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Abstract - The exponential growth of artificial intelligence applications has created unprecedented demand for specialized 

hardware accelerators capable of efficiently processing complex neural network computations. This paper provides a 

comprehensive analysis of AI hardware accelerator architectures, examining critical design trade-offs between performance, 

power efficiency, and flexibility. We investigate the architectural evolution from general-purpose GPUs to domain-specific 

accelerators including TPUs, FPGAs, and neuromorphic processors. Through detailed performance analysis and real-world 

deployment case studies, we evaluate key metrics including throughput, latency, energy efficiency, and total cost of ownership. 

Our analysis reveals that while GPUs maintain dominance in training workloads, specialized ASICs demonstrate superior 

efficiency for inference tasks, achieving up to 10× better performance-per-watt. We examine production deployment challenges 

including model optimization, quantization strategies, and system integration considerations. The paper synthesizes current 

research trends and provides practical guidance for selecting appropriate accelerator architectures based on specific application 

requirements, workload characteristics, and deployment constraints. 

Index Terms - AI accelerators, neural network hardware, TPU, GPU, FPGA, neuromorphic computing, inference optimization, 

hardware-software co-design 

I. INTRODUCTION 

The proliferation of deep learning applications across 

computer vision, natural language processing, and autonomous 

systems has fundamentally transformed computational 

requirements in modern computing systems [1]. Traditional 

CPU architectures, optimized for sequential processing and 

complex control flow, prove inadequate for the massive parallel 

computations characterizing neural network operations [2]. 

This performance gap has catalyzed the development of 

specialized hardware accelerators designed explicitly for 

artificial intelligence workloads. 

Contemporary AI accelerators span a diverse architectural 

spectrum, from repurposed graphics processing units (GPUs) 

to purpose-built application-specific integrated circuits 

(ASICs) and reconfigurable field-programmable gate arrays 

(FPGAs) [3]. Each architecture embodies distinct design 

philosophies and trade-offs, optimizing for different points in 

the performance-flexibility-efficiency space. Understanding 

these trade-offs is critical for practitioners deploying AI 

systems at scale, where hardware selection directly impacts 

application performance, operational costs, and time-to-

market. 

Recent industry deployments demonstrate the practical 

significance of these architectural choices. Google’s Tensor 

Processing Units (TPUs) have powered production-scale 

machine learning infrastructure, processing billions of 

inference requests daily [4]. NVIDIA’s GPU platforms 

dominate training workloads in research and industry, while 

emerging players introduce novel architectural paradigms 

challenging conventional design assumptions [5]. 

This paper addresses three fundamental questions: (1) What 

architectural trade-offs distinguish different AI accelerator 

classes? (2) How do these architectures perform across diverse 

workload characteristics? (3) What practical considerations 

govern successful production deployment? We provide 

quantitative performance analysis, architectural comparisons, 

and deployment guidance grounded in both academic research 

and industrial practice. 
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II. BACKGROUND AND MOTIVATION 

A. Neural Network Computational Characteristics 

Deep neural networks exhibit distinctive computational 

patterns that differentiate them from traditional computing 

workloads. The forward propagation phase consists primarily 

of matrix multiplications and element-wise operations, 

exhibiting massive data parallelism with minimal control flow 

complexity [6]. Training introduces additional computational 

phases including backpropagation and gradient updates, 

requiring higher precision arithmetic and larger memory 

bandwidth. 

Modern transformer architectures, exemplified by models 

like GPT and BERT, introduce attention mechanisms requiring 

O(n²) computational complexity relative to sequence length, 

creating unique memory access patterns and parallelization 

opportunities [7]. Convolutional neural networks (CNNs) in 

computer vision applications demonstrate spatial locality and 

regular memory access patterns amenable to specialized 

optimization [8]. 

B. Evolution of AI Hardware 

The trajectory of AI hardware evolution reflects an ongoing 

specialization process driven by Dennard scaling limitations 

and the end of Moore’s Law dividends for general-purpose 

processors [9]. Early deep learning research relied on CPU 

implementations, quickly transitioning to GPU acceleration as 

researchers recognized the architectural alignment between 

graphics rendering and neural network computation. 

