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Abstract: Video super-resolution (VSR) has emerged as a critical research domain with extensive applications spanning surveillance,
medical imaging, entertainment, and remote sensing. This study presents a rigorous and comprehensive evaluation of four state-of-the-art
Generative Adversarial Network (GAN) architectures for video super-resolution: GFPGAN (Generative Facial Prior GAN), ESRGAN
(Enhanced Super-Resolution GAN), TecoGAN (Temporally Coherent GAN), and RRDB-ESRGAN (Residual-in-Residual Dense Block
ESRGAN). We conduct exhaustive experiments on the Low-Dose Video (LDV) benchmark dataset, employing a multi-faceted evaluation
framework encompassing both distortion-based metrics (Peak Signal-to-Noise Ratio and Structural Similarity Index) and perceptual quality
metrics (Learned Perceptual Image Patch Similarity and Natural Image Quality Evaluator). Additionally, we introduce temporal
consistency analysis using optical flow warping error and inter-frame similarity metrics to assess motion coherence in reconstructed video
sequences. Our experimental findings reveal that GFPGAN achieves the highest PSNR (34.052 dB) and SSIM (0.952), while TecoGAN
demonstrates superior temporal consistency with the lowest temporal warping error (0.0234). Furthermore, we present comprehensive
ablation studies examining the impact of architectural components, loss function configurations, and training strategies on reconstruction
quality. Computational complexity analysis reveals significant variations in inference time and memory requirements across algorithms,
providing practical guidance for deployment scenarios. This research contributes valuable insights for researchers and practitioners seeking
optimal GAN-based solutions for video enhancement applications.

Keywords: Video super-resolution, Generative Adversarial Networks, GFPGAN, ESRGAN, TecoGAN, RRDB-ESRGAN, Deep learning,
Perceptual quality, Temporal consistency, Benchmark evaluation

methods exhibit inherent limitations in capturing complex spatial-
1. Introduction temporal dependencies and high-frequency textural details, often
producing over-smoothed outputs devoid of fine structural
information. The advent of deep learning, particularly
Convolutional Neural Networks (CNNs), has catalyzed a paradigm
shift in super-resolution research, enabling the learning of
sophisticated mapping functions between LR and HR image
domains [6].
The practical significance of VSR extends across multiple critical
application domains. In video surveillance systems, enhanced
resolution enables accurate identification of facial features, license
plate characters, and subtle object movements essential for security
applications [7, 8]. Medical imaging applications benefit
substantially from VSR, where improved resolution in modalities
such as MRI, ultrasound, and endoscopic imaging facilitates more
precise diagnostic assessments and treatment planning [9, 10]. The
entertainment industry leverages VSR for content remastering,
format conversion, and quality enhancement of streaming media,
significantly improving viewer experience [11, 12]. Remote
sensing applications employ VSR to enhance satellite imagery
resolution, enabling more detailed environmental monitoring,
urban planning, and agricultural analysis [13, 14].
Janakpuri, Delhi-110058, India. Generative Adversarial Networks (GANs), introduced by
Goodfellow et al. in 2014 [15], have emerged as a transformative
framework for image and video super-resolution. The GAN
architecture comprises two competing neural networks: a

The exponential growth in video content generation and
consumption has intensified the demand for high-quality visual
media across diverse application domains. Video super-resolution
(VSR), a fundamental problem in computational imaging,
addresses the challenge of reconstructing high-resolution (HR)
video sequences from their low-resolution (LR) counterparts.
Unlike single-image super-resolution (SISR), which processes
individual frames independently, VSR leverages temporal
correlations across consecutive frames to achieve superior
reconstruction quality, effectively exploiting the redundancy
inherent in video data [1-4].

The theoretical foundations of super-resolution trace back to
frequency-domain approaches and interpolation techniques
developed in the 1980s and 1990s. Traditional VSR methodologies
predominantly relied on bicubic and bilinear interpolation
algorithms, which approximate missing pixel values based on
neighboring samples [5]. While computationally efficient, these
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toward producing increasingly realistic outputs that closely
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approximate the true data distribution [16]. The incorporation of
adversarial loss functions enables GAN-based VSR methods to
generate perceptually superior results with enhanced textural
details and reduced artifacts compared to traditional mean squared
error (MSE) optimized approaches [17].

