

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 181

AI Hardware Accelerators: Architecture Trade-offs, Performance

Analysis, and Production Deployment

Pradhyuman Yadav

 Submitted:03/07/2025 Revised:15/08/2025 Accepted:25/08/2025

Abstract - The exponential growth of artificial intelligence applications has created unprecedented demand for specialized

hardware accelerators capable of efficiently processing complex neural network computations. This paper provides a

comprehensive analysis of AI hardware accelerator architectures, examining critical design trade-offs between performance,

power efficiency, and flexibility. We investigate the architectural evolution from general-purpose GPUs to domain-specific

accelerators including TPUs, FPGAs, and neuromorphic processors. Through detailed performance analysis and real-world

deployment case studies, we evaluate key metrics including throughput, latency, energy efficiency, and total cost of ownership.

Our analysis reveals that while GPUs maintain dominance in training workloads, specialized ASICs demonstrate superior

efficiency for inference tasks, achieving up to 10× better performance-per-watt. We examine production deployment challenges

including model optimization, quantization strategies, and system integration considerations. The paper synthesizes current

research trends and provides practical guidance for selecting appropriate accelerator architectures based on specific application

requirements, workload characteristics, and deployment constraints.

Index Terms - AI accelerators, neural network hardware, TPU, GPU, FPGA, neuromorphic computing, inference optimization,

hardware-software co-design

I. INTRODUCTION

The proliferation of deep learning applications across

computer vision, natural language processing, and autonomous

systems has fundamentally transformed computational

requirements in modern computing systems [1]. Traditional

CPU architectures, optimized for sequential processing and

complex control flow, prove inadequate for the massive parallel

computations characterizing neural network operations [2].

This performance gap has catalyzed the development of

specialized hardware accelerators designed explicitly for

artificial intelligence workloads.

Contemporary AI accelerators span a diverse architectural

spectrum, from repurposed graphics processing units (GPUs)

to purpose-built application-specific integrated circuits

(ASICs) and reconfigurable field-programmable gate arrays

(FPGAs) [3]. Each architecture embodies distinct design

philosophies and trade-offs, optimizing for different points in

the performance-flexibility-efficiency space. Understanding

these trade-offs is critical for practitioners deploying AI

systems at scale, where hardware selection directly impacts

application performance, operational costs, and time-to-

market.

Recent industry deployments demonstrate the practical

significance of these architectural choices. Google’s Tensor

Processing Units (TPUs) have powered production-scale

machine learning infrastructure, processing billions of

inference requests daily [4]. NVIDIA’s GPU platforms

dominate training workloads in research and industry, while

emerging players introduce novel architectural paradigms

challenging conventional design assumptions [5].

This paper addresses three fundamental questions: (1) What

architectural trade-offs distinguish different AI accelerator

classes? (2) How do these architectures perform across diverse

workload characteristics? (3) What practical considerations

govern successful production deployment? We provide

quantitative performance analysis, architectural comparisons,

and deployment guidance grounded in both academic research

and industrial practice.

Research Scholar

Mailid - pradhyuman999@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 182

II. BACKGROUND AND MOTIVATION

A. Neural Network Computational Characteristics

Deep neural networks exhibit distinctive computational

patterns that differentiate them from traditional computing

workloads. The forward propagation phase consists primarily

of matrix multiplications and element-wise operations,

exhibiting massive data parallelism with minimal control flow

complexity [6]. Training introduces additional computational

phases including backpropagation and gradient updates,

requiring higher precision arithmetic and larger memory

bandwidth.

Modern transformer architectures, exemplified by models

like GPT and BERT, introduce attention mechanisms requiring

O(n²) computational complexity relative to sequence length,

creating unique memory access patterns and parallelization

opportunities [7]. Convolutional neural networks (CNNs) in

computer vision applications demonstrate spatial locality and

regular memory access patterns amenable to specialized

optimization [8].

B. Evolution of AI Hardware

The trajectory of AI hardware evolution reflects an ongoing

specialization process driven by Dennard scaling limitations

and the end of Moore’s Law dividends for general-purpose

processors [9]. Early deep learning research relied on CPU

implementations, quickly transitioning to GPU acceleration as

researchers recognized the architectural alignment between

graphics rendering and neural network computation.