Fig. 1. Roofline performance model comparing GPU, TPU, 

and CPU architectures. The ridge point indicates the 

arithmetic intensity threshold where workloads transition 

from memory-bound to compute-bound regimes. 

NVIDIA’s introduction of CUDA in 2007 democratized GPU 

computing, establishing GPUs as the de facto training platform 

[10]. However, inference workloads - characterized by lower 

computational intensity, stricter latency requirements, and 

different precision needs motivated development of specialized 

inference accelerators. 

Google’s announcement of its first-generation TPU in 2016 

marked a watershed moment, demonstrating that domain 

specific architectures could achieve order-of-magnitude 

improvements in performance-per-watt for production 

inference workloads [11]. This success catalyzed industry-wide 

investment in custom AI silicon. 

C. Design Space Exploration 

The AI accelerator design space encompasses multiple 

orthogonal dimensions including: 

• Numerical Precision: From 8-bit integers to 32-bit floating-

point, with emerging interest in mixed-precision and adaptive 

precision schemes [12] 

• Memory Hierarchy: On-chip SRAM sizes, DRAM bandwidth, 

and cache architectures tailored to neural network access 

patterns [13] 

• Compute Organization: Systolic arrays, SIMD units, dataflow 

architectures, and neuromorphic spike-based processing [14] 

• Programmability: Fixed-function ASICs versus reconfigurable 

architectures supporting diverse model types 

Each design decision involves fundamental trade-offs 

between performance, power efficiency, silicon area, design 

complexity, and time-to-market [15]. 

 

III. ARCHITECTURAL TAXONOMY AND ANALYSIS 

A. Graphics Processing Units (GPUs) 

GPUs represent the most widely deployed AI accelerator 

class, leveraging their SIMT (Single Instruction, Multiple 

Thread) architecture for neural network parallelism. Modern 

GPUs integrate thousands of CUDA cores organized into 

streaming multiprocessors (SMs), providing massive floating-

point throughput. 

Architecture Characteristics: NVIDIA’s Ampere architecture 

features third-generation Tensor Cores supporting mixed 

precision operations, structured sparsity acceleration, and 

multi-instance GPU (MIG) partitioning for workload isolation. 

AMD’s CDNA architecture emphasizes matrix multiplication 

acceleration through dedicated matrix cores with optimized 

data paths. 

Performance Profile: GPUs excel in training workloads 

requiring high computational throughput and flexible 

programmability. The A100 GPU delivers 312 TFLOPS of 

FP16 tensor operations with 1.6 TB/s memory bandwidth. 

However, training utilization often remains below 50% due to 

memorybound operations and framework overheads. 

Trade-offs: GPU flexibility comes at the cost of power 

efficiency. General-purpose architectural features large caches, 
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complex schedulers, graphics legacy consume significant 

silicon area and power for AI workloads. Inference applications 

particularly suffer from GPU overprovisioning, paying for 

capabilities unused in production deployment. 

B. Tensor Processing Units (TPUs) 

Google’s TPU family represents purpose-built inference 

accelerators, later extended to support training through TPU v2 

and subsequent generations. The TPU architecture centers on a 

systolic array optimized for matrix multiplication, the dominant 

operation in neural networks. 

Architecture Characteristics: TPU v1 implemented a 

256×256 systolic array operating on 8-bit integers, achieving 

92 TOPS with 40W power consumption. The systolic array 

enables high computational density through local data reuse, 

minimizing expensive DRAM accesses. Weight memory feeds 

operands horizontally while activation memory feeds 

vertically, with results accumulating through the array. 

Performance Analysis: For inference workloads, TPU v1 

demonstrated 15×-30× speedups versus contemporary CPUs 

and GPUs while achieving 30×-80× better energy efficiency. 

However, this performance advantage diminishes for small 

batch sizes where communication overhead dominates 

computation. 

TPU v4 pods scale to 4096 chips with 1.1 exaflops of peak 

performance, employing optical circuit switches for all-to-all 

chip interconnection. This architecture supports efficient large 

model training through 3D torus topology with custom 

interchain links providing 1.1 TB/s bidirectional bandwidth per 

chip. 

