vs. Base) Rank Flux 

1 Baseline 0% 0.640 100% 1.000 None 

2 QoL +20% QoL weight increased 0.652 92% 0.950 None 

3 Scal +20% Scal weight increased 0.662 94% 0.960 None 

4 Equal w all weights = 0.20 0.600 94% 0.920 
Minor mid-

tier swaps 

The Monte Carlo–based sensitivity analysis indicates 

strong agreement between the baseline and perturbed 

rankings, with an average Spearman correlation of 

approximately 0.94 and consistent preservation of the 

top-tier applications in more than 90% of the 

simulations. Under the baseline weighting scheme 

obtained from the AHP, Smart Transportation achieves 

the highest closeness coefficient (CCi = 0.640), 

establishing the reference ranking characterized by 

perfect ordinal consistency and full stability of the 

leading application set. When the weight of Quality of 

Life (QoL) is increased by 20%, the closeness 

coefficient of the leading application rises to 0.652, 

while the top-three set remains stable in 92% of the cases 

and the rank correlation with the baseline remains high 

(ρ = 0.950), indicating minimal sensitivity to increased 

human-centric emphasis. A similar trend is observed 

when Scalability is emphasized by 20%, resulting in a 

further increase in the leading closeness coefficient to 

0.662, with 94% top-three stability and a strong rank 

correlation of 0.960. Under the equal-weight scenario, 

where all criteria are assigned identical importance 

(0.20), the closeness coefficient of the top application 

decreases to 0.600; however, the top-three applications 

remain stable in 94% of cases and the rank correlation 

with the baseline remains high (ρ = 0.920), with only 

minor rank exchanges among mid-tier alternatives. 

Overall, the results demonstrate that the prioritization 

outcomes—particularly the dominance of the leading 

applications—are robust to realistic shifts in criteria 

importance, and that observed ranking variations are 

largely confined to mid-ranked applications rather than 

the most critical IoT domains. 

 

 

5. Conclusion and Future Scope 

This study presented a systematic hybrid AHP–TOPSIS 

framework for prioritizing ten representative IoT 

application domains under a structured multi-criteria 

decision-making paradigm that explicitly integrates 

expert preferences with quantitative performance 

evaluation. The AHP analysis revealed a clear and 

consistent preference structure among the five 

evaluation criteria, with Quality of Life (QoL) emerging 

as the most influential factor (26.0%), followed by 

Affordability (23.2%) and Scalability (21.3%), while 

Sustainability (20.3%) retained substantial importance 

and Adaptability (9.2%) received comparatively lower 

emphasis. The low Consistency Index (CI ≈ 0.030) and 

Consistency Ratio (CR ≈ 0.027) confirm that these 

weights reflect a coherent and reliable expert consensus 

rather than subjective or contradictory judgments. 

Building on this validated weight structure, the TOPSIS 

analysis produced a robust and interpretable ranking of 

IoT applications by capturing trade-offs across the 

weighted criteria space. Smart Transportation achieved 

the highest closeness coefficient (CCi = 0.640), 

supported by balanced strengths in QoL and Scalability, 

and emerged as the leading application domain, 

followed by Fitness (CCi = 0.620) and Environment 

(CCi = 0.610), which together constitute a stable top tier. 

Weighted normalized score analysis further 

corroborated this ordering, with Transportation 

achieving the highest aggregate contribution (Σuij = 

0.516), reflecting superior multi-dimensional 

performance across the most influential criteria. In 

contrast, Healthcare (CCi = 0.460) and Education (CCi 

= 0.540) ranked lower due to persistent limitations in 

affordability, scalability, and adaptability, despite their 

recognized societal relevance and market potential, 
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highlighting structural rather than intrinsic value 

constraints. 