Fig. 1. Roofline performance model comparing GPU, TPU,

and CPU architectures. The ridge point indicates the

arithmetic intensity threshold where workloads transition

from memory-bound to compute-bound regimes.

NVIDIA’s introduction of CUDA in 2007 democratized GPU

computing, establishing GPUs as the de facto training platform

[10]. However, inference workloads - characterized by lower

computational intensity, stricter latency requirements, and

different precision needs motivated development of specialized

inference accelerators.

Google’s announcement of its first-generation TPU in 2016

marked a watershed moment, demonstrating that domain

specific architectures could achieve order-of-magnitude

improvements in performance-per-watt for production

inference workloads [11]. This success catalyzed industry-wide

investment in custom AI silicon.

C. Design Space Exploration

The AI accelerator design space encompasses multiple

orthogonal dimensions including:

• Numerical Precision: From 8-bit integers to 32-bit floating-

point, with emerging interest in mixed-precision and adaptive

precision schemes [12]

• Memory Hierarchy: On-chip SRAM sizes, DRAM bandwidth,

and cache architectures tailored to neural network access

patterns [13]

• Compute Organization: Systolic arrays, SIMD units, dataflow

architectures, and neuromorphic spike-based processing [14]

• Programmability: Fixed-function ASICs versus reconfigurable

architectures supporting diverse model types

Each design decision involves fundamental trade-offs

between performance, power efficiency, silicon area, design

complexity, and time-to-market [15].

III. ARCHITECTURAL TAXONOMY AND ANALYSIS

A. Graphics Processing Units (GPUs)

GPUs represent the most widely deployed AI accelerator

class, leveraging their SIMT (Single Instruction, Multiple

Thread) architecture for neural network parallelism. Modern

GPUs integrate thousands of CUDA cores organized into

streaming multiprocessors (SMs), providing massive floating-

point throughput.

Architecture Characteristics: NVIDIA’s Ampere architecture

features third-generation Tensor Cores supporting mixed

precision operations, structured sparsity acceleration, and

multi-instance GPU (MIG) partitioning for workload isolation.

AMD’s CDNA architecture emphasizes matrix multiplication

acceleration through dedicated matrix cores with optimized

data paths.

Performance Profile: GPUs excel in training workloads

requiring high computational throughput and flexible

programmability. The A100 GPU delivers 312 TFLOPS of

FP16 tensor operations with 1.6 TB/s memory bandwidth.

However, training utilization often remains below 50% due to

memorybound operations and framework overheads.

Trade-offs: GPU flexibility comes at the cost of power

efficiency. General-purpose architectural features large caches,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 183

complex schedulers, graphics legacy consume significant

silicon area and power for AI workloads. Inference applications

particularly suffer from GPU overprovisioning, paying for

capabilities unused in production deployment.

B. Tensor Processing Units (TPUs)

Google’s TPU family represents purpose-built inference

accelerators, later extended to support training through TPU v2

and subsequent generations. The TPU architecture centers on a

systolic array optimized for matrix multiplication, the dominant

operation in neural networks.

Architecture Characteristics: TPU v1 implemented a

256×256 systolic array operating on 8-bit integers, achieving

92 TOPS with 40W power consumption. The systolic array

enables high computational density through local data reuse,

minimizing expensive DRAM accesses. Weight memory feeds

operands horizontally while activation memory feeds

vertically, with results accumulating through the array.

Performance Analysis: For inference workloads, TPU v1

demonstrated 15×-30× speedups versus contemporary CPUs

and GPUs while achieving 30×-80× better energy efficiency.

However, this performance advantage diminishes for small

batch sizes where communication overhead dominates

computation.

TPU v4 pods scale to 4096 chips with 1.1 exaflops of peak

performance, employing optical circuit switches for all-to-all

chip interconnection. This architecture supports efficient large

model training through 3D torus topology with custom

interchain links providing 1.1 TB/s bidirectional bandwidth per

chip.

Trade-offs: TPU specialization limits flexibility. The fixed

systolic array dimensions constrain efficient execution to

matrix sizes that align with array geometry. Variable-length

sequences in NLP applications and dynamic computational

graphs require careful software optimization to maintain

efficiency.