Trade-offs: TPU specialization limits flexibility. The fixed 

systolic array dimensions constrain efficient execution to 

matrix sizes that align with array geometry. Variable-length 

sequences in NLP applications and dynamic computational 

graphs require careful software optimization to maintain 

efficiency. 

C. Field-Programmable Gate Arrays (FPGAs) 

FPGAs offer post-fabrication reconfigurability, enabling 

customized data paths for specific neural network architectures. 

Modern FPGAs integrate hardened DSP blocks, embedded 

memory, and high-bandwidth interfaces supporting AI 

acceleration. 

Architecture Characteristics: Intel’s Stratix 10 NX FPGA 

incorporates dedicated AI optimization engines including 

Tensor blocks providing INT8 systolic operations, achieving 

143 TOPS. Xilinx Versal ACAP combines programmable logic 

with AIML engines featuring INT8/FP16 vector processors and 

dedicated memory hierarchy. 

Design Methodology: FPGA-based accelerators typically 

implement custom dataflow architectures tailored to target 

network topologies. Roofline analysis guides resource 

allocation between compute units, on-chip buffers, and 

memory interfaces to match application arithmetic intensity 

[16]. 

Performance Characteristics: FPGAs achieve competitive 

efficiency for specific models through architecture 

customization. Quantized ResNet-50 inference on Xilinx VU9P 

demonstrates 2.7× higher throughput-per-watt versus V100 

GPU. However, absolute throughput remains lower than 

dedicated ASICs due to FPGA reconfigurability overhead. 

Trade-offs: FPGA reconfigurability enables rapid design 

iteration and support for novel architectures. This flexibility 

trades off against peak efficiency FPGA implementations 

consume 3×-5× more power than equivalent ASIC designs 

[17]. 

D. Neuromorphic Processors 

Neuromorphic architectures pursue brain-inspired 

computing through event-driven spike-based processing. 

Intel’s Loihi 2 and IBM’s TrueNorth exemplify this paradigm, 

implementing asynchronous networks of spiking neurons. 

Architecture Characteristics: Loihi 2 integrates 128 

neuromorphic cores, each supporting up to 8,192 

programmable neurons with configurable synaptic connections 

[18]. Neurons communicate through asynchronous spikes 

routed via a packet-switched network-on-chip. Programmable 

microcode enables diverse neuron models and learning rules. 

Performance Profile: Neuromorphic processors excel in 

sparse, event-driven workloads like audio processing and 

sensory data analysis. Loihi demonstrates 100× energy 

efficiency versus GPUs for keyword spotting tasks. However, 

standard deep learning workloads require conversion to spiking 

neural networks, often degrading accuracy. 

Trade-offs: Neuromorphic computing offers exceptional 

power efficiency for compatible applications but requires 

fundamental algorithmic changes. Limited software ecosystem 

and accuracy gaps versus standard networks constrain adoption 

to niche applications. 
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IV. PERFORMANCE ANALYSIS FRAMEWORK 

A. Metrics and Evaluation Methodology 

Comprehensive accelerator evaluation requires 

multidimensional metrics capturing diverse deployment 

priorities: 

• Throughput: Operations per second (TOPS, TFLOPS) or 

inferences per second 

• Latency: End-to-end inference time including preprocessing 

and postprocessing 

Fig. 2. Performance-Flexibility trade-off space positioning 

different accelerator architectures. Bubble size represents 

relative development cost and timeto-market. 

TABLE I 

PERFORMANCE COMPARISON OF AI 

ACCELERATORS FOR RESNET-50 INFERENCE 

•  Energy Efficiency: Operations per watt or inferences per joule 

• Cost Efficiency: Performance per dollar (capital and 

operational expenditure) 

• Memory Bandwidth: Bytes per second sustainable memory 

throughput 

Table I summarizes key performance metrics across 

accelerator classes for ResNet-50 inference workload. 

B. Workload Characterization 

 

Neural network workload diversity necessitates architecture 

specific performance analysis. Table II categorizes 

representative models by computational characteristics. 

Computer vision models exhibit high arithmetic intensity, 

favoring compute-optimized architectures. Large language 

models demonstrate memory-intensive profiles, requiring high 

bandwidth memory systems and efficient attention 

mechanisms. 

