Enhancing the Grindability and Porosity of Palm Kernell Shell Through Microwave Preheating and Torrefaction for Sustainable Energy Production

Authors

  • Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling, Mansur

Keywords:

Palm kernel shell, Microwave Preheating, Torrefaction, Grindability, and Porosity

Abstract

Biochar from Palm Kernel Shell (PKS) can be obtained through the torrefaction process of biomass under oxygen-free conditions, offering significant potential as a material for cofiring in combustion applications. While extensive research has examined various biochar characteristics, such as its chemical composition and thermal properties, understanding its grindability and porosity remains limited. This study investigates experimentally the impact of microwave preheating and torrefaction on the grindability and porosity of palm kernel shells.  PKS samples were preheated using microwave radiation at power levels of 360, 540, and 750 Watts for 10 minutes. Subsequently, each sample underwent torrefaction at temperatures of 200°C, 250°C, and 300°C for 30 minutes. Comprehensive chemical and physical analyses, including Scanning Electron Microscopy (SEM), Differential Thermogravimetric Analysis (DTG), and Differential Thermal Analysis (DTA), were employed to evaluate the modified properties of the torrefied PKS. The results highlight that the combined treatment significantly improves both grindability and porosity of PKS. Particularly, increasing microwave power levels during preheating enhances these properties, making the resultant solid products more suitable for efficient energy production processes. This study provides valuable insights into optimizing the utilization of PKS through innovative thermal treatments, contributing to sustainable biomass utilization strategies.

Downloads

Download data is not yet available.

References

K. A. Abdulyekeen, A. A. Umar, M. F. A. Patah, and W. M. A. W. Daud, “Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass,” Renew. Sustain. Energy Rev., vol. 150, no. July, p. 111436, 2021, doi: 10.1016/j.rser.2021.111436.

K. J. Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., Ptasinski, “Biomass Torrefaction: Technology and its Prospects,” Prog. Energy Combust., vol. 93, no. 1, p. 100915, 2023, doi: 10.1016/j.pecs.2023.100915.

R. Sharma et al., “A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications,” Chem. Africa, vol. 3, no. 1, 2020, doi: 10.1007/s42250-019-00098-3.

T. R. Sarker, S. Nanda, A. K. Dalai, and V. Meda, “A Review of Torrefaction Technology for Upgrading Lignocellulosic Biomass to Solid Biofuels,” Bioenergy Res., vol. 14, no. 2, pp. 645–669, 2021, doi: 10.1007/s12155-020-10236-2.

N. M. Clauser, G. González, C. M. Mendieta, J. Kruyeniski, M. C. Area, and M. E. Vallejos, “Biomass waste as sustainable raw material for energy and fuels,” Sustain., vol. 13, no. 2, pp. 1–21, 2021, doi: 10.3390/su13020794.

N. Banerjee, Biomass to Energy — an Analysis of Current Technologies, Prospects, and Challenges, vol. 16, no. 2. Springer US, 2023. doi: 10.1007/s12155-022-10500-7.

M. A. Waheed, O. A. Akogun, and C. C. Enweremadu, “An overview of torrefied bioresource briquettes: quality-influencing parameters, enhancement through torrefaction and applications,” Bioresour. Bioprocess., vol. 9, no. 1, pp. 1–19, 2022, doi: 10.1186/s40643-022-00608-1.

A. Saavedra et al., “Current state of the worldwide renewable energy generation: A review,” Int. J. Eng. Appl., vol. 9, no. 3, pp. 115–127, 2021, doi: 10.15866/irea.v9i3.19987.

H. Fitri, G. A. K. Gürdil, B. Demirel, E. Y. Cevher, and H. Roubík, “Biomass potential from agricultural residues for energy utilization in West Nusa Tenggara (WNT), Indonesia,” GCB Bioenergy, vol. 15, no. 11, pp. 1405–1414, 2023, doi: 10.1111/gcbb.13100.

R. Nabila et al., “Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization,” Renew. Sustain. Energy Rev., vol. 176, no. June 2022, p. 113193, 2023, doi: 10.1016/j.rser.2023.113193.

Erdiwansyah et al., “Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review,” Arch. Environ. Prot., vol. 48, no. 3, pp. 57–69, 2022, doi: 10.24425/aep.2022.142690.

