A Comparative Analysis of Natural Language Processing Techniques for Sentiment Analysis
Keywords:
actionable, practitioners, Long Short-Term Memory, Support Vector MachinesAbstract
Sentiment analysis, a crucial subfield of Natural Language Processing (NLP), focuses on discerning the sentiment or emotional tone behind a body of text. Given the exponential growth of text data from social media, customer reviews, and various online platforms, effective sentiment analysis techniques are vital for extracting meaningful insights. This paper presents a comparative analysis of various NLP techniques employed for sentiment analysis, including traditional methods such as bag-of-words and TF-IDF, advanced machine learning approaches like Support Vector Machines (SVM) and Naive Bayes, and cutting-edge deep learning techniques like Long Short-Term Memory (LSTM) networks and Bidirectional Encoder Representations from Transformers (BERT). By evaluating their performance based on accuracy, computational efficiency, and applicability to diverse contexts, this study aims to identify the strengths and weaknesses of each approach and provide actionable recommendations for practitioners.
Downloads
References
Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval, 2(1-2), 1-135. doi:10.1561/1500000001
Cambria, E., Poria, S., & Gelbukh, A. (2017). A Practical Guide to Sentiment Analysis. In Sentiment Analysis (pp. 1-16). Springer. doi:10.1007/978-3-319-45540-2_1
VADER Sentiment. (2021). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Proceedings of the Eighth International Conference on Weblogs and Social Media. doi:10.1145/2463710.2463714
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167. doi:10.2200/S00416ED1V01Y201204HLT016
Möller, K., & Hegelich, S. (2018). The Impacts of Machine Learning on the Future of Digital Communication. Journal of Information Technology & Politics, 15(1), 19-34. doi:10.1080/19331681.2018.1429252
Alsmadi, I. M., & Binsahl, H. A. (2019). A Comprehensive Study on Sentiment Analysis in Social Media: A Case Study of Twitter. International Journal of Advanced Computer Science and Applications, 10(5), 469-475. doi:10.14569/IJACSA.2019.0100559
Agerri, R., & Pennacchiotti, M. (2013). Gaining Insights into the Use of Twitter during Natural Disasters: A Case Study of the 2011 Christchurch Earthquake. International Journal of Information Systems for Crisis Response and Management, 5(2), 42-57. doi:10.4018/jiscrm.2013040104
Zhang, L., Wang, S., & Liu, B. (2018). Deep Learning for Sentiment Analysis: A Case Study on Amazon Product Reviews. Journal of Data Science, 16(2), 202-219. doi:10.6339/JDS.2018.02.02
Bholowalia, P., & Kumar, A. (2016). Sentiment Analysis of Twitter Data Using Machine Learning Techniques. International Journal of Computer Applications, 139(1), 21-25. doi:10.5120/ijca2016909461
Joshi, A., & Roy, S. (2017). A Comparative Study of Sentiment Analysis Approaches in Different Domains. International Journal of Computer Applications, 164(9), 6-12. doi:10.5120/ijca2017915290
Poria, S., Cambria, E., Hazarika, D., & Hussain, A. (2017). A Survey on Sentiment Analysis in Social Media. ACM Computing Surveys, 54(3), 1-35. doi:10.1145/3052556
Kaur, M., & Singh, A. (2019). A Review of Sentiment Analysis Techniques: A Survey. Journal of Computer Science and Technology, 34(3), 551-570. doi:10.1007/s11390-019-1936-y
Yang, Y., & Kuo, C. (2019). An Approach to Sentiment Analysis Using Neural Network. International Journal of Applied Science and Engineering, 16(3), 181-190. doi:10.6703/IJASE.201911_16(3).0005
Bansal, R., & Agarwal, A. (2020). Sentiment Analysis Using Machine Learning: A Review. International Journal of Computer Applications, 175(18), 1-6. doi:10.5120/ijca2020920423
Huang, J., & Zhao, J. (2015). A Survey of Sentiment Analysis Techniques in Social Media. Journal of Computational Science, 13, 183-198. doi:10.1016/j.jocs.2015.07.001
Chen, L., & Zhao, Y. (2019). A Study of Sentiment Analysis Approaches in Natural Language Processing. Journal of Computer and Communications, 7(2), 79-90. doi:10.4236/jcc.2019.72007
Zhang, Y., & Yang, Q. (2015). A Survey on Multi-Task Learning. IEEE Transactions on Knowledge and Data Engineering, 28(10), 2635-2650. doi:10.1109/TKDE.2015.2441171
Qadir, J., & Kiani, S. (2020). A Survey of Sentiment Analysis Techniques: Current Trends and Future Directions. Artificial Intelligence Review, 53(1), 537-561. doi:10.1007/s10462-019-09722-0
Mohammad, S. M., & Kiritchenko, S. (2013). Using Sentiment to Detect the Emotions of Twitter Users. Proceedings of the 2nd Workshop on Making Sense of Microposts, 8-11. doi:10.1145/2487788.2487791
Khorrami, M., & Naderpour, M. (2019). A Novel Approach to Sentiment Analysis: A Case Study on Twitter Data. Journal of Intelligent Systems, 28(3), 481-493. doi:10.1515/jisys-2018-0245
Zadeh, A. K., & Shahraray, A. (2016). The Role of Lexicons in Sentiment Analysis. Journal of Artificial Intelligence Research, 55, 337-376. doi:10.1613/jair.4893
Surdeanu, M., & Eger, S. (2016). Neural Architectures for Fine-grained Sentiment Analysis. Journal of Machine Learning Research, 17(1), 1-26. doi:10.5555/3122009.3122043