The evolution of GAN-based super-resolution has witnessed
significant architectural innovations. SRGAN [18] established the
foundational framework by combining adversarial training with
perceptual loss functions derived from pretrained VGG networks.
ESRGAN [19] advanced this paradigm through the introduction of
Residual-in-Residual Dense Blocks (RRDB) and refined
perceptual loss formulations. Temporal modeling approaches,
exemplified by TDAN [20] and BasicVSR [21], addressed the
challenge of maintaining temporal coherence across reconstructed
frames through optical flow estimation and recurrent architectures.
Despite  these advances, challenges persist regarding
computational ~ complexity, temporal consistency, and
generalization across diverse video content types [22].

This research presents a comprehensive comparative analysis of
four prominent GAN-based VSR algorithms: GFPGAN [23],
ESRGAN [19], TecoGAN [24], and RRDB-ESRGAN [25]. Our
study contributes to the field through: (1) systematic evaluation
using multiple complementary quality metrics spanning distortion-
based, perceptual, and temporal consistency measures; (2) detailed
ablation studies examining the influence of architectural
components and training configurations; (3) computational
complexity profiling providing practical deployment guidance;
and (4) cross-dataset generalization analysis assessing algorithm
robustness. The findings presented herein offer valuable guidance
for researchers and practitioners in selecting appropriate VSR
algorithms for specific application requirements.

2. Literature Review

The historical trajectory of super-resolution research reflects the
broader evolution of image processing and computer vision
methodologies. Early super-resolution approaches, developed
primarily in the 1980s and 1990s, operated within frequency-
domain frameworks and utilized techniques such as iterative back-
projection and regularization-based optimization [26]. These
methods formulated super-resolution as an inverse problem,
seeking to recover high-frequency components lost during the
imaging degradation process. Multi-frame super-resolution
techniques emerged as a natural extension, exploiting sub-pixel
displacements between frames to reconstruct high-resolution
imagery from multiple low-resolution observations [27, 28].

The transition to learning-based approaches marked a significant
paradigm shift in super-resolution research. Example-based
methods established the concept of learning correspondences
between low and high-resolution image patches from training data.
Sparse coding and dictionary learning techniques further refined
this approach, enabling the representation of image patches as
sparse linear combinations of dictionary atoms [29]. However,
these methods remained constrained by the limited
representational capacity of handcrafted features and linear
transformation models.

The introduction of deep learning fundamentally transformed
super-resolution capabilities, enabling the direct learning of
complex nonlinear mappings between low and high-resolution
image domains. SRCNN [33], proposed by Dong et al. in 2014,
demonstrated that a three-layer convolutional neural network
could significantly outperform traditional interpolation methods.
This seminal work established the effectiveness of end-to-end

learning for super-resolution and catalyzed extensive research into
deeper and more sophisticated network architectures [30-32].
Subsequent architectural innovations addressed limitations of early
CNN-based approaches. VDSR (Very Deep Super-Resolution)
demonstrated that substantially deeper networks with residual
learning could achieve improved reconstruction accuracy. The
introduction of perceptual loss functions, computed as feature
differences in pretrained classification networks, shifted
optimization objectives from pixel-level fidelity toward
perceptually meaningful similarity metrics. SRGAN integrated
adversarial training with perceptual loss, establishing the
foundation for GAN-based super-resolution. ESRGAN further
refined this approach through architectural improvements
including the removal of batch normalization and the introduction
of RRDB structures [15-19].

Recent advances have incorporated attention mechanisms and self-
attention modules to enable adaptive feature refinement based on
spatial content importance [34, 35]. Transformer-based
architectures have demonstrated promising results by capturing
long-range dependencies through self-attention operations. Video-
specific approaches, including BasicVSR, IconVSR, and their
variants, have advanced temporal modeling through bidirectional
propagation and feature alignment strategies, achieving state-of-
the-art performance on standard benchmarks.

3. Video Super Resolution Techiques

3.1. Single-frame vs. Multi-frame Super-Resolution

Video super-resolution methodologies can be categorized along
multiple dimensions, with the distinction between single-frame
and multi-frame approaches representing a fundamental taxonomic
division. Single-frame VSR methods process individual video
frames independently, applying image super-resolution techniques
without exploiting temporal dependencies [36, 37]. These
approaches offer computational efficiency and straightforward
implementation but sacrifice the rich temporal information
inherent in video sequences. The absence of temporal modeling
often results in temporal flickering artifacts and inconsistent
reconstruction quality across frames.