Statista, “Palm oil Industri in Indonesia,” 2022. https://www.statista.com/topics/5921/palm-oil-industry-in-indonesia/#topicOverview, accessed on June 2024

E. Potential, P. Kernel, and K. Shells, “BioEnergy Consult Potential of Analysis and Forecast to 2030,” pp. 1–5, 2021.

S. Kaniapan, H. Suhaimi, Y. Hamdan, and J. Pasupuleti, “Experiment analysis on the characteristic of empty fruit bunch, palm kernel shell, coconut shell, and rice husk for biomass boiler fuel,” J. Mech. Eng. Sci., vol. 15, no. 3, pp. 8300–8309, 2021, doi: 10.15282/jmes.15.3.2021.08.0652.

M. N. Cahyanti, T. R. K. C. Doddapaneni, and T. Kikas, “Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements,” Bioresour. Technol., vol. 301, no. January, p. 122737, 2020, doi: 10.1016/j.biortech.2020.122737.

N. Tripathi, C. D. Hills, R. S. Singh, and C. J. Atkinson, “Biomass waste utilisation in low-carbon products: harnessing a major potential resource,” npj Clim. Atmos. Sci., vol. 2, no. 1, 2019, doi: 10.1038/s41612-019-0093-5.

M. Preradovic, S. Papuga, and A. Kolundžija, “Torrefaction : Process Review,” vol. 67, no. 1, pp. 49–61, 2023.

L. K. Mangalla, L. O. A. Barata, E. Triyogo, and I. B. Randa, “Biomass Torrefaction Reactor with PID Controller_ Design and Thermal Assessment.pdf,” Int. J. Dyn. Eng. Syst., vol. 01, no. 01, pp. 24–33, 2024.

Y. Y. Gan, H. C. Ong, T. C. Ling, W. H. Chen, and C. T. Chong, “Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production,” Energy, vol. 170, pp. 367–374, 2019, doi: 10.1016/j.energy.2018.12.026.

T. O. Olugbade and O. T. Ojo, “Biomass Torrefaction for the Production of High-Grade Solid Biofuels: a Review,” Bioenergy Res., vol. 13, no. 4, pp. 999–1015, 2020, doi: 10.1007/s12155-020-10138-3.

S. Kant Bhatia et al., “Trends in renewable energy production employing biomass-based biochar,” Bioresour. Technol., vol. 340, no. June, p. 125644, 2021, doi: 10.1016/j.biortech.2021.125644.

A. Tshikovhi and T. E. Motaung, “Technologies and Innovations for Biomass Energy Production,” Sustain., vol. 15, no. 16, pp. 1–21, 2023, doi: 10.3390/su151612121.

B. Gajera, U. Tyagi, A. K. Sarma, and M. K. Jha, “Impact of torrefaction on thermal behavior of wheat straw and groundnut stalk biomass: Kinetic and thermodynamic study,” Fuel Commun., vol. 12, no. April, p. 100073, 2022, doi: 10.1016/j.jfueco.2022.100073.

R. Junga, J. Pospolita, and P. Niemiec, “Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation,” Renew. Energy, vol. 147, pp. 1239–1250, 2020, doi: 10.1016/j.renene.2019.09.060.

M. Ivanovski, A. Petrovič, D. Goričanec, D. Urbancl, and M. Simonič, “Exploring the Properties of the Torrefaction Process and Its Prospective in Treating Lignocellulosic Material,” Energies, vol. 16, no. 18, 2023, doi: 10.3390/en16186521.

T. R. Sarker, R. Azargohar, A. K. Dalai, and V. Meda, “Enhancement of fuel and physicochemical properties of canola residues via microwave torrefaction,” Energy Reports, vol. 7, pp. 6338–6353, 2021, doi: 10.1016/j.egyr.2021.09.068.

D. Nhuchhen, P. Basu, and B. Acharya, “A Comprehensive Review on Biomass Torrefaction,” Int. J. Renew. Energy Biofuels, pp. 1–56, 2014, doi: 10.5171/2014.506376.