The robustness of the prioritization was rigorously 

validated through Monte Carlo–based sensitivity 

analysis with ±20% perturbations in criteria weights and 

multiple deterministic scenarios. An average Spearman 

rank correlation of approximately 0.94 with the baseline 

ranking, combined with over 90% stability of the top 

three applications across simulations, demonstrates that 

the results are not sensitive to moderate variations in 

stakeholder preferences. This stability confirms that the 

identified priorities reflect resilient performance 

patterns rather than narrowly tuned weight 

configurations. 

Future research can extend this work by incorporating 

larger and more diverse stakeholder panels, including 

end-users, regulators, and industry consortia, to better 

capture heterogeneous perspectives. Additionally, the 

framework can be enhanced through the adoption of 

dynamic or network-based MCDM models that account 

for interdependencies among criteria and temporal 

evolution of technologies. Integrating empirical 

performance indicators—such as real-time usage data, 

cost trajectories, and environmental impact metrics—

along with advanced uncertainty modeling techniques 

(e.g., fuzzy, rough, or probabilistic MCDM) represents 

another promising direction. Such extensions would 

further strengthen the applicability of the framework for 

guiding strategic decision-making in emerging IoT-

driven domains, including smart cities, Industry 5.0 

ecosystems, healthcare digital twins, and adaptive 

technology governance. 
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Appendix A. Mathematical Formulations 

 

This appendix summarizes the core equations used in the AHP-TOPSIS framework for loT application prioritization.  

A. 1 Notation 

Let: 

• n : number of IoT applications (alternatives), here n = 10.  

• m : number of criteria, here m = 5 (QoL, Aff, Sus, Scal, Adap).  

• A = [aij]m×m
 : AHP pairwise comparison matrix. 

• X = [xij]n×m
 : expert rating matrix (1-9 scale). 

• R = [rij]m×m
 : normalized comparison matrix. 

• W = [w1, … , wm]T : criteria weight vector. 

• V = [vij]n×m
 : normalized decision matrix. 

• U = [uij]n×m
 : weighted normalized decision matrix. 

•  V+, V−: positive and negative ideal solutions. 

• Si
+, Si

−: distances of alternative i to PIS and NIS. 

• CCi : TOPSIS closeness coefficient for alternative i.  
 

A. 2 AHP Equations 

1. Pairwise comparison matrix: 

A = [aij]m×m
, aji =

1

aij

, aii = 1. 
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2. Column normalization: 

rij =
aij

∑  m
k=1  akj

. 

3. Criteria weights (priority vector): 

wi =
1

m
∑  

m

j=1

rij, ∑  

m

i=1

wi = 1. 

4. Consistency index and ratio: 
AW = λmaxW,

CI =
λmax − m

m − 1
, CR =

CI

RI
, CR < 0.10

 

A. 3 TOPSIS Equations 

1. Decision matrix: 

X = [xij]n×m
. 

2. Normalization: 

vij =
xij

√∑  n
i=1  xij

2

 

3. Weighted normalized matrix: 

uij = wjvij 

4. Positive and negative ideal solutions: 

V+ = {vj
+ ∣ vj

+ = max
i

 uij} , V− = {vj
− ∣ vj

− = min
i

 uij}. 

5. Distances to PIS/NIS: 

Si
+ = √∑  

m

j=1

  (uij − vj
+)

2
, Si

− = √∑  

m

j=1

  (uij − vj
−)

2
. 

6. Closeness coefficient: 

CCi =
Si

−

Si
+ + Si

− 

A. 4 Sensitivity and Robustness 

1. Weight perturbation (per Monte Carlo iteration): 

wj
′ =

wj ⋅ ϵj

∑  m
k=1  wk ⋅ ϵk

, ϵj ∼ 𝒩(1, σw
2 ), j = 1, … , m, 

With perturbation calibrated to ±20% variation.  

2. Spearman rank correlation between baseline and perturbed rankings: 

ρ = 1 −
6 ∑  n

i=1  di
2

n(n2 − 1)
, 

 

 

Appendix B:  

B. 1 Illustrative R Implementation 

This code sketch illustrates how the proposed AHP–TOPSIS methodology can be operationalized in R for 

research-grade IoT application prioritization. 