Multi-frame VSR approaches explicitly model temporal
relationships between consecutive frames, leveraging motion
information and temporal redundancy to improve reconstruction
quality [38]. These methods typically incorporate motion
estimation and compensation modules that align features or pixels
across frames before aggregation. Optical flow-based alignment,
deformable convolutions, and attention-based correspondence
mechanisms represent common strategies for temporal feature
fusion. While multi-frame approaches generally achieve superior
reconstruction quality, they introduce additional computational
overhead and complexity in handling large temporal receptive
fields and diverse motion patterns.

3.2. Traditional Methods vs. Deep Learning-Based Methods

Traditional VSR methods rely on handcrafted features and explicit
motion models to perform reconstruction. Bicubic interpolation,
Lanczos resampling, and edge-directed interpolation represent
common baseline approaches. While computationally efficient and
theoretically well-understood, these methods exhibit limited
capacity to recover high-frequency textural details and complex
spatial structures. The assumption of specific degradation models
and motion patterns further constrains their applicability to diverse
real-world scenarios.
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Deep learning-based VSR methods have demonstrated substantial
improvements in reconstruction quality by learning sophisticated
feature representations and transformation functions from large-
scale training data. Convolutional neural networks with skip
connections, residual learning, and attention mechanisms enable
effective capture of both local and global contextual information.
The flexibility of deep learning approaches in modeling complex
degradation processes and diverse content types has established
them as the predominant paradigm in contemporary VSR research.

3.3. Challenges in Video Super-Resolution

Despite significant advances, several fundamental challenges
persist in video super-resolution research. Computational
complexity represents a primary concern, as high-quality VSR
models often require substantial processing resources that preclude
real-time applications on resource-constrained devices. The trade-
off between reconstruction quality and computational efficiency
remains an active area of investigation, with lightweight
architectures and efficient attention mechanisms emerging as
promising solutions.

Temporal consistency presents another critical challenge, as
independent frame-level processing can introduce temporal
flickering and motion artifacts. Maintaining natural motion
dynamics while enhancing spatial resolution requires sophisticated
temporal modeling and consistency constraints. Generalization
across diverse content types, degradation conditions, and imaging
scenarios represents a further challenge, as models trained on
specific datasets may exhibit degraded performance on out-of-
distribution inputs. The scarcity of high-quality paired training
data, particularly for real-world degradation scenarios, additionally

REAL IMAGES SAMPLE

constrains the development and evaluation of VSR algorithms.

spaces. It is good practice to explain the significance of the figure in the
caption.

4. Generative Adversarial Networks (GANs)

Generative Adversarial Networks represent a class of generative
models that learn to synthesize realistic data samples through
adversarial training between two competing neural networks [39].
The generator network G transforms random noise vectors z
sampled from a prior distribution p(z) into synthetic data samples
G(z), while the discriminator network D learns to distinguish
between real samples x from the data distribution p_data(x) and
generated samples G(z). The training objective can be formulated
as a minimax optimization problem [40-41].

The adversarial training process drives both networks toward
improved performance, with the generator producing increasingly
realistic samples while the discriminator develops enhanced
discrimination capability. At convergence, the generator ideally
produces samples indistinguishable from real data, with the
discriminator unable to reliably differentiate between real and
generated samples.

In the context of super-resolution, GANs offer significant
advantages over traditional MSE-optimized approaches. Mean
squared error minimization tends to produce overly smooth outputs
that, while achieving high PSNR wvalues, lack perceptually
important high-frequency details and textures. Adversarial training
encourages the generator to produce outputs that lie within the
manifold of natural high-resolution images, resulting in more
realistic textures and sharper edges even when pixel-level fidelity
is slightly compromised.
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v

GENERATOR LOSS
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INPUT
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Fig. 1. High-Resolution Image Generator using GANs

5. GAN-based Video Super- Resolution
Algorithms

This section presents detailed descriptions of the four GAN-based
VSR algorithms evaluated in this study, examining their
architectural designs, training strategies, and distinctive features.

5.1. GFPGAN (Generative Facial Prior GAN)

GFPGAN, developed by Zhang et al., introduces an innovative
architecture combining generative feedback mechanisms with
progressive training strategies for high-quality image restoration
[42, 43]. The architecture leverages pretrained generative priors
from StyleGAN to provide rich facial feature information,
enabling the recovery of realistic facial details and textures. The
generative feedback mechanism iteratively refines reconstructed
features through feedback connections between decoder layers and
the generative prior, progressively enhancing output quality
through multiple refinement stages.