P. Basu, Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. 2013. doi: 10.1016/C2011-0-07564-6.

V. Goodwin, P. Jitreewas, T. Sesuk, P. Limthongkul, and S. Charojrochkul, “Development of Modified Mesoporous Carbon from Palm oil Biomass for Energy Storage Supercapacitor Application,” IOP Conf. Ser. Earth Environ. Sci., vol. 1199, no. 1, pp. 1–10, 2023, doi: 10.1088/1755-1315/1199/1/012003.

A. Novak, L. Li, J. Wason, J. Wang, and Y. J. Zhang, “Characterization and Modification of Biochar from a Combined Heat and Power (CHP) Plant for Amending Sandy Soils Collected from Wild Blueberry Fields,” BioResources, vol. 19, no. 1, pp. 228–244, 2024, doi: 10.15376/biores.19.1.228-244.

K. Wang, J. Remón, Z. Jiang, and W. Ding, “Recent Advances in the Preparation and Application of Biochar Derived from Lignocellulosic Biomass: A Mini Review,” Polymers (Basel)., vol. 16, no. 6, 2024, doi: 10.3390/polym16060851.

L. N. Moreno-Chocontá, A. S. Lozano-Pérez, and C. A. Guerrero-Fajardo, “Evaluation of the Effect of Particle Size and Biomass-to-Water Ratio on the Hydrothermal Carbonization of Sugarcane Bagasse,” ChemEngineering, vol. 8, no. 2, 2024, doi: 10.3390/chemengineering8020043.

H. Feng, Y. Yin, and J. Tang, “Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling,” Food Eng. Rev., vol. 4, no. 2, pp. 89–106, 2012, doi: 10.1007/s12393-012-9048-x.

P. Alizadeh, L. G. Tabil, P. K. Adapa, D. Cree, E. Mupondwa, and B. Emadi, “Torrefaction and Densification of Wood Sawdust for Bioenergy Applications,” Fuels, vol. 3, no. 1, pp. 152–175, 2022, doi: 10.3390/fuels3010010.

S. M. H. D. Perera, C. Wickramasinghe, B. K. T. Samarasiri, and M. Narayana, “Modeling of thermochemical conversion of waste biomass – a comprehensive review,” Biofuel Res. J., vol. 8, no. 4, pp. 1481–1528, 2021, doi: 10.18331/BRJ2021.8.4.3.

R. K. L. Yek, Yoke Wang Cheng et al., “Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review,” Renew. Sustain. Energy Rev., vol. 151, no. September, p. 111645, 2021, doi: 10.1016/j.rser.2021.111645.

C. Shi et al., “Efficient Heating of Activated Carbon in Microwave Field,” C-Journal Carbon Res., vol. 9, no. 2, 2023, doi: 10.3390/c9020048.

R. Ahmad, M. A. M. Ishak, N. N. Kasim, and K. Ismail, “Torrefaction of palm kernel shell using conventional and microwave irradiation pretreatment,” IOP Conf. Ser. Earth Environ. Sci., vol. 476, no. 1, 2020, doi: 10.1088/1755-1315/476/1/012073.

P. N. Y. Yek et al., “Microwave wet torrefaction: A catalytic process to convert waste palm shell into porous biochar,” Mater. Sci. Energy Technol., vol. 3, pp. 742–747, 2020, doi: 10.1016/j.mset.2020.08.004.

L. K. Mangalla and H. Enomoto, “A Novel Analysis on Ethanol Droplets Heated by Electromagnetic Energy,” Lect. Notes Mech. Eng., pp. 353–366, 2021, doi: 10.1007/978-981-16-0736-3_34.

S. H. Ho, C. Zhang, W. H. Chen, Y. Shen, and J. S. Chang, “Characterization of biomass waste torrefaction under conventional and microwave heating,” Bioresour. Technol., vol. 264, no. May, pp. 7–16, 2018, doi: 10.1016/j.biortech.2018.05.047.

B. Yan, L. Jiao, J. Li, X. Zhu, S. Ahmed, and G. Chen, “Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance,” Energy, vol. 220, 2021, doi: 10.1016/j.energy.2021.119794.

A. Prasetiyo, S. Sukarni, A. Irawan, A. A. Permanasari, and P. Puspitasari, “Physicochemical properties and porosity of coconut chell waste (CSW) biomass,” IOP Conf. Ser. Earth Environ. Sci., vol. 847, no. 1, pp. 1–7, 2021, doi: 10.1088/1755-1315/847/1/012017.

