The Impact of Data Preprocessing on the Quality and Effectiveness of E-Learning
Keywords:
Big Data, Pre-processing, Data Mining, Educational data miningAbstract
This article provides a mini review of pre-processing techniques for educational big data in data mining. With the increasing availability of educational data, there is a need for efficient pre-processing techniques that can handle the volume, variety, and velocity of data. The article discusses various pre-processing techniques, including data cleaning, data transformation, and data reduction. The review concludes that pre-processing is a critical step in data mining, and the selection of appropriate techniques depends on the characteristics of the data and the research objectives.
Downloads
References
R. A. Huebner, « A survey of educational data-mining research », p. 13, 2013.
C. Silva et J. Fonseca, « Educational Data Mining: A Literature Review », in Europe and MENA Cooperation Advances in Information and Communication Technologies, vol. 520, Á. Rocha, M. Serrhini, et C. Felgueiras, Éd., in Advances in Intelligent Systems and Computing, vol. 520. , Cham: Springer International Publishing, 2017, p. 87‑94. doi: 10.1007/978-3-319-46568-5_9.
E. A. Amrieh, T. Hamtini, et I. Aljarah, « Preprocessing and analyzing educational data set using X-API for improving student’s performance », in 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan: IEEE, nov. 2015, p. 1‑5. doi: 10.1109/AEECT.2015.7360581.
S. Slater, S. Joksimović, V. Kovanovic, R. S. Baker, et D. Gasevic, « Tools for Educational Data Mining: A Review », J. Educ. Behav. Stat., vol. 42, no 1, p. 85‑106, févr. 2017, doi: 10.3102/1076998616666808.
S. Oni, Z. Chen, S. Hoban, et O. Jademi, « A Comparative Study of Data Cleaning Tools »:, Int. J. Data Warehous. Min., vol. 15, no 4, p. 48‑65, oct. 2019, doi: 10.4018/IJDWM.2019100103.
C. Romero, J. R. Romero, et S. Ventura, « A Survey on Pre-Processing Educational Data », in Educational Data Mining, vol. 524, A. Peña-Ayala, Éd., in Studies in Computational Intelligence, vol. 524. , Cham: Springer International Publishing, 2014, p. 29‑64. doi: 10.1007/978-3-319-02738-8_2.
S. Suhirman, T. Herawan, H. Chiroma, et J. Mohamad Zain, « Data Mining for Education Decision Support: A Review », Int. J. Emerg. Technol. Learn. IJET, vol. 9, no 6, p. 4, déc. 2014, doi: 10.3991/ijet.v9i6.3950.
S. Khan et S. Alqahtani, « Big Data Application and its Impact on Education », Int. J. Emerg. Technol. Learn. IJET, vol. 15, no 17, p. 36, sept. 2020, doi: 10.3991/ijet.v15i17.14459.
M. Rahhali, L. Oughdir, et Y. Jedidi, « E-Learning Recommendation System for Big Data Based on Cloud Computing », Int. J. Emerg. Technol. Learn. IJET, vol. 16, no 21, p. 177, nov. 2021, doi: 10.3991/ijet.v16i21.25191.
B. Furht et F. Villanustre, « Introduction to Big Data », in Big Data Technologies and Applications, Cham: Springer International Publishing, 2016, p. 3‑11. doi: 10.1007/978-3-319-44550-2_1.
Y. Jedidi, A. Ibriz, M. Benslimane, M. Tmim, et M. Rahhali, « Predicting Student’s Performance based on Cloud Computing », in WITS 2020, vol. 745, S. Bennani, Y. Lakhrissi, G. Khaissidi, A. Mansouri, et Y. Khamlichi, Éd., Springer Singapore, 2022. doi: 10.1007/978-981-33-6893-4_11.
Open University Malaysia, K. Sin, L. Muthu, et Bharathiyar University, « APPLICATION OF BIG DATA IN EDUCATION DATA MINING AND LEARNING ANALYTICS – A LITERATURE REVIEW », ICTACT J. Soft Comput., vol. 05, no 04, p. 1035‑1049, juill. 2015, doi: 10.21917/ijsc.2015.0145.
M. Rahhali, L. Oughdir, Y. Jedidi, Y. Lahmadi, et M. Z. El Khattabi, « E-learning Recommendation System Based on Cloud Computing », in WITS 2020, vol. 745, S. Bennani, Y. Lakhrissi, G. Khaissidi, A. Mansouri, et Y. Khamlichi, Éd., Springer Singapore, 2022. doi: 10.1007/978-981-33-6893-4_9.
I. Padayachee, « Intelligent Tutoring Systems: Architecture and Characteristics », 2002.
M. Tmimi, M. Benslimane, M. Berrada, et K. Ouazzani, « Intelligent Model Conception Proposal for Adaptive Hypermedia Systems », Int. J. Adv. Comput. Sci. Appl., vol. 9, no 8, 2018, doi: 10.14569/IJACSA.2018.090825.
S. García, J. Luengo, et F. Herrera, Data Preprocessing in Data Mining, vol. 72. in Intelligent Systems Reference Library, vol. 72. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-10247-4.
X. Wang, L.-P. Huang, X.-H. Xu, Y. Zhang, et J.-Q. Chen, « A Solution for Data Inconsistency in Data Integration », p. 15, 2011.
K. Kira et L. A. Rendell, « A Practical Approach to Feature Selection », in Machine Learning Proceedings 1992, Elsevier, 1992, p. 249‑256. doi: 10.1016/B978-1-55860-247-2.50037-1.
J. Brick et G. Kalton, « Handling missing data in survey research », Stat. Methods Med. Res., vol. 5, no 3, p. 215‑238, sept. 1996, doi: 10.1177/096228029600500302.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.