C. Roofline Performance Analysis 

Roofline modeling visualizes performance relative to 

theoretical hardware limits [16]. Figure 1 illustrates roofline 

anal- 

TABLE II NEURAL NETWORK WORKLOAD 

CHARACTERISTICS 

Model Example Para

ms 

FLO

Ps 

Arith. Memo

ry 

Type  (M) (G) Intens

ity 

(MB) 

CNN 

(Vision) 

ResNet-

50 

25.6 4.1 67.2 98 

CNN Efficient

Net 

66.3 37.0 1247.

5 

254 

(Large) -B7     

Transfor

mer 

(NLP) 

BERT-

Large 

340 22.5 148.1 1300 

Transfor

mer 

(LLM) 

GPT-3 1750

00 

3140

00 

31400

00 

70000

0 

Detectio

n 

YOLO-

v5 

46.5 108.0 515.0 178 

Architect

ure 

Through

put 

Laten

cy 

Pow

er 

Efficien

cy 

Precisi

on 

 (img/s) (ms) (W) (img/s/

W) 

 

Intel 

Xeon 

Platinum 

145 6.9 205 0.71 FP32 

NVIDIA 

A100 

GPU 

12,800 0.08 250 51.2 FP16 

Google 

TPU v4 

17,500 0.06 175 100.0 INT8 

Intel 

Stratix 

10 NX 

3,200 0.31 75 42.7 INT8 

AWS 

Inferentia

l 

6,400 0.16 70 91.4 INT8 
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ysis for various accelerators showing the transition between 

memory-bound and compute-bound operating regimes. 

The roofline model reveals that TPUs achieve higher 

efficiency for compute-bound workloads due to superior peak 

FLOPS, while GPUs maintain advantage in memory 

bandwidth-limited scenarios through HBM2e memory 

subsystems. 

 

V. ARCHITECTURE TRADE-OFF ANALYSIS 

A. Performance versus Flexibility 

The fundamental tension between specialization and 

programmability governs architecture selection. Figure 2 

visualizes this trade-off space across different accelerator 

classes. 

ASICs maximize efficiency through fixed-function data 

paths optimized for specific operations. Google’s TPU v1 

exemplifies this approach, achieving 30× better 

performanceper-watt than GPUs for inference, but constraining 

model evolution to 8-bit quantized networks with specific layer 

types. 

GPUs sacrifice peak efficiency for broad applicability. 

CUDA programming model supports arbitrary computational 

graphs, enabling rapid experimentation and deployment of 

novel architectures. This flexibility proves essential during 

training, where model architectures evolve rapidly. 

FPGAs occupy intermediate ground, offering post-silicon 

reconfigurability at efficiency between GPUs and ASICs. This 

positions FPGAs advantageously for edge deployment where 

workload evolution justifies reconfiguration overhead. 

B. Training versus Inference Optimization 

Training and inference present distinct optimization 

priorities. Training demands: 

• High numerical precision (FP32/FP16) for gradient stability 

• Large memory capacity for batch processing 

• Bidirectional dataflow for backpropagation • High inter-

accelerator bandwidth for model parallelism Inference 

optimization emphasizes: 

• Reduced precision (INT8/FP16) maintaining accuracy 

• Low latency for real-time applications 

• Unidirectional feed-forward computation 

• Cost and power efficiency at scale 

Table III quantifies these differences across accelerator 

architectures. 

TABLE III 

TRAINING VERSUS INFERENCE ARCHITECTURAL 

REQUIREMENTS 

Requirement Training Inference Inference 

 (GPU) (TPU) (Edge) 

Precision FP32/FP16 INT8/FP16 INT8/INT4 

Batch Size 128-1024 1-128 1-8 

Latency 

Target 

Relaxed ¡100ms ¡10ms 

Memory 

Capacity 

80GB+ 16GB 1-4GB 

Power 

Budget 

300-400W 75-250W 5-15W 

Cost Priority Medium High Critical 

C. Power Efficiency Analysis 

Power efficiency emerges as the dominant constraint in 

production deployment, dictating operational costs and 

deployment scale. Modern accelerators employ multiple power 

optimization strategies: 

Reduced Precision Arithmetic: INT8 computation delivers 

4× higher throughput versus FP32 with 4× lower power 

consumption per operation [19]. Post-training quantization 

techniques maintain ¡1% accuracy degradation for most vision 

and NLP models [20]. 

