Title

Authors

  • author1, author2

Abstract

Abstract

Downloads

Download data is not yet available.

References

Gaikwad, Shilpa; and Tidke, Sonali (2022). Multi-spectral imaging for fruits and vegetables. International Journal of Advanced Computer Science and Applications, 13(2), 743-760.

Musacchi, S.; and Serra, S. (2018). Apple fruit quality: Overview on pre-harvest factors. Scientia Horticulturae, 234, 409-430.

Akhtar, I.; and Rab, A. (2015). EFFECT OF FRUIT RIPENING STAGES ON STRAWBERRY (FRAGARIA X ANANASSA. DUCH) FRUIT QUALITY FOR FRESH CONSUMPTION. Journal of Agricultural Research (03681157), 53(3).

Hernández-Sánchez, N., Moreda, G. P., Herre-ro-Langreo, A., & Melado-Herreros, Á. (2016). Assessment of internal and external quality of fruits and vegetables. Imaging technologies and data processing for food engineers, 269-309.

Yan, B., Fan, P., Lei, X., Liu, Z., & Yang, F. (2021). A real-time Apple targets detection method for picking robots based on improved YOLOv5. Remote Sensing, 13(9), 1619.

Tang, C., He, H., Li, E., & Li, H. (2018). Multispectral imaging for predicting sugar content of ‘Fuji’ apples. Optics & Laser Technology, 106, 280-285.

Wang, J., Huo, Y., Wang, Y., Zhao, H., Li, K., Liu, L., & Shi, Y. (2022). Grading detection of the “Red Fuji” apple in Luochuan based on machine vision and near-infrared spectroscopy. Plos one, 17(8), e0271352.

Khodabakhshian, R., Emadi, B., Khojastehpour, M., Golzarian, M. R., & Sazgarnia, A. (2017). Development of a multispectral imaging system for online quality assessment of pomegranate fruit. International Journal of Food Properties, 20(1), 107-118.

Lianou, A., Mencattini, A., Catini, A., Di Natale, C., Nychas, G. J. E., Martinelli, E., & Panagou, E. Z. (2019). Online feature selection for robust classification of the microbiological quality of traditional vanilla cream using multispectral imaging. Sensors, 19(19), 4071.

Liu, W., Liu, C., Ma, F., Lu, X., Yang, J., & Zheng, L. (2016). Online variety discrimination of rice seeds using multispectral imaging and chemometric methods. Journal of Applied Spectroscopy, 82, 993-999.

Santoyo-Mora, M., Sancen-Plaza, A., Espinosa-Calderon, A., Barranco-Gutierrez, A. I., & Prado-Olivarez, J. (2019). Nondestructive quantification of the ripening process in banana (Musa AAB Simmonds) using multispectral imaging—Journal of Sensors, 2019.

Lohumi, S., Cho, B. K., & Hong, S. (2021). LCTF-based multispectral fluorescence imaging: System development and potential for real-time foreign object detection in fresh-cut vegetable processing. Computers and Electronics in Agriculture, 180, 105912.

Naeem, S., Ali, A., Chesneau, C., Tahir, M. H., Jamal, F., Sherwani, R. A. K., & Ul Hassan, M. (2021). The classification of medicinal plant leaves based on multispectral and texture features using a machine learning approach. Agronomy, 11(2), 263.

Zoumpourlis, G., Doumanoglou, A., Vretos, N., & Daras, P. (2017). Non-linear convolution filters for cnn-based learning. In Proceedings of the IEEE International Conference on Computer Vision (pp. 4761-4769).

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial intelligence review, 53, 5455-5516.

Gholamalinezhad, H., & Khosravi, H. (2020). Pooling methods in deep neural networks, a review. arXiv preprint arXiv:2009.07485.

Akhtar, N., & Ragavendran, U. (2020). Interpretation of intelligence in CNN-pooling processes: a methodological survey. Neural computing and applications, 32(3), 879-898.

Hossain, M. A., & Sajib, M. S. A. (2019). Classification of the image using convolutional neural network (CNN). Global Journal of Computer Science and Technology, 19(2).

Islam, M. T., Siddique, B. N. K., Rahman, S., & Jabid, T. (2018, October). Image recognition with deep learning. In 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) (Vol. 3, pp. 106-110). IEEE.

Yalcin, H., & Razavi, S. (2016, July). Plant classification using convolutional neural networks. In 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 1-5). IEEE.

Published

24.03.2024

How to Cite

author1, author2. (2024). Title. International Journal of Intelligent Systems and Applications in Engineering, 12(3), 2570–2577. Retrieved from https://www.ijisae.org/index.php/IJISAE/article/view/5729

Issue

Section

Research Article