# Load required packages 

library(ahp)      # AHP hierarchy and weights 

library(MCDA)     # TOPSIS and other MCDM tools 

library(dplyr)    # Data manipulation 

library(ggplot2)  # Visualization 

 

# --- AHP: Criteria weights --- 

 

# Example 5x5 pairwise comparison matrix (criteria) 

pcm <- matrix(c( 

  1,   3,   5,   1/5, 4, 

  1/3, 1,   1/4, 5,   8, 

  1/5, 4,   1,   4,   1/3, 

  5,   1/5, 1/4, 1,   3, 

  1/4, 1/8, 3,   1/3, 1 

), nrow = 5, byrow = TRUE) 
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# Compute AHP weights (conceptually) 

ahp_res <- ahp(QoL ~ Aff + Sus + Scal + Adap, prefmat = pcm) 

weights <- ahp_res$weights   # w_j for each criterion 

 

# --- TOPSIS: Ranking IoT applications --- 

 

# decision_matrix: n x m matrix of application scores (1–9 scale) 

# decision_matrix <- as.matrix(read.csv("iot_scores.csv")) 

 

# Normalize columns 

norm_decision <- apply(decision_matrix, 2, function(col) col / sqrt(sum(col^2))) 

 

# Apply weights 

weighted_decision <- sweep(norm_decision, 2, weights, `*`) 

 

# Compute PIS and NIS 

ideal_pos <- apply(weighted_decision, 2, max) 

ideal_neg <- apply(weighted_decision, 2, min) 

 

# Distances 

dist_pos <- apply(weighted_decision, 1, function(row) sqrt(sum((row - ideal_pos)^2))) 

dist_neg <- apply(weighted_decision, 1, function(row) sqrt(sum((row - ideal_neg)^2))) 

 

# Closeness coefficients 

cc <- dist_neg / (dist_pos + dist_neg) 

 

# Ranking 

ranking <- order(cc, decreasing = TRUE) 

result <- data.frame( 

  Application = app_labels[ranking], 

  CC = cc[ranking], 

  Rank = 1:length(cc) 

) 

 

# --- Visualization: Criteria weights --- 

 

weights_df <- data.frame( 

  Criterion = c("QoL", "Aff", "Sus", "Scal", "Adap"), 

  Weight = as.numeric(weights) 

) 

 

ggplot(weights_df, aes(x = Criterion, y = Weight)) + 

  geom_bar(stat = "identity", fill = "#2C7BB6") + 

  theme_minimal() + 

  ylab("Criteria Weight") + 

  xlab("Criterion") 

 

B.2 Monte Carlo Sensitivity (R Sketch) 

set.seed(123) 

B <- 100 

rho_vals <- numeric(B) 

 

for (b in 1:B) { 

  # Perturb weights ±20% 

  eps          <- rnorm(length(weights), mean = 1, sd = 0.20) 

  w_pert       <- weights * eps 

  w_pert       <- w_pert / sum(w_pert) 

 

  # Recompute TOPSIS with perturbed weights 

  w_decision   <- sweep(norm_decision, 2, w_pert, `*`) 

  ideal_pos_b  <- apply(w_decision, 2, max) 

  ideal_neg_b  <- apply(w_decision, 2, min) 
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  dpos_b       <- apply(w_decision, 1, function(row) sqrt(sum((row - ideal_pos_b)^2))) 

  dneg_b       <- apply(w_decision, 1, function(row) sqrt(sum((row - ideal_neg_b)^2))) 

  cc_b         <- dneg_b / (dpos_b + dneg_b) 

 

  # Spearman correlation vs. baseline cc 

  rho_vals[b]  <- cor(cc, cc_b, method = "spearman") 

} 

 

rho_avg <- mean(rho_vals) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