Data Movement Optimization: Memory accesses consume 

10×-100× more energy than arithmetic operations [21]. 

Successful architectures minimize DRAM traffic through 

aggressive on-chip buffering and data reuse. TPU’s systolic 

array achieves weight reuse ratios exceeding 1000×, amortizing 

memory access costs across thousands of operations. 

Dynamic Voltage-Frequency Scaling: Workload-adaptive 

DVFS adjusts operating points based on computational 

intensity, reducing power consumption by 30%-50% during 

memory-bound phases. 

Sparsity Exploitation: Structured and unstructured sparsity in 

network weights and activations enables computation skipping. 

NVIDIA’s A100 accelerates 2:4 structured sparsity patterns, 

doubling effective throughput for compatible models. 
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VI. PRODUCTION DEPLOYMENT CONSIDERATIONS 

A. Model Optimization Pipeline 

Production deployment necessitates comprehensive model 

optimization beyond architecture selection. The optimization 

pipeline encompasses: 

1. Quantization: Post-training quantization (PTQ) 

converts FP32 weights to INT8 with minimal accuracy loss. 

Quantization-aware training (QAT) incorporates quantization 

effects during training, achieving better accuracy-efficiency 

trade-offs [22]. Mixed-precision strategies allocate higher 

precision to sensitive layers while quantizing tolerant 

operations. 

2. Pruning: Structured pruning removes entire channels 

or attention heads, enabling hardware acceleration without 

specialized support [23]. Unstructured pruning achieves higher 

compression ratios but requires sparse computation hardware 

support. 

3. Knowledge Distillation: Teacher-student training 

transfers knowledge from large accurate models to smaller 

efficient 

 

Fig. 3. AI model deployment pipeline from training to 

production inference, showing key optimization stages and 

hardware transitions. 

variants, maintaining 95%+ of original accuracy at 5×-10× 

reduced computational cost [24]. 

4. Architecture Search: Neural architecture search 

(NAS) discovers efficient architectures tailored to target 

hardware platforms. Hardware-aware NAS incorporates 

latency and energy costs directly into search objectives [25]. 

Figure 3 illustrates the complete deployment pipeline from 

training to production inference. 

B. System Integration Challenges 

Accelerator integration into production systems introduces 

engineering challenges beyond raw performance: 

Memory Management: Efficient tensor memory allocation 

and reuse minimizes overhead. Graph optimization passes fuse 

operations, eliminating intermediate tensors. Memory planning 

algorithms schedule tensor lifetimes to minimize peak usage. 

Batch Processing: Dynamic batching aggregates multiple 

requests to amortize accelerator launch overhead and increase 

hardware utilization. However, batching introduces latency 

variability conflicting with real-time requirements. 

Model Serving Infrastructure: Production systems require 

model versioning, A/B testing, canary deployments, and 

monitoring. Frameworks like TensorFlow Serving and 

TorchServe provide these capabilities but introduce serving 

overhead [26]. 

Multi-Tenancy: Cloud deployment requires resource 

isolation and fair scheduling across multiple models and users. 

GPU multi-instance technology and temporal multiplexing 

strategies address these requirements with varying efficiency 

trade-offs. 

C. Cost Analysis and TCO 

Total cost of ownership encompasses capital expenditure 

(accelerator hardware), operational expenditure (power, 

cooling), and development costs (engineering time, tooling). 

Cloud Deployment: Major cloud providers offer diverse 

accelerator options. AWS Inferentia provides 50% cost 

reduction versus GPU instances for inference, while Google 

TPU pods offer compelling economics for large-scale training. 

However, vendor lock-in and egress costs require careful 

analysis. 

On-Premise Deployment: Organizations processing sensitive 

data or requiring guaranteed capacity often prefer on premise 

deployment. Accelerator selection must consider not only 

hardware costs but also power infrastructure, cooling 

requirements, and operational expertise. 

Edge Deployment: Resource-constrained edge scenarios 

prioritize power efficiency and cost over absolute performance. 

