Advancing Alzheimer's Disease Detection: Integrating Machine Learning And Image Analysis For Accurate Diagnosis
Keywords:
AD, CNN, Classification, EADD, MLP, RESNet150Abstract
Alzheimer's disease (AD) has a beneficial global impact on human life despite being a difficult, incurable, and horrible condition. Since it was not preventable by immunization, it was the sixth leading cause of death in the USA. The toughest part of finding new organisms. Understanding the cause of AD and finding ways to prevent or cure it will benefit from the discovery of proteins and genes involved in the illness. They employ practical tools and expertise to investigate the possible interaction between genes/proteins with Alzheimer's. Current information from all known AD proteins/genes was utilized to construct a machine-learning method for protein-connection prediction in Alzheimer's disease. Since MR brain scans are often used for diagnosing Alzheimer's, we suggested the EADD (Enhanced Alzheimer's Disease Detection) method. Multi-layer perceptual (MLP) was used to filter out the background noise in the MRI data set. In this proposed study, we use Histogram equalization to improve images, the Edge-based Robert operator to segment them, CNN with RESNet150 to train them, and the CNN Algorithm to classify them. Based on experimental data, the suggested method in this study has a classification accuracy of up to 98%.
Downloads
References
Akhila D B, Shobhana S, Fred, A. L., & Kumar, S. . (2016). Robust Alzheimer's disease classification based on multimodal neuroimaging. 2016 IEEE International Conference on Engineering and Technology (ICETECH). doi:10.1109/icetech.2016.7569348
Burgmans, S., van de Haar, H., van Osch, M., Jansen, J., van Buchem, M., Hofman, P., … Backes, W. (2014). Blood-Brain Barrier Leakage In Alzheimer's Disease: A Dynamic Contrast-Enhanced MRI Study. Alzheimer's & Dementia, 10(4), P101. doi:10.1016/j.jalz.2014.05.188
A, S., Battacharjee, P., Prasad I, A., & Sanyal, G. (2018). Brain MR Image Analysis using Discrete wavelet Transform with Fractal Feature Analysis. 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). doi:10.1109/iceca.2018.8474806
Beagum, S. S., Almas, A. A., & Sheeja, S. (2016). Alzheimer's disease, bio-markers, and the role of classification techniques in early diagnosis from neuro-images — An analysis. 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). doi:10.1109/iccic.2016.7919701
Bakkouri, I., Afdel, K., Benois-Pineau, J., & Catheline, G. (2019). Recognition of Alzheimer's Disease on sMRI based on 3D Multi-Scale CNN Features and a Gated Recurrent Fusion Unit. 2019 International Conference on Content-Based Multimedia Indexing (CBMI). doi:10.1109/cbmi.2019.8877477
Burgmans, S., van de Haar, H., van Osch, M., Jansen, J., van Buchem, M., Hofman, P., … Backes, W. (2014). Blood-Brain-Barrier Leakage In Alzheimer's Disease: A Dynamic Contrast-Enhanced MRI Study. Alzheimer's & Dementia, 10(4), P557. doi:10.1016/j.jalz.2014.05.903
Blanchette, R., Khojandi, A., Cox, D., Oliver, M., & Fernandez, R. (2020). Predicting Alzheimer's Disease Using Driving Simulator Data. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). doi:10.1109/embc44109.2020.9176118
Chelsy Sapna Josephus, & Remya, S. (2011). Multilayered Contrast Limited Adaptive Histogram Equalization Using Frost Filter. 2011 IEEE Recent Advances in Intelligent Computational Systems. doi:10.1109/raics.2011.6069388
Chauhan, G., Adams, H. H. H., Bis, J., Weinstein, G., Yu, L., Smith, A., … Debette, S. (2014). Association Of Alzheimer Disease Gwas Loci With MRI-Markers Of Brain Aging. Alzheimer's & Dementia, 10(4), P258. doi:10.1016/j.jalz.2014.04.406
Matthews, D. C., Andrews, R. D., Lukic, A. S., Mishra, V. R., Banks, S. J., Cummings, J. L., & Bernick, C. (2018). MRI Classifiers Characterize Mild Traumatic Brain Injury In Symptomatic And Presymptomatic Stages And Differentiate From Alzheimer's Disease–Related Impairment. Alzheimer's & Dementia, 14(7), P443–P445. doi:10.1016/j.jalz.2018.06.388
Fedorov, A., Hjelm, R. D., Abrol, A., Fu, Z., Du, Y., Plis, S., & Calhoun, V. D. (2019). Prediction of Progression to Alzheimer's disease with Deep InfoMax. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). doi:10.1109/bhi.2019.8834630
Falangola, M. F., Jensen, J. H., Tabesh, A., Hu, C., Deardorff, R. L., Babb, J. S., … Helpern, J. A. (2013). Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer's disease. Magnetic Resonance Imaging, 31(6), 840–846. doi:10.1016/j.mri.2013.02.008
Gunawardena, K. A. N. N. P., Rajapakse, R. N., & Kodikara, N. D. (2017). Applying convolutional neural networks for pre-detection of alzheimer's disease from structural MRI data. 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). doi:10.1109/m2vip.2017.8211486
Herrera, L. J., Rojas, I., Pomares, H., Guillen, A., Valenzuela, O., & Banos, O. (2013). Classification of MRI Images for Alzheimer's Disease Detection. 2013 International Conference on Social Computing. doi:10.1109/socialcom.2013.127