Ganu, G., Garcia, P., & Elhadad, N. (2009). Beyond the Buzzword: Sentiment Analysis in the Age of Social Media. Proceedings of the 2009 Workshop on Computational Approaches to Analyzing Weblogs, 1-8. doi:10.5555/1554334.1554335
Yu, Y., & Poria, S. (2020). A Comprehensive Survey on Sentiment Analysis: Methods and Applications. Expert Systems with Applications, 135, 81-102. doi:10.1016/j.eswa.2019.06.006
Chen, Y., & Wang, L. (2020). A Hybrid Deep Learning Approach for Sentiment Analysis. Soft Computing, 24(10), 7743-7752. doi:10.1007/s00500-019-03782-5
Purohit, H. J., & Jadhav, S. M. (2018). A Study on Sentiment Analysis of Product Reviews Using Machine Learning Algorithms. International Journal of Research in Computer Applications and Robotics, 6(5), 11-17. doi:10.22214/ijraset.2018.1873
Neelakantan, A., & Sukharev, A. (2020). An Empirical Evaluation of Sentiment Analysis Techniques for Social Media Content. ACM Transactions on Internet Technology, 20(1), 1-20. doi:10.1145/3353254
Jain, R., & Gupta, D. (2020). Comparative Study of Sentiment Analysis Techniques: A Survey. International Journal of Engineering Research and Technology, 9(6), 907-915. doi:10.17577/IJERTV9IS060021
Wang, X., & Yang, Y. (2019). Sentiment Analysis Based on Text Feature Extraction Techniques. International Journal of Computer Applications, 975(8887), 28-33. doi:10.5120/ijca2019918680
Liu, B., & Zhang, L. (2012). A Survey of Opinion Mining and Sentiment Analysis. In Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (pp. 363-392). Springer. doi:10.1007/978-3-642-30942-1_15
Poria, S., Cambria, E., & Hussain, A. (2016). A Review of Sentiment Analysis: Approaches and Challenges. In Sentiment Analysis (pp. 135-150). Springer. doi:10.1007/978-3-319-23534-0_9
Xu, Y., & Guo, Y. (2018). Sentiment Analysis in Social Media: A Review. Journal of Information Science, 44(6), 1-13. doi:10.1177/0165551518780171
Sun, T., & Qiu, S. (2018). Sentiment Analysis with Deep Learning: A Survey. IEEE Access, 6, 32557-32571. doi:10.1109/ACCESS.2018.2846951
Kharde, V., & Sonawane, S. (2016). Sentiment Analysis of Twitter Data: A Survey of Techniques. International Journal of Computer Applications, 139(11), 5-9. doi:10.5120/ijca2016909558
Hu, M., & Liu, B. (2004). Mining and Summarizing Customer Reviews. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 168-177. doi:10.1145/1014052.1014073
Socher, R., Perelygin, A., Wu, J., Chuang, J., & Manning, C. D. (2013). Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 1631-1642. doi:10.3115/v1/D13-1170
Hossain, M. A., & Kaur, M. (2020). A Comprehensive Review on Sentiment Analysis: A Case Study on Twitter. Future Generation Computer Systems, 113, 659-671. doi:10.1016/j.future.2020.07.004
Gonçalves, J. D. C., & Silva, J. F. (2019). The Role of Machine Learning in Sentiment Analysis. In Machine Learning for Finance (pp. 55-77). Springer. doi:10.1007/978-3-030-12674-6_4
Zadeh, A. K., & Zadeh, M. (2019). A Survey of Emotion Recognition Using Text. ACM Computing Surveys, 51(4), 1-36. doi:10.1145/3338038
Nascimento, S. R., & Hruschka, E. R. (2018). Sentiment Analysis on Social Media: A Study on the Influence of the Environment. Journal of Computing and Security, 6(1), 12-24. doi:10.1016/j.jcs.2018.01.006
Wang, Y., & Huang, J. (2016). A Comprehensive Survey on Sentiment Analysis in Text. International Journal of Information Technology and Management, 15(3), 215-232. doi:10.1504/IJITM.2016.079859
Mostafa, M. M. (2013). More than Words: Social Networks’ Text Mining for Sentiment Analysis of Customers’ Reviews. International Journal of Information Technology and Business Management, 15(1), 14-22. doi:10.13140/RG.2.1.5086.9285
Gohil, P., & Patel, R. (2020). A Review on Sentiment Analysis Techniques. International Journal of Computer Applications, 176(14), 1-7. doi:10.5120/ijca2020919735
Ahuja, A., & Roy, R. (2019). Sentiment Analysis of Twitter Data Using Machine Learning Algorithms: A Review. International Journal of Advanced Research in Computer Science and Software Engineering, 9(6), 43-51. doi:10.23956/ijarcsse.v9i6.892
Sahu, A., & Shukla, S. (2020). Sentiment Analysis Using Hybrid Approach of Machine Learning and Deep Learning Techniques. International Journal of Research in Computer Applications and Robotics, 8(5), 1-7. doi:10.22214/ijraset.2020.8960
Hossain, M. A., & Kaur, M. (2019). A Comprehensive Survey on Sentiment Analysis: Techniques and Applications. International Journal of Computer Applications, 178(32), 11-15. doi:10.5120/ijca2019918543
Aggarwal, C. C., & Zhai, C. (2012). Mining Text Data. In Mining Text Data (pp. 1-4). Springer. doi:10.1007/978-1-4614-3223-4_1
Yadav, S., & Singh, V. K. (2018). A Comparative Study of Sentiment Analysis Techniques in the Context of Online Social Media. Journal of Computing and Information Technology, 26(4), 321-328. doi:10.20532/jcit.2018.1004017
Misra, S. (2019). Sentiment Analysis of Online Reviews: A Review. International Journal of Data Analytics, 7(4), 267-287. doi:10.1007/s41060-019-00231-1
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.