Specialized edge accelerators like Google Edge TPU, Intel 

Movidius, and Qualcomm AI Engine target 5-15W power 

budgets with $50-$200 component costs. 

 

VII. EMERGING TRENDS AND FUTURE 

DIRECTIONS 

A. Chiplet-Based Architectures 

Monolithic die scaling faces increasing challenges from yield 

limitations and design complexity. Chiplet architectures 

decompose systems into smaller dies interconnected through 

high-bandwidth interfaces, improving yields and enabling 

heterogeneous integration [27]. 
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AMD’s MI300 series integrates CPU, GPU, and memory 

chiplets via 2.5D packaging, achieving 5.2 TB/s inter-chiplet 

bandwidth. This approach enables rapid architecture evolution 

through chiplet mix-and-match while amortizing design costs 

across products. 

B. In-Memory and Near-Memory Computing 

Data movement increasingly dominates energy consumption 

and latency in AI workloads. Processing-in-memory (PIM) 

architectures integrate computation within memory arrays, 

eliminating DRAM data movement [28]. 

Samsung’s HBM-PIM demonstrates 2.5× performance 

improvement and 60% energy reduction for BERT inference 

versus conventional GPU execution. However, PIM faces 

adoption challenges including programming model complexity 

and limited computational precision. 

C. Optical Interconnects 

Multi-accelerator scaling for large model training encounters 

bandwidth walls in electrical interconnects. Optical 

communication promises orders-of-magnitude higher 

bandwidth with reduced power consumption. 

Google’s TPU v4 optical circuit switching demonstrates 10 

Tbps bisection bandwidth across 4096 chips [29]. Emerging 

technologies like silicon photonics integration may enable 

board-level optical links, revolutionizing rack-scale 

acceleration. 

D. Domain-Specific Languages and Compilers 

The proliferation of accelerator architectures creates 

software fragmentation challenges. Modern compiler 

frameworks like MLIR, TVM, and XLA abstract hardware 

differences through progressive lowering from high-level 

frameworks to hardware-specific code [30]. 

These tools enable” write once, optimize everywhere” 

workflows, automatically discovering efficient execution 

strategies through auto-tuning and machine learning. However, 

achieving hand-optimized performance across diverse targets 

remains challenging. 

 

VIII. CONCLUSION 

AI hardware accelerator selection requires navigating 

complex multi-dimensional trade-offs between performance, 

efficiency, flexibility, and cost. Our analysis reveals several key 

insights: 

1. No Universal Solution: Workload diversity precludes 

a one-size-fits-all architecture. Training workloads favor 

programmable GPUs enabling rapid experimentation, while 

production inference benefits from specialized ASICs 

optimizing efficiency. 

2. Precision Flexibility: Reduced-precision arithmetic 

(INT8) delivers 4×-10× efficiency improvements with minimal 

accuracy degradation for inference. Mixed-precision strategies 

optimize the precision-accuracy-performance trade-off on a 

per-layer basis. 

3. Memory-Compute Balance: Successful architectures 

carefully balance computational throughput with memory 

bandwidth and capacity. High arithmetic intensity models favor 

compute-optimized designs, while large language models 

require memory-centric architectures. 

4. System-Level Optimization: Raw accelerator 

performance represents only one component of production 

deployment. Model optimization, serving infrastructure, and 

operational considerations critically impact delivered 

performance and cost. 

5. Evolution Continues: Emerging technologies 

including chiplets, processing-in-memory, and optical 

interconnects promise substantial future improvements. 

However, near-term deployment decisions must focus on 

mature technologies with robust software ecosystems. 

For practitioners, we recommend: 

• Training: NVIDIA GPUs or cloud TPU pods for largescale 

training 

• Cloud Inference: AWS Inferentia or Google TPU for cost-

optimized deployment 

• Edge Inference: Qualcomm, MediaTek, or Google Edge TPU 

for power-constrained scenarios 

• Custom Workloads: FPGAs for specialized requirements with 

evolving model architectures 

Future research should address cross-layer optimization 

integrating algorithms, compilers, and hardware, developing 

automated tools that navigate design space complexity while 

maintaining accessibility for practitioners without deep 

hardware expertise. 
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