Jang, J.-W., Park, S. Y., Park, Y. H., Baek, M. J., Lim, J.-S., Youn, Y. C., & Kim, S. (2014). A Comprehensive Visual Rating Scale On Brain MRI: Application To Alzheimer's Disease, Mild Cognitive Impairment, And Subjective Memory Impairment. Alzheimer's & Dementia, 10(4), P714. doi:10.1016/j.jalz.2014.05.1319
Josephs, K. A., Dickson, D. W., Murray, M. E., Senjem, M. L., Parisi, J. E., Petersen, R. C., … Whitwell, J. L. (2013). Quantitative neurofibrillary tangle density and brain volumetric MRI analyses in Alzheimer's disease presenting as logopenic progressive aphasia. Brain and Language, 127(2), 127–134. doi:10.1016/j.bandl.2013.02.003
Kaur, H., & Rani, J. (2016). MRI brain image enhancement using Histogram Equalization techniques. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). doi:10.1109/wispnet.2016.7566237
Li, C., Fang, C., Adjouadi, M., Cabrerizo, M., Barreto, A., Andrian, J., … Loewenstein, D. (2017). A Neuroimaging Feature Extraction Model for Imaging Genetics with Application to Alzheimer's Disease. 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE). doi:10.1109/bibe.2017.00-85
Matthews, D. C., Andrews, R. D., Lukic, A. S., Mishra, V. R., Banks, S. J., Cummings, J. L., & Bernick, C. (2018). MRI Classifiers Characterize Mild Traumatic Brain Injury In Symptomatic And Presymptomatic Stages And
Mukhopadhyay, S., Ghosh, N., Burman, R., Panigrahi, P. K., Pratiher, S., Venkatesh, M., … Changdar, S. (2015). An optimized hyper kurtosis based modified duo-histogram equalization (HKMDHE) method for contrast enhancement purpose of low contrast human brain CT scan images. 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). doi:10.1109/icacci.2015.7275880
Niemantsverdriet, E., Struyfs, H., Van Hecke, W., Smeets, D., & Engelborghs, S. (2016). Volumetric Brain Mri Of Different Regions, Including The Hippocampus, In The Alzheimer's Disease Spectrum: A Systematic Review. Alzheimer's & Dementia, 12(7), P547–P548. doi:10.1016/j.jalz.2016.06.1071
Prins, N., Benedictus, M., Binnewijzend, M., Scheltens, P., Barkhof, F., & Van der Flier, W. (2012). Cerebral blood flow, measured with ASL perfusion MRI at 3T, and structural brain changes in Alzheimer's disease. Alzheimer's & Dementia, 8(4), P737. doi:10.1016/j.jalz.2012.05.1988
Sathish Kumar, L., Hariharasitaraman, S., Narayanasamy, K., Thinakaran, K., Mahalakshmi, J., & Pandimurugan, V. (2021). AlexNet approach for early stage Alzheimer's disease detection from MRI brain images. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.04.415
Sarraf, S., & Tofighi, G. (2016). Deep learning-based pipeline to recognize Alzheimer's disease using fMRI data. 2016 Future Technologies Conference (FTC). doi:10.1109/ftc.2016.7821697
Seo, K., Pan, R., Chen, K., & Thiyyagura, P. (2017). Tracking alzheimer's disease progression by non-linear dimension reduction of brain mri features. Alzheimer's & Dementia, 13(7), P349–P350. doi:10.1016/j.jalz.2017.06.277
Shi, L., Wong, L., Liu, J., Wang, D., Li, K., & Liang, P. (2019). MRI-Based Brain Volumetry In Single- And Multi-Domain Amnestic Mild Cognitive Impairment And Alzheimer's Disease. Alzheimer's & Dementia, 15(7), P712–P713. doi:10.1016/j.jalz.2019.06.2733
Starr, J. M., Farrall, A. J., Armitage, P., McGurn, B., & Wardlaw, J. (2009). Blood–brain barrier permeability in Alzheimer's disease: a case–control MRI study. Psychiatry Research: Neuroimaging, 171(3), 232–241. doi:10.1016/j.pscychresns.2008.04.003
Tanchi, C., Theera-Umpon, N., & Auephanwiriyakul, S. (2012). Fully automatic brain segmentation for Alzheimer's disease detection from magnetic resonance images. The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems. doi:10.1109/scis-isis.2012.6505333
Venkataramanan, S., & Kalpakam, N. V. (n.d.). Aiding the detection of Alzheimer's disease in clinical electroencephalogram recording by selective de-noising of ocular artifacts. 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No.04EX914). doi:10.1109/icccas.2004.1346340
Wurts, A., Oakley, D. H., Hyman, B. T., & Samsi, S. (2020). Segmentation of Tau Stained Alzheimers Brain Tissue Using Convolutional Neural Networks. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). doi:10.1109/embc44109.2020.917583
Wang, S., Wang, H., Shen, Y., & Wang, X. (2018). Automatic Recognition of Mild Cognitive Impairment and Alzheimers Disease Using Ensemble based 3D Densely Connected Convolutional Networks. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). doi:10.1109/icmla.2018.00083
Yablonskiy, D. A., Zhao, Y., Cairns, N. J., Hassenstab, J., Benzinger, T. L., Astafiev, S. V., … Morris, J. C. (2017). Gradient Echo Plural Contrast Mri Provides New Surrogate Markers Of Brain Pathology In Alzheimer's Disease. Alzheimer's & Dementia, 13(7), P127–P128. doi:10.1016/j.jalz.2017.06.2544
Yablonskiy, D. A., Zhao, Y., Cairns, N. J., Hassenstab, J., Benzinger, T. L. S., Astafiev, S. V., … Morris, J. C. (2017). Gradient Echo Plural Contrast Mri Provides New Surrogate Markers Of Brain Pathology In Alzheimer's Disease. Alzheimer's & Dementia, 13(7), P780. doi:10.1016/j.jalz.2017.06.1048
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.