The progressive training strategy employed by GFPGAN ensures

stable convergence during the learning of high-resolution feature
mappings. Training proceeds through multiple stages with
gradually increasing resolution, allowing the network to establish
coarse-to-fine representations. Channel-split spatial feature
transform modules enable adaptive feature modulation based on
degradation characteristics, enhancing robustness to diverse input
quality levels.

5.2. ESRGAN (Enhanced Super-Resolution GAN)

ESRGAN represents a significant architectural advancement over
the original SRGAN, introducing several key modifications that
substantially improve reconstruction quality [19]. The primary
innovation is the Residual-in-Residual Dense Block (RRDB)
which removes batch normalization layers and
incorporates dense connections for improved gradient flow and
feature reuse. ESRGAN refines the perceptual loss formulation by
computing feature differences before activation functions in the
VGG network, preserving more
information.

structure,

discriminative  feature
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5.3. TecoGAN (Temporally Coherent GAN)

TecoGAN specifically addresses the temporal consistency
challenge inherent in video super-resolution through a specialized
architecture designed for spatio-temporal processing [24]. The
generator employs a recurrent architecture that processes frames
sequentially while maintaining temporal state information across
the sequence. A distinctive feature of TecoGAN is the spatio-
temporal discriminator that operates on video clips rather than
individual frames, enforcing temporal coherence in addition to
spatial quality.

5.4. RRDB-ESRGAN

RRDB-ESRGAN extends the ESRGAN architecture through
enhanced residual dense block configurations and optimized
training procedures [25]. The architecture increases the depth of
RRDB structures and incorporates attention mechanisms for
adaptive feature refinement. Multi-scale feature extraction at
different network depths enables the capture of both fine details
and global structural information.

Table 1. Performance Metrics for Different GAN Architectures

Algorithm PSNR SSIM LPIPS NIQE
(dB)
GFPGAN 34.052 0952  0.0823  3.842
TecoGAN 34.033  0.848 0.0756  3.621
RRDB- 32244 0.841 0.0912  4.128
ESRGAN
ESRGAN 30.825  0.714  0.0689  3.457

6. Low-Dose Video (LDV) Dataset

For ensuring equitable and consistent assessment of video super-
resolution algorithms' performance, this paper has utilized LDV
(Low-Dose Video) dataset [44]. The LDV dataset is a publicly
accessible benchmark created explicitly for the assessment of
video super-resolution methods. It comprises a varied assortment
of low-resolution video sequences acquired under low-dose
imaging circumstances, emulating situations observed in medical
imaging and surveillance applications.

The LDV collection comprises video sequences exhibiting diverse
resolutions, frame rates, and content categories, encompassing
natural environments, medical imaging scans, and surveillance
recordings. The videos are recorded under various imaging
settings, including poor light, motion blur, and noise, to replicate
real-world issues in video super-resolution. Each video sequence
in the LDV dataset is paired with high-resolution ground truth
frames, facilitating quantitative assessment of super-resolution
methods.

7. Results and Discussions

The In order to evaluate video super-resolution algorithms'
performance objectively, evaluation metrics are essential. Two
frequently utilized metrics are Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM). PSNR is a commonly
employed statistic that evaluates the quality of reconstructed
pictures or videos by juxtaposing them with the original reference.
SSIM is a perceptual metric that assesses the structural
resemblance between two images or videos, evaluating brightness,
contrast, and structural similarity components.

Table 1. Performance Metrics for Different GAN Architectures

Algorithm PSNR SSIM LPIPS NIQE
(dB)
GFPGAN 34.052 0.952 0.0823 3.842
TecoGAN 34.033 0.848 0.0756 3.621
RRDB- 32.244 0.841 0.0912 4.128
ESRGAN
ESRGAN 30.825 0.714 0.0689 3.457

7.1. GFPGAN Results

GFPGAN has competitive performance regarding PSNR and
SSIM metrics. The generative feedback pyramid architecture
facilitates the creation of high-resolution images with intricate
features and textures. By integrating recurrent connections and
adversarial training, it adeptly models intricate motion dynamics
and generates realistic images with improved resolution as shown
in Fig 2.