J. Hommel, E. Coltman, and H. Class, “Porosity–Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media,” Transp. Porous Media, vol. 124, no. 2, pp. 589–629, 2018, doi: 10.1007/s11242-018-1086-2.

S. Guo et al., “An Optimized Method for Evaluating the Preparation of High-Quality Fuel from Various Types of Biomass through Torrefaction,” Molecules, vol. 29, no. 8, 2024, doi: 10.3390/molecules29081889.

“Torrefaction of bamboo pellets using a fixed counterflow multibaffle reactor for re - newable energy applications,” Glob. J. Environ. Sci. Manag., vol. 10, no. 1, pp. 1–20, 2024, doi: 10.22035/gjesm.2024.

S. Guo, L. Liu, D. Zhao, C. Zhao, X. Li, and G. Li, “Optimization of Briquette Fuels by Co-Torrefaction of Residual Biomass and Plastic Waste Using Response Surface Methodology,” Molecules, vol. 28, no. 6, 2023, doi: 10.3390/molecules28062568.

J. J. Villora-Picó, J. González-Arias, F. M. Baena-Moreno, and T. R. Reina, “Renewable Carbonaceous Materials from Biomass in Catalytic Processes: A Review,” Materials (Basel)., vol. 17, no. 3, pp. 1–33, 2024, doi: 10.3390/ma17030565.

C. Spirchez and A. Lunguleasa, “Torrefaction of Spruce, Beech, and Oak Pellets in Order to Improve Calorific Value,” BioResources, vol. 17, no. 4, pp. 6804–6817, 2022, doi: 10.15376/biores.17.4.6804-6817.

L. K. Mangalla, R. R. Sisworo, and L. Pagiling, “Perbaikan Kualitas Energi Biomassa Kayu Jati Menggunakan Torefaksi Microwave Untuk Produksi Bioarang,” Teknik, vol. 44, no. 1, pp. 15–22, 2023, doi: 10.14710/teknik.v44i1.48278.

H. Zhu, Y. Li, W. Chen, and J. Huang, “Microwave Pre-treatment and Torrefaction of Biomass: A Combined Approach,” Energy Convers. Manag., vol. 264, no. 1, p. 115671, 2022, doi: 10.1016/j.enconman.2022.115671.

B. Colin, J. L. Dirion, P. Arlabosse, and S. Salvador, “Quantification of the torrefaction effects on the grindability and the hygroscopicity of wood chips,” Fuel, vol. 197, pp. 232–239, 2017, doi: 10.1016/j.fuel.2017.02.028.

[53] H. Aldila, I. Puspita, A. Arsyadi, F. Afriani, and Megiyo, “High porosity activated carbon developed from biomass waste,” IOP Conf. Ser. Earth Environ. Sci., vol. 1267, no. 1, pp. 1–6, 2023, doi: 10.1088/1755-1315/1267/1/012094.

O. S. Agu, L. G. Tabil, E. Mupondwa, B. Emadi, and T. Dumonceaux, “Impact of Biochar Addition in Microwave Torrefaction of Camelina Straw and Switchgrass for Biofuel Production,” Fuels, vol. 3, no. 4, pp. 588–606, 2022, doi: 10.3390/fuels3040036.

D. C. F. Romão et al., “Assessment of the Economic and Energetic Potential of Residues from the Green Coconut Industry,” J. Braz. Chem. Soc., vol. 33, no. 8, pp. 938–947, 2022, doi: 10.21577/0103-5053.20220042.

S. Singh, J. P. Chakraborty, and M. K. Mondal, “Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel,” Renew. Energy, vol. 153, pp. 711–724, 2020, doi: 10.1016/j.renene.2020.02.037.

Downloads

Published

23.07.2024

How to Cite

Lukas Kano Mangalla. (2024). Enhancing the Grindability and Porosity of Palm Kernell Shell Through Microwave Preheating and Torrefaction for Sustainable Energy Production. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 1957–1966. Retrieved from https://www.ijisae.org/index.php/IJISAE/article/view/6514

Issue

Section

Research Article