C. Field-Programmable Gate Arrays (FPGAs)

FPGAs offer post-fabrication reconfigurability, enabling

customized data paths for specific neural network architectures.

Modern FPGAs integrate hardened DSP blocks, embedded

memory, and high-bandwidth interfaces supporting AI

acceleration.

Architecture Characteristics: Intel’s Stratix 10 NX FPGA

incorporates dedicated AI optimization engines including

Tensor blocks providing INT8 systolic operations, achieving

143 TOPS. Xilinx Versal ACAP combines programmable logic

with AIML engines featuring INT8/FP16 vector processors and

dedicated memory hierarchy.

Design Methodology: FPGA-based accelerators typically

implement custom dataflow architectures tailored to target

network topologies. Roofline analysis guides resource

allocation between compute units, on-chip buffers, and

memory interfaces to match application arithmetic intensity

[16].

Performance Characteristics: FPGAs achieve competitive

efficiency for specific models through architecture

customization. Quantized ResNet-50 inference on Xilinx VU9P

demonstrates 2.7× higher throughput-per-watt versus V100

GPU. However, absolute throughput remains lower than

dedicated ASICs due to FPGA reconfigurability overhead.

Trade-offs: FPGA reconfigurability enables rapid design

iteration and support for novel architectures. This flexibility

trades off against peak efficiency FPGA implementations

consume 3×-5× more power than equivalent ASIC designs

[17].

D. Neuromorphic Processors

Neuromorphic architectures pursue brain-inspired

computing through event-driven spike-based processing.

Intel’s Loihi 2 and IBM’s TrueNorth exemplify this paradigm,

implementing asynchronous networks of spiking neurons.

Architecture Characteristics: Loihi 2 integrates 128

neuromorphic cores, each supporting up to 8,192

programmable neurons with configurable synaptic connections

[18]. Neurons communicate through asynchronous spikes

routed via a packet-switched network-on-chip. Programmable

microcode enables diverse neuron models and learning rules.

Performance Profile: Neuromorphic processors excel in

sparse, event-driven workloads like audio processing and

sensory data analysis. Loihi demonstrates 100× energy

efficiency versus GPUs for keyword spotting tasks. However,

standard deep learning workloads require conversion to spiking

neural networks, often degrading accuracy.

Trade-offs: Neuromorphic computing offers exceptional

power efficiency for compatible applications but requires

fundamental algorithmic changes. Limited software ecosystem

and accuracy gaps versus standard networks constrain adoption

to niche applications.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 184

IV. PERFORMANCE ANALYSIS FRAMEWORK

A. Metrics and Evaluation Methodology

Comprehensive accelerator evaluation requires

multidimensional metrics capturing diverse deployment

priorities:

• Throughput: Operations per second (TOPS, TFLOPS) or

inferences per second

• Latency: End-to-end inference time including preprocessing

and postprocessing

Fig. 2. Performance-Flexibility trade-off space positioning

different accelerator architectures. Bubble size represents

relative development cost and timeto-market.

TABLE I

PERFORMANCE COMPARISON OF AI

ACCELERATORS FOR RESNET-50 INFERENCE

• Energy Efficiency: Operations per watt or inferences per joule

• Cost Efficiency: Performance per dollar (capital and

operational expenditure)

• Memory Bandwidth: Bytes per second sustainable memory

throughput

Table I summarizes key performance metrics across

accelerator classes for ResNet-50 inference workload.

B. Workload Characterization

Neural network workload diversity necessitates architecture

specific performance analysis. Table II categorizes

representative models by computational characteristics.

Computer vision models exhibit high arithmetic intensity,

favoring compute-optimized architectures. Large language

models demonstrate memory-intensive profiles, requiring high

bandwidth memory systems and efficient attention

mechanisms.

C. Roofline Performance Analysis

Roofline modeling visualizes performance relative to

theoretical hardware limits [16]. Figure 1 illustrates roofline

anal-

TABLE II NEURAL NETWORK WORKLOAD

CHARACTERISTICS

Model Example Para

ms

FLO

Ps

Arith. Memo

ry

Type (M) (G) Intens

ity

(MB)

CNN

(Vision)

ResNet-

50

25.6 4.1 67.2 98

CNN Efficient

Net

66.3 37.0 1247.