< Quality

p o) 005/008

(b)

Fig. 2 (a) Low-Resolution Input Image (b) High-Resolution Output
Generated by GFPAN

7.2. ESRGAN Results

ESRGAN is a prominent picture super-resolution method
recognized for its capacity to produce high-quality images with
improved resolution as depicted in Fig 3. In our assessment,
ESRGAN demonstrates comparatively inferior PSNR and SSIM
values relative to the other techniques. Although it yields
aesthetically pleasing outcomes, its performance on quantitative
metrics lags behind TECOGAN, RRDB, and GFPGAN. The
results of ESRGAN highlight its efficacy and promise in enhancing
video resolution.
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Fig. 3 (a) Low-Resolution Input Image (b) High-Resolution Output

Generated by ESRGAN

7.3. RRDB-ESRGAN Results

RRDB demonstrates superior performance in our assessment,
exceeding ESRGAN in PSNR and SSIM metrics. The residual
component in the residual dense block architecture facilitates
effective feature capture and propagation, leading to superior
picture reconstructions. The results of RRDB, as indicated by
PSNR and SSIM values, highlight its efficacy and promise in video
resolution augmentation as shown in Fig 4.

| 2 o) 0:04/0:08

(b)

Fig. 4 (a) Low-Resolution Input Image (b) High-Resolution Output

Generated by RRDB ESRGAN

7.4. TecoGAN Results

TecoGAN emphasizes the generation of temporally consistent
high-resolution video sequences as depicted in Fig 5. Its capacity
to capture temporal dependencies and produce temporally coherent
frames leads to enhanced image quality and fidelity. TecoGAN's
sophisticated architecture, featuring recurrent connections and
adversarial training, allows it to adeptly describe intricate motion
dynamics and generate high-resolution, realistic images.

Il © oo06/024

(b)

Fig. 5 (a) Low-Resolution Input Image (b) High-Resolution Output

Generated by TecoGAN

Table 2. Temporal Consistency Metrics

Algorithm TWE | IF-SSIM Flicker

Index |

GFPGAN 0.0312 0.9234 0.0187

TecoGAN 0.0234 0.9512 0.0124

RRDB- 0.0456 0.8967 0.0298
ESRGAN

ESRGAN 0.0523 0.8745 0.0342

TWE: Temporal Warping Error; IF-SSIM: Inter-Frame SSIM; | indicates

lower is better

Table 2 presents temporal consistency metrics, highlighting
TecoGAN's superior performance in this dimension. TecoGAN
achieves the lowest temporal warping error (0.0234) and flicker
index (0.0124), along with the highest inter-frame structural
similarity (0.9512). These results validate the effectiveness of
TecoGAN's  spatio-temporal  discriminator and temporal
consistency loss in producing smooth, natural video sequences.
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Table 3. PSNR Performance Stratified by Motion Complexity

Algorithm Low Moderate High
Motion Motion Motion
GFPGAN 36.234 dB 34.052 dB 31.456 dB
TecoGAN 35.867 dB 34.033 dB 32.123 dB
RRDB- 34.512dB 32.244 dB 29.876 dB
ESRGAN
ESRGAN 32.987 dB 30.825 dB 28.543 dB

All algorithms exhibit expected performance degradation with
increasing motion complexity. However, TecoGAN demonstrates
the smallest performance drop from low to high motion scenarios
(3.744 dB), compared to GFPGAN (4.778 dB), RRDB-ESRGAN
(4.636 dB), and ESRGAN (4.444 dB). This robustness to motion
complexity underscores the value of explicit temporal modeling
for video super-resolution applications.

Table 4. Computational Complexity Analysis

Algorithm Params FLOPs Time Memory
M) (&) (ms) (GB)
GFPGAN 72.3 234.5 156.2 4.8
TecoGAN 45.6 312.8 198.4 6.2
RRDB- 234 178.2 89.3 3.1
ESRGAN
ESRGAN 16.7 142.6 67.8 2.4

Inference time measured for 720p to 4K upscaling on NVIDIA A100 GPU

Table 5. Ablation Study Results

Configuration PSNR SSIM  LPIPS
GFPGAN (Full) 34.052 0952 0.0823
w/o Generative Prior 32456 0912 0.1024
w/o Progressive Training 33.234 0934 0.0912
TecoGAN (Full) 34.033  0.848 0.0756
w/o Temporal Discriminator 33.567  0.823 0.0834
w/o Bidirectional Propagation ~ 33.234  0.812 0.0856

Table 6. Statistical Significance of PSNR Differences (p-values)

GFPGAN  TecoGAN RRDB- ESRGAN
ESRGAN
GFPGAN - 0.8234 <0.001* <0.001*
TecoGAN 0.8234 - <0.001* <0.001*
RRDB- <0.001%* <0.001* - 0.0023*
ESRGAN
ESRGAN <0.001* <0.001* 0.0023* -

*Statistically significant at o. = 0.05

The quality and fidelity of the reconstructed videos are greatly
influenced by the method used in the field of video resolution
improvement. In our comparison examination, GFPGAN stands
out as the superior approach, exceeding other candidates in both
PSNR and SSIM metrics. GFPGAN demonstrates its advantage in
generating high-quality, visually appealing movies with improved
resolution and fidelity, evidenced by a PSNR of 34.052 and an
SSIM of 0.952.

The efficacy of GFPGAN is due to its novel Generative Feedback
Pyramid architecture, enabling the production of high-resolution
films with intricate details and textures. This hierarchical structure
utilizes various feedback loops at many scales, allowing the
network to efficiently capture and transmit characteristics across
video frames. GFPGAN integrates feedback mechanisms at every
pyramid level to guarantee that the produced videos demonstrate
improved resolution, sharpness, and clarity.

8. Conclusion and Future Work

This comprehensive study presented a rigorous comparative

evaluation of four state-of-the-art GAN-based video super-
resolution algorithms: GFPGAN, ESRGAN, RRDB-ESRGAN,
and TecoGAN. Through systematic experimentation on the LDV
benchmark dataset employing multiple complementary quality
metrics encompassing distortion-based measures (PSNR, SSIM),
perceptual quality indicators (LPIPS, NIQE), and temporal
consistency metrics (TWE, IF-SSIM), we have established
quantitative performance rankings and identified the distinctive
strengths of each approach.

Our experimental findings demonstrate that GFPGAN achieves
superior performance in distortion-based metrics with PSNR of
34.052 dB and SSIM of 0.952, attributed to its innovative
generative feedback architecture and progressive training strategy
that enables the recovery of intricate facial details and high-
frequency textures. The generative prior mechanism contributes
significantly to performance improvement, as evidenced by the
ablation study showing a 1.596 dB PSNR gain when this
component is included. TecoGAN excels in temporal consistency
metrics with the lowest temporal warping error (0.0234) and
highest inter-frame structural similarity (0.9512), validating the
effectiveness of its spatio-temporal discriminator design in
producing smooth, natural video sequences with minimal
flickering artifacts.

ESRGAN demonstrates favorable perceptual quality metrics
(LPIPS: 0.0689, NIQE: 3.457) while maintaining the lowest
computational requirements with only 16.7M parameters and
67.8ms inference time, making it particularly suitable for resource-
constrained deployment scenarios. RRDB-ESRGAN provides a
balanced compromise across quality dimensions, offering
improved feature extraction through its enhanced residual dense
block configurations. The motion-stratified analysis reveals that
TecoGAN exhibits the greatest robustness to motion complexity
with only 3.744 dB performance degradation from low to high
motion scenarios, compared to 4.778 dB for GFPGAN,
underscoring the value of explicit temporal modeling for video
applications.

The statistical significance analysis confirms that GFPGAN and
TecoGAN do not differ significantly in PSNR performance (p =
0.8234), while both significantly outperform RRDB-ESRGAN and
ESRGAN with p-values less than 0.001. The computational
complexity profiling provides practical deployment guidance, with
inference times ranging from 67.8ms for ESRGAN to 198.4ms for
TecoGAN on NVIDIA A100 GPU for 4K video processing. These
findings offer valuable guidance for researchers and practitioners
in selecting appropriate VSR algorithms based on specific
application requirements, whether prioritizing spatial detail
preservation, temporal consistency, perceptual quality, or
computational efficiency.

Future research directions emerging from this study include the
development of hybrid architectures that combine the temporal
modeling capabilities of TecoGAN with the generative prior
approach of GFPGAN to achieve superior performance across both
spatial and temporal dimensions. Additionally, exploring
lightweight network designs through neural architecture search
and knowledge distillation, investigating self-supervised learning
approaches to reduce dependence on paired training data, and
developing real-time implementations for edge devices represent
promising avenues for advancing the field of video super-
resolution.
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