5

254

(Large) -B7

Transfor

mer

(NLP)

BERT-

Large

340 22.5 148.1 1300

Transfor

mer

(LLM)

GPT-3 1750

00

3140

00

31400

00

70000

0

Detectio

n

YOLO-

v5

46.5 108.0 515.0 178

Architect

ure

Through

put

Laten

cy

Pow

er

Efficien

cy

Precisi

on

 (img/s) (ms) (W) (img/s/

W)

Intel

Xeon

Platinum

145 6.9 205 0.71 FP32

NVIDIA

A100

GPU

12,800 0.08 250 51.2 FP16

Google

TPU v4

17,500 0.06 175 100.0 INT8

Intel

Stratix

10 NX

3,200 0.31 75 42.7 INT8

AWS

Inferentia

l

6,400 0.16 70 91.4 INT8

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 185

ysis for various accelerators showing the transition between

memory-bound and compute-bound operating regimes.

The roofline model reveals that TPUs achieve higher

efficiency for compute-bound workloads due to superior peak

FLOPS, while GPUs maintain advantage in memory

bandwidth-limited scenarios through HBM2e memory

subsystems.

V. ARCHITECTURE TRADE-OFF ANALYSIS

A. Performance versus Flexibility

The fundamental tension between specialization and

programmability governs architecture selection. Figure 2

visualizes this trade-off space across different accelerator

classes.

ASICs maximize efficiency through fixed-function data

paths optimized for specific operations. Google’s TPU v1

exemplifies this approach, achieving 30× better

performanceper-watt than GPUs for inference, but constraining

model evolution to 8-bit quantized networks with specific layer

types.

GPUs sacrifice peak efficiency for broad applicability.

CUDA programming model supports arbitrary computational

graphs, enabling rapid experimentation and deployment of

novel architectures. This flexibility proves essential during

training, where model architectures evolve rapidly.

FPGAs occupy intermediate ground, offering post-silicon

reconfigurability at efficiency between GPUs and ASICs. This

positions FPGAs advantageously for edge deployment where

workload evolution justifies reconfiguration overhead.

B. Training versus Inference Optimization

Training and inference present distinct optimization

priorities. Training demands:

• High numerical precision (FP32/FP16) for gradient stability

• Large memory capacity for batch processing

• Bidirectional dataflow for backpropagation • High inter-

accelerator bandwidth for model parallelism Inference

optimization emphasizes:

• Reduced precision (INT8/FP16) maintaining accuracy

• Low latency for real-time applications

• Unidirectional feed-forward computation

• Cost and power efficiency at scale

Table III quantifies these differences across accelerator

architectures.

TABLE III

TRAINING VERSUS INFERENCE ARCHITECTURAL

REQUIREMENTS

Requirement Training Inference Inference

 (GPU) (TPU) (Edge)

Precision FP32/FP16 INT8/FP16 INT8/INT4

Batch Size 128-1024 1-128 1-8

Latency

Target

Relaxed ¡100ms ¡10ms

Memory

Capacity

80GB+ 16GB 1-4GB

Power

Budget

300-400W 75-250W 5-15W

Cost Priority Medium High Critical

C. Power Efficiency Analysis

Power efficiency emerges as the dominant constraint in

production deployment, dictating operational costs and

deployment scale. Modern accelerators employ multiple power

optimization strategies:

Reduced Precision Arithmetic: INT8 computation delivers

4× higher throughput versus FP32 with 4× lower power

consumption per operation [19]. Post-training quantization

techniques maintain ¡1% accuracy degradation for most vision

and NLP models [20].

Data Movement Optimization: Memory accesses consume

10×-100× more energy than arithmetic operations [21].

Successful architectures minimize DRAM traffic through

aggressive on-chip buffering and data reuse. TPU’s systolic

array achieves weight reuse ratios exceeding 1000×, amortizing

memory access costs across thousands of operations.

Dynamic Voltage-Frequency Scaling: Workload-adaptive

DVFS adjusts operating points based on computational

intensity, reducing power consumption by 30%-50% during

memory-bound phases.

Sparsity Exploitation: Structured and unstructured sparsity in

network weights and activations enables computation skipping.

NVIDIA’s A100 accelerates 2:4 structured sparsity patterns,

doubling effective throughput for compatible models.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 186

VI. PRODUCTION DEPLOYMENT CONSIDERATIONS

A. Model Optimization Pipeline

Production deployment necessitates comprehensive model

optimization beyond architecture selection. The optimization

pipeline encompasses:

1. Quantization: Post-training quantization (PTQ)

converts FP32 weights to INT8 with minimal accuracy loss.

Quantization-aware training (QAT) incorporates quantization

effects during training, achieving better accuracy-efficiency

trade-offs [22]. Mixed-precision strategies allocate higher

precision to sensitive layers while quantizing tolerant

operations.

2. Pruning: Structured pruning removes entire channels

or attention heads, enabling hardware acceleration without

specialized support [23]. Unstructured pruning achieves higher

compression ratios but requires sparse computation hardware

support.

3. Knowledge Distillation: Teacher-student training

transfers knowledge from large accurate models to smaller

efficient

Fig. 3. AI model deployment pipeline from training to

production inference, showing key optimization stages and

hardware transitions.

variants, maintaining 95%+ of original accuracy at 5×-10×

reduced computational cost [24].

4. Architecture Search: Neural architecture search

(NAS) discovers efficient architectures tailored to target

hardware platforms. Hardware-aware NAS incorporates

latency and energy costs directly into search objectives [25].

Figure 3 illustrates the complete deployment pipeline from

training to production inference.

B. System Integration Challenges

Accelerator integration into production systems introduces

engineering challenges beyond raw performance:

Memory Management: Efficient tensor memory allocation

and reuse minimizes overhead. Graph optimization passes fuse

operations, eliminating intermediate tensors. Memory planning

algorithms schedule tensor lifetimes to minimize peak usage.

Batch Processing: Dynamic batching aggregates multiple

requests to amortize accelerator launch overhead and increase

hardware utilization. However, batching introduces latency

variability conflicting with real-time requirements.

Model Serving Infrastructure: Production systems require

model versioning, A/B testing, canary deployments, and

monitoring. Frameworks like TensorFlow Serving and

TorchServe provide these capabilities but introduce serving

overhead [26].

Multi-Tenancy: Cloud deployment requires resource

isolation and fair scheduling across multiple models and users.

GPU multi-instance technology and temporal multiplexing

strategies address these requirements with varying efficiency

trade-offs.

C. Cost Analysis and TCO

Total cost of ownership encompasses capital expenditure

(accelerator hardware), operational expenditure (power,

cooling), and development costs (engineering time, tooling).

Cloud Deployment: Major cloud providers offer diverse

accelerator options. AWS Inferentia provides 50% cost

reduction versus GPU instances for inference, while Google

TPU pods offer compelling economics for large-scale training.

However, vendor lock-in and egress costs require careful

analysis.

On-Premise Deployment: Organizations processing sensitive

data or requiring guaranteed capacity often prefer on premise

deployment. Accelerator selection must consider not only

hardware costs but also power infrastructure, cooling

requirements, and operational expertise.

Edge Deployment: Resource-constrained edge scenarios

prioritize power efficiency and cost over absolute performance.

Specialized edge accelerators like Google Edge TPU, Intel

Movidius, and Qualcomm AI Engine target 5-15W power

budgets with $50-$200 component costs.

VII. EMERGING TRENDS AND FUTURE

DIRECTIONS

A. Chiplet-Based Architectures

Monolithic die scaling faces increasing challenges from yield

limitations and design complexity. Chiplet architectures

decompose systems into smaller dies interconnected through

high-bandwidth interfaces, improving yields and enabling

heterogeneous integration [27].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 187

AMD’s MI300 series integrates CPU, GPU, and memory

chiplets via 2.5D packaging, achieving 5.2 TB/s inter-chiplet

bandwidth. This approach enables rapid architecture evolution

through chiplet mix-and-match while amortizing design costs

across products.

B. In-Memory and Near-Memory Computing

Data movement increasingly dominates energy consumption

and latency in AI workloads. Processing-in-memory (PIM)

architectures integrate computation within memory arrays,

eliminating DRAM data movement [28].

Samsung’s HBM-PIM demonstrates 2.5× performance

improvement and 60% energy reduction for BERT inference

versus conventional GPU execution. However, PIM faces

adoption challenges including programming model complexity

and limited computational precision.

C. Optical Interconnects

Multi-accelerator scaling for large model training encounters

bandwidth walls in electrical interconnects. Optical

communication promises orders-of-magnitude higher

bandwidth with reduced power consumption.

Google’s TPU v4 optical circuit switching demonstrates 10

Tbps bisection bandwidth across 4096 chips [29]. Emerging

technologies like silicon photonics integration may enable

board-level optical links, revolutionizing rack-scale

acceleration.

D. Domain-Specific Languages and Compilers

The proliferation of accelerator architectures creates

software fragmentation challenges. Modern compiler

frameworks like MLIR, TVM, and XLA abstract hardware

differences through progressive lowering from high-level

frameworks to hardware-specific code [30].

These tools enable” write once, optimize everywhere”

workflows, automatically discovering efficient execution

strategies through auto-tuning and machine learning. However,

achieving hand-optimized performance across diverse targets

remains challenging.

VIII. CONCLUSION

AI hardware accelerator selection requires navigating

complex multi-dimensional trade-offs between performance,

efficiency, flexibility, and cost. Our analysis reveals several key

insights:

1. No Universal Solution: Workload diversity precludes

a one-size-fits-all architecture. Training workloads favor

programmable GPUs enabling rapid experimentation, while

production inference benefits from specialized ASICs

optimizing efficiency.

2. Precision Flexibility: Reduced-precision arithmetic

(INT8) delivers 4×-10× efficiency improvements with minimal

accuracy degradation for inference. Mixed-precision strategies

optimize the precision-accuracy-performance trade-off on a

per-layer basis.

3. Memory-Compute Balance: Successful architectures

carefully balance computational throughput with memory

bandwidth and capacity. High arithmetic intensity models favor

compute-optimized designs, while large language models

require memory-centric architectures.

4. System-Level Optimization: Raw accelerator

performance represents only one component of production

deployment. Model optimization, serving infrastructure, and

operational considerations critically impact delivered

performance and cost.

5. Evolution Continues: Emerging technologies

including chiplets, processing-in-memory, and optical

interconnects promise substantial future improvements.

However, near-term deployment decisions must focus on

mature technologies with robust software ecosystems.

For practitioners, we recommend:

• Training: NVIDIA GPUs or cloud TPU pods for largescale

training

• Cloud Inference: AWS Inferentia or Google TPU for cost-

optimized deployment

• Edge Inference: Qualcomm, MediaTek, or Google Edge TPU

for power-constrained scenarios

• Custom Workloads: FPGAs for specialized requirements with

evolving model architectures

Future research should address cross-layer optimization

integrating algorithms, compilers, and hardware, developing

automated tools that navigate design space complexity while

maintaining accessibility for practitioners without deep

hardware expertise.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, pp. 436-444, 2015.

[2] N. P. Jouppi et al., “A domain-specific architecture for

deep neural networks,” Communications of the ACM,

vol. 61, no. 9, pp. 50-59, 2018.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 188

[3] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer,

“Efficient processing of deep neural networks: A

tutorial and survey,” Proceedings of the IEEE, vol.

105, no. 12, pp. 2295-2329, 2017.

[4] N. P. Jouppi et al., “In-datacenter performance

analysis of a tensor processing unit,” in Proc. 44th

Annual International Symposium on Computer

Architecture (ISCA), 2017, pp. 1-12.

[5] J. Choquette, O. Giroux, and D. Foley, “NVIDIA

A100 tensor core GPU: Performance and innovation,”

IEEE Micro, vol. 41, no. 2, pp. 29-35, 2021.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet classification with deep convolutional

neural networks,” Communications of the ACM, vol.

60, no. 6, pp. 84-90, 2017.

[7] A. Vaswani et al., “Attention is all you need,” in

Advances in Neural Information Processing Systems

(NeurIPS), 2017, pp. 5998-6008.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in Proc. IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 770-778.

[9] H. Esmaeilzadeh et al., “Dark silicon and the end of

multicore scaling,” in Proc. 38th Annual International

Symposium on Computer Architecture (ISCA), 2011,

pp. 365-376.

[10] J. Nickolls, I. Buck, M. Garland, and K. Skadron,

“Scalable parallel programming with CUDA,” Queue,

vol. 6, no. 2, pp. 40-53, 2008.

[11] N. P. Jouppi et al., “Ten lessons from three generations

shaped Google’s TPUv4i,” in Proc. 48th Annual

International Symposium on Computer Architecture

(ISCA), 2021, pp. 1-14.

[12] R. Banner, Y. Nahshan, and D. Soudry, “Post training

4-bit quantization of convolutional networks for

rapid-deployment,” in Advances in Neural

Information Processing Systems (NeurIPS), 2019, pp.

7950-7958.

[13] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze,

“Eyeriss: An energyefficient reconfigurable

accelerator for deep convolutional neural networks,”

IEEE Journal of Solid-State Circuits, vol. 52, no. 1,

pp. 127-138, 2017.

[14] H. T. Kung, “Why systolic architectures?,” Computer,

vol. 15, no. 1, pp. 37-46, 1982.

[15] T. Chen et al., “DianNao family: Energy-efficient

hardware accelerators for machine learning,”

Communications of the ACM, vol. 59, no. 11, pp. 105-

112, 2016.

[16] S. Williams, A. Waterman, and D. Patterson,

“Roofline: An insightful visual performance model for

multicore architectures,” Communications of the

ACM, vol. 52, no. 4, pp. 65-76, 2009.

[17] E. Nurvitadhi et al., “Can FPGAs beat GPUs in

accelerating nextgeneration deep neural networks?,”

in Proc. ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA), 2017, pp.

5-

[18] 14.

[19] M. Davies et al., “Loihi: A neuromorphic manycore

processor with onchip learning,” IEEE Micro, vol. 38,

no. 1, pp. 82-99, 2018.

[20] R. Krishnamoorthi, “Quantizing deep convolutional

networks for efficient inference: A whitepaper,” arXiv

preprint arXiv:1806.08342, 2018.

[21] B. Jacob et al., “Quantization and training of neural

networks for efficient integer-arithmetic-only

inference,” in Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018, pp.

27042713.

[22] M. Horowitz, “Computing’s energy problem (and

what we can do about it),” in IEEE International

Solid-State Circuits Conference Digest of Technical

Papers (ISSCC), 2014, pp. 10-14.

[23] M. Nagel et al., “A white paper on neural network

quantization,” arXiv preprint arXiv:2106.08295,

2021.

[24] N. Liu et al., “Lottery ticket preserves weight

correlation: Is it desirable or not?,” in Proc.

International Conference on Machine Learning

(ICML), 2021, pp. 7011-7020.

[25] G. Hinton, O. Vinyals, and J. Dean, “Distilling the

knowledge in a neural network,” arXiv preprint

arXiv:1503.02531, 2015.

[26] M. Tan et al., “MnasNet: Platform-aware neural

architecture search for mobile,” in Proc. IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2019, pp. 2820-2828.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 181–189 | 189

[27] C. Olston et al., “TensorFlow-Serving: Flexible, high-

performance ML serving,” arXiv preprint

arXiv:1712.06139, 2017.

[28] Advanced Micro Devices, “AMD Instinct MI300

Series,” Product Documentation, 2023.

[29] S. Ghose et al., “Processing-in-memory: A workload-

driven perspective,” IBM Journal of Research and

Development, vol. 63, no. 6, pp. 3:1-3:19, 2019.

[30] A. Vahdat et al., “Jupiter evolving: Transforming

Google’s datacenter network via optical circuit

switches and software-defined networking,” in Proc.

ACM SIGCOMM, 2022, pp. 66-85.

[31] T. Chen et al., “TVM: An automated end-to-end

optimizing compiler for deep learning,” in Proc. 13th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2018, pp